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ABSTRACT
Understanding and quantifying the impact of unobserved
processes is one of the major challenges of analyzing multi-
variate time series data. In this paper, we analyze a flex-
ible stochastic process model, the generalized linear auto-
regressive process (GLARP) and identify the conditions un-
der which the impact of hidden variables appears as an ad-
ditive term to the evolution matrix estimated with the max-
imum likelihood. In particular, we examine three exam-
ples, including two popular models for count data, i.e, Pois-
son and Conwey-Maxwell Poisson vector auto-regressive pro-
cesses, and one powerful model for extreme value data, i.e.,
Gumbel vector auto-regressive processes. We demonstrate
that the impact of hidden factors can be separated out via
convex optimization in these three models. We also propose
a fast greedy algorithm based on the selection of composite
atoms in each iteration and provide a performance guaran-
tee for it. Experiments on two synthetic datasets, one social
network dataset and one climatology dataset demonstrate
the the superior performance of our proposed models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Time Series
Analysis

Keywords
Time Series Analysis, Latent Factors, Generalized Linear
Models

1. INTRODUCTION
In many applications, an enormous amount of time series

data is collected, which requires us to develop faster and
more efficient algorithms for analysis and forecasting pur-
poses. A major challenge with which we are confronted in
practical applications is the incompleteness of the data, i.e.,
certain influential time series are missing in the real-world
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datasets. For example, in social media analysis, the external
events influence large clusters of users, while the news propa-
gates through the local connections in the network. In order
to identify the true influence patterns among the users, we
need to take into consideration the impact of external un-
observed events. In climate data analysis, the local terrain
characteristics play an important role in the air mass prop-
agation while large weather systems, which are usually not
observed in the dataset collected by local weather stations,
influence wide areas on the ground.

The traditional approach to capture the impact of unob-
served variables is to include them in the graphical models
and infer their impact on the model via the EM algorithm
[9]. However, this approach has two main weaknesses: (1)
often times, the EM algorithm only identifies a local opti-
mum. (2) While several techniques have been developed to
speed up the EM algorithm, usually the inference cannot
scale to large datasets. Recent progress shows that in the
Gaussian linear undirected graphical [4] and vector auto-
regressive [13] models, the impact of hidden variables ap-
pears as an additive low rank matrix in the precision and
evolution matrices, respectively. Thus, one can use scalable
convex optimization algorithms to decompose the parameter
matrix into a sparse local dependency and another low-rank
global impact matrix which models the impact of hidden
variables.

While the convex sparse plus low-rank decomposition in
the linear vector auto-regressive models is promising, the
model applies to a very limited class of time series data. For
example, in social media applications, in which the number
of mentions of key words by users is a counting process, the
Gaussian linear vector auto-regressive model obviously is not
applicable. In many climatology applications the distribu-
tion of the data exhibits heavy tails [6, 2]. For e.g. climate
change is mostly characterized by increasing probabilities of
extreme weather patterns such as temperature or precipita-
tion reaching extremely high values [26]. In search of more
general and flexible time series models, we construct sev-
eral auto-regressive processes and show that the maximum
likelihood estimate of their evolution matrices can be decom-
posed into a sparse and a low-rank matrix with the latter
capturing the impact of unobserved processes. For counting
processes, we analyze the Poisson [30] and Conway-Maxwell
Poisson [32] auto-regressive processes. The latter distribu-
tion has recently attracted researchers’ attention because
of its flexibility in modeling the under-dispersion and over-
dispersion of discrete data [25, 23]. For extreme value time
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series, we propose a novel heavy-tailed auto-regressive time
series model, by choosing the distribution of the data to be
the Gumbel distribution.

For fast solutions, we develop a scalable greedy sparse
plus low-rank decomposition algorithm for maximizing the
likelihood functions of GLARP models based on the work
in [27, 24]. Providing an upper bound on the convergence
rate, we show that the greedy algorithms can be used for
composite atoms, i.e., vectors that are obtained by concate-
nating sparse plus low-rank atoms. We also show why the
single atom selection per iteration yields slower rate of con-
vergence. To our best knowledge, the composite atoms have
not been studied prior to this work. Extensive experiments
on two synthetic datasets, one climatology dataset and one
social network dataset are shown to demonstrate the supe-
rior performance of the proposed algorithms.

2. PRELIMINARIES AND RELATED WORK

Notation.
In this paper, we denote a single random variable with

lower-case letters (for e.g. x) and a vector of random vari-
ables by bold letters (for e.g. x). We can represent a set of
N time series of length T by its elements xi(t) which rep-
resents the value of the ith time series at time t. Using the
notation, x(t) denotes the value of all time series at time t.

Generalized Linear Models.
The Generalized Linear Model [18] describes the connec-

tion between the response variables y and the predictor vari-
ables x via the following linear dependence model:

g(Ey|x[y]) = Ax+ b, (1)

where the strictly monotone function g(.) is called the link
function and A and b are linear regression coefficients. Based
on generalized linear models, we can define the stochastic
process model for time series x(t) for t = 1, . . . , T accord-
ing to the following Generalized Linear Auto-regressive Pro-
cesses (GLARP) model:

g(EH(t)[x(t)]) =
K∑
�=1

A(�)x(t− �) + b. (2)

where the matrices A(�) for � = 1, . . . ,K, K denoting the
maximum lag in time, are called the Evolution Matrices
and EH(t) emphasizes the point that the expectation is per-
formed given the history before time t. The generative pro-
cess corresponding to the model above can be described as
follows: at time t, compute the conditional mean of x(t)
using the outcomes at time t − K, . . . , t − 1, i.e. x(t −
K), . . . ,x(t − 1); then generate x(t) according to the com-
puted mean. Examples of the generalized linear auto-regressive
models are vector auto-regressive models that are widely
used for jointly modeling multiple continuous time series and
Poisson auto-regressive processes for modeling multiple time
series of count data.

We build the temporal dependency graph G(V,E) corre-

sponding to the evolution matrices A(�) for � = 1, . . . ,K by
representing every time series xi by a node vi ∈ V . We add
a directed edge ei→j to the set E if at least one of the entries

A
(�)
j,i for � = 1, . . . ,K is non-zero.

= +
Original Low Rank Sparse

Figure 1: Decomposition of the evolution matrix in
Eq. (5) into low-rank and sparse matrices.

Sparse plus Low-rank Decomposition.
In order to achieve a consistent estimate of a high dimen-

sional matrix from a limited number of observations, we are
required to impose a low-dimensional structure on the es-
timated matrix. One of the most popular structures is the
sparse plus low-rank structure which assumes that the true
value of the matrix is approximately equal to a low-rank part
plus a sparse part (Fig. 1). Examples of the applications
that exhibit this low-dimensional structure are Robust PCA
[5, 3, 20], Robust covariance estimation [1] and Multi-task
regression [17, 21].

Learning with Hidden Factors.
In many real world applications, observing all influential

quantities can be expensive or even not possible. The hidden
time series can be the quantities that are hard to measure or
have corrupted measurements; they can also represent im-
measurable events such as disease outbreak news and its im-
pact on social networks. Thus, taking into consideration the
possible existence of a few hidden variables in the analysis
makes the analysis significantly more accurate and realistic.
The most common approach to capture the effect of hidden
variables is based on the EM algorithm [9]. While the EM
framework is quite general, it suffers from getting trapped
into the local optima. In this work we are interested in find-
ing a convex programming solution which does not depend
on the initialization point.

In many real world datasets there are unobserved vari-
ables that impact large groups of observed variables; this
phenomenon is called the global influence. Examples of this
phenomenon include the global impact of airwaves in clima-
tology and the network-wide impact of external news on so-
cial networks. At the same time, the observed variables have
local sparse connectivity with each other. Examples of the
local dependency are the users in social networks who share
their friends’ posts or influence of a region on to another one
due to their spatial proximity. [4] shows that in undirected
graphs with unobserved variables with global impact, the
precision matrix of the joint distribution of observed vari-
ables have the sparse plus low-rank structure. [13] shows
that in the vector auto-regressive model with unobserved
variables with global impact, the evolution matrix estimated
via maximizing the likelihood of the observed data only, will
result in the sparse plus low-rank structure as well.

3. METHODOLOGY
In this section, after describing the generalized linear auto-

regressive processes with latent factors, we introduce and
analyze two GLARP models for modeling count data and
another one for modeling extreme value time series. Theo-
rem 3.1 shows that in these models, the maximum likelihood
estimate of the evolution matrix can be decomposed into a
sparse and a low-rank matrix with the latter capturing the
impact of unobserved processes. Then, in Section 3.2 we
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propose an algorithm to uncover the true evolution matrix
and guarantee its convergence to the global optimum of the
objective function (Theorem 3.2).

Consider the following model for generalized linear autore-
gressive processes with hidden factors:

g

(
EH(t)

[
x(t)
z(t)

])
=

K∑
�=1

[
A(�) B(�)

C(�) D(�)

] [
x(t− �)
z(t− �)

]
+ b (3)

for t = K + 1, . . . , T , where x(t), a p× 1 vector, represents
the observed variables, z(t), a r × 1 vector, denotes the un-
observed variables and the function g is the link function.
The density function of the observations at time t is denoted
by f(x(t),θ(t)) where θ(t) denotes the set of parameters of
the distribution that are functions of the evolution matrices
A(�), B(�), C(�) and D(�) and the past values of time series
x(t) and z(t).

The maximum likelihood estimation of the model parame-
ters in absence of the time series z(t) is performed as follows:

{Â(�)}MLE = argmax
{ ̂A(�)}

{
T∏

t=K+1

f(x(t),θ(t))

}
, (4)

where {Â(�)} represents the set of evolution matrices A(�)

for � = 1, . . . ,K.

3.1 Examples of GLARP
In this section, we define three time series models for two

applications: (i) count data obtained from binning of point
processes in social networks and (ii) heavy-tailed continuous
data in the climate applications. In all of these models the
hidden variables create the sparse plus low-rank structure in
the evolution matrix.

3.1.1 Count Data
Recently, point processes have been successfully applied to

social networks analysis [31, 16, 15]. A popular approach in
analysis of temporal dependency among multiple point pro-
cesses is to count the number of events in regularly spaced
intervals and analyze the resulting count time series [30, 15].

The Poisson distribution is one of the most commonly
used distributions for modeling count data. According to
the Poisson autoregressive point process model [30], the dis-
tribution of variables at time t is a Poisson distribution with
a rate conditioned on the history modeled as follows:

logλ(t) = log(EH(t)[x(t)]) =

K∑
�=1

A(�)x(t− �) + b, (5)

where λ(t) represents the rate parameter for the Poisson
distribution. The negative log-likelihood function for this
model is convex and can be efficiently minimized.

Conwey-Maxwell Poisson Distribution.
An important limitation of the Poisson regression is that

the variance of a Poisson distributed variable is equal to its
mean, i.e., the Poisson model does not allow over-dispersion
and under-dispersion which describe variances above and
below the mean, respectively. The Conwey-Maxwell Pois-
son distribution (in short COM-Poisson) is a two-parameter
extension of the Poisson distribution with a parameter for
modeling the dispersion. Historically, it was introduced in

[8] and recently studied comprehensively in [25]. The COM-
Poisson distribution is defined based on the following prop-
erty:

P[X = k − 1]

P[X = k]
=

(
k

μ

)ν

,

where ν is called the dispersion parameter, and ν < 1 mod-
eling over dispersion and ν > 1 modeling underdispersion.
The main advantage of the COM-Poisson distribution over
other generalizations of the Poisson distribution, such as
Double Poisson [10] and Generalized Poisson [7] distribu-
tions, is its flexibility in modeling a greater range of disper-
sion [32]. The COM-Poisson distribution is equivalent to the
Poisson distribution when ν = 1, the Geometric distribution
when ν = 0 and the Bernoulli distribution as ν → ∞. The
COM-Poisson GLARP is defined as follows [32]:

P[xi(t)|μi(t), ν] =
1

S(μi(t), ν)

(
μi(t)

xi(t)

xi(t)!

)ν

log

(
μ(t) +

1

2ν
− 1

2

)
≈ log

(
EH(t)[x(t)]

)
=

K∑
�=1

A(�)x(t− �) + b.

(6)

where μ(t) is the rate parameter and S(μi(t), ν) is the nor-
malization term. Given a constant (invariant with time)
value for the dispersion parameter ν, the negative log-likelihood
function is convex and can be minimized efficiently.

3.1.2 Extreme value data
In many applications, such as climate analysis, time se-

ries data usually exhibit a heavy-tailed distribution which
is significantly different from the commonly assumed Gaus-
sian distribution. The generalized extreme value theorem
states that the maximum of a set of independently and
identically distributed random variables asymptotically con-
verges to the Extreme Value Distribution, [6, 2]. Hence, the
Generalized Extreme Value distribution and its special case,
the Gumbel distribution, are the distributions of choice for
modeling the extreme value data. In this paper, we define a
Gumbel GLARP model as follows:

f(xi(t)|μi(t), σ) =

1

σ
exp

(
−xi(t)− μi(t)

σ
− exp

(
−xi(t)− μi(t)

σ

))
(7)

μ(t) + σγE = EH(t)[x(t)] =
K∑

�=1

A(�)x(t− �) + b,

where μ(t) and σ denote the location and scale parameters
of the Gumbel distribution and γE ≈ 0.5771 is the Euler
constant. Given a constant scale parameter σ, the negative
log-likelihood function is convex and can be minimized effi-
ciently. Note that there are other ways to define a Gumbel
autoregressive process, [29], however the above novel model
is defined to have the sparse and low rank decomposition
property for hidden variables.

For all of the GLARP models described above, we have
the following theorem:

Theorem 3.1. Suppose a generalized linear auto-regressive
process (x(t),z(t)) is defined according to Eq. (5), Eq. (6)
and Eq. (7). Suppose the number of unobserved processes
r and number of lags K are much smaller than the number
of observed ones, i.e. r,K � p. Then, asymptotically as
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T → ∞, the maximum likelihood estimate of {A(�)} is sum
of two matrices:

lim
T→∞

Â
(�)
MLE,T = A(�) + L(�),

where L(�) a low-rank matrix with rank(L(�)) ≤ r.K.

Proof sketch.
The solution relies on two main ideas:
1) Asymptotically, the maximum likelihood estimation pro-

cedure is equivalent to minimization of the KL-distance be-
tween the true model and the observed model. We can write:

ÂMLE = argmin
̂A

{ETrue [LTrue(x(t))− LObs(x(t))]} , (8)

= argmin
̂A

{ETrue [−LObs(x(t))]} (9)

where LTrue and LObs denote the log-likelihood of the true
and observed models, respectively.

2) For point processes, suppose we divide the time into
small intervals such that the probability of observing more
than one event in each interval is small. We can approxi-
mate the likelihood of the observed time series for any point
process in a unified form given its rate function, as shown

in [30]. This allows the computation of ÂMLE for all point
processes in a unified way.

The details of the proof is provided in the Appendix.

3.2 Inference
Using the result of Theorem 3.1 we need to solve the fol-

lowing optimization algorithm to capture the effect of unob-
served variables:

min
A(�),L(�),b

L
(
x(t),A(�), L(�)

)�=1:K

t=1:T
(10)

Subject to:

K∑
�=1

∥∥∥A(�)
∥∥∥
0
≤ ηS ,

K∑
�=1

rank
(
L(�)

)
≤ ηL,

where the L0 norm of the matrices is equal to the number
of non-zeros elements of the matrices and L denotes the
likelihood of the stochastic process defined in Eq. (3). There
are two main approaches to solve the problem in Eq. (10).
The first approach uses a convex relaxation of the L0 norm
with the L1 norm and the rank constraint with the nuclear
norm L∗:

min
A(�),L(�),b

{
L
(
x(t),A(�), L(�)

)�=1:K

t=1:T
+

λS

K∑
�=1

∥∥∥A(�)
∥∥∥
1
+ λL

K∑
�=1

∥∥∥L(�)
∥∥∥
∗

}
(11)

The optimization problem in Eq. (11) is convex and can
be solved via Singular Value Thresholding (SVT) in each it-
eration of the Accelerated Proximal Gradient algorithm [19]
as described in [28]. The second approach is to combine the
greedy sparse and greedy low rank [12, 24] matrix learning
algorithms in the unified framework provided by [27]. The
greedy approach does not rely on the L∗ and L1 heuristics
and directly solves Eq. (10); i.e. it iteratively constructs
the optimal sparse and low rank matrices along the sparse
and low-rank directions. The greedy low-rank learning has
been shown to be faster and more scalable than the SVT ap-
proach [12, 24]; hence, we develop Algorithm 1 in the greedy
framework.

In Algorithm 1, for notation simplicity, we show the pa-

rameters in the sparse and low rank matrices byw ∈ R
(2K+1)p2×1

Algorithm 1: Greedy Sparse plus Low-Rank Decompo-
sition

Input: {x(t)}t=1,...,T , ηS , ηL
1 Let w denote concatenation of L(�), A(�) and b.

Initialize w1 ← 0.
2 for τ ← 1, 2, 3, . . . do

3 a
(L)
t ← argmina∈A(L)

〈
∇L(wt),a

(L)
〉
.

4 a
(S)
t ← argmina∈A(S)

〈
∇L(wt),a

(S)
〉
.

5 αt, βt,bt ← argminα,β∈[0,1],b

L(wt + α(ηSa
(S)
t −w

(S)
t ) + β(ηLa

(L)
t −w

(L)
t )).

6 w
(S,L)
t+1 ←

w
(S,L)
t + αt(ηSa

(S)
t −w

(S)
t ) + βt(ηLa

(L)
t −w

(L)
t ).

7 end

8 return L(�), A(�), for � = 1, . . . , K.

where the its first Kp2 elements w(S) contain the elements
of A(�), the second Kp2 elements w(L) contain the elements
of L(�) for � = 1, . . . ,K and the last p elements contain b.
The algorithm iteratively selects the atoms from two sets of
atoms: (1) 2Kp2 sparse atoms which are created by placing
±1 in place of first Kp2 elements of a. This takes O(p2)
operations. (2) The low-rank atom in the atom identifi-
cation step can be found via singular value decomposition,
as described in [24, 27]. In fact, we only need to find an
approximate leading singular vector which can be done in
O(Ns log(p)) where Ns is the number of non-zero elements
of the gradient matrix [24]. We update b after addition of
each composite atom.

Following the framework in [27], we can derive the follow-
ing convergence guarantee for Algorithm 1:

Theorem 3.2. The solution of Algorithm 1 at nth iter-
ation is bounded towards the optimal solution w� according
to the following equation:

L(wn)− L(w�) ≤ BS +BL +Bb

n
(12)

where the bound constant for the sparsity atom is defined as
BS � 8L||.||(L)η2

S ||AS ||2 in which L||.||(L) is the smooth-
ness constant of the likelihood function as defined in [27]

and ||AS ||2 = supa∈AS
‖a(S)‖ where AS denotes the set of

sparse atoms. The bound term for the low-rank atoms BL

and Bb are defined similarly.

A formal proof is given in the Section 5. Note that the
solution always stays inside the constraints, thus the op-
timization algorithm does not have to deal with the non-
differentiability of the Lagrangian in the constraint bound-
aries. Further analysis in the Appendix shows that similar
performance bound for the algorithm that selects only one
atom per iteration is larger than the bound in Eq. (12) at
least by the ratio of the Lipschitz constant and the restricted
smoothness constant of the likelihood function. As discussed
in [27], the difference can be very large; hence, the speed up
due to composite atom selection can be large, as well.

4. EXPERIMENTS
In this section, we study two types of data (1) point pro-

cess, including a synthetic dataset and a social networks
dataset and (2) heavy-tailed data including a climate sci-
ence dataset.
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4.1 Datasets
Synthetic Datasets.

We created a synthetic dataset according to the Poisson
autoregressive point process model in Eq. (3) to study the
accuracy of the algorithms in recovering the true underlying
temporal dependency graph in the presence of hidden vari-
ables. We fix the number of observed variables at 60 and
vary the number of hidden variables from r = 1 to 5. We
also varied the length of observed time series to study the
asymptotic behavior of the algorithms. For generation of
time series, only one unit of time lag, K = 1, is used. The
elements of the A matrix in Eq. (5) for the point processes
are generated at random, and we choose a sufficiently large
negative value for b to stabilize the time series. The global
impact of the hidden variables is modeled in the datasets by
setting an edge from the hidden variables to all other ob-
served variables. We generate 10 random datasets of each
type and report the average performance on them. Due to
space limit, we only report the results on the Poisson point
process synthetic datasets.

Social Networking Dataset.
We used a complete Twitter dataset to analyze the tweets

about “Haiti earthquake”by applying different temporal de-
pendency analysis methods to identify the potential top in-
fluencer on this topic (i.e. those Twitter accounts with the
highest number of effect to the others). We divided the 17
days after the Haiti Earthquake on Jan. 12, 2010 into 1000
intervals and generated a multivariate time series dataset by
counting the number of tweets on this topic for the top 1000
users who tweeted most about it. The resulting time series
have on average 0.0225 tweets per user per bin which shows
how infrequent the events in the dataset are. For accurate
modeling, we removed the users that were highly correlated
with each other, most of which were operated by the same
users and tweeted exactly the same contents. We also re-
moved robot-like user-accounts who tweeted on very regular
intervals, which led to a subset of 100 users.

Wind Speed.
The study of extreme value of wind speed and gust speed

is of great interest to the climate scientists and wind power
engineers. A collection of wind observations is provided by
AWS Convergence Technologies, Inc. of Germantown, MD.
It consists of the observations of surface wind speed (mph)
and gust speed (mph) every five minutes. We choose 153
weather stations located on a grid laying in the 35N − 50N
and 70W − 90W block. Following the standard practice
in this domain, we generated extreme value time series ob-
servations, i.e, daily maximum values, at different weather
stations. The objective is to examine how the global weather
systems impact the local influence patterns at different lo-
cations and how well we can make predictions on future
precipitation.

4.2 Evaluation Measures
For the synthetic datasets, since we have access to the un-

derlying graph structure we can report the graph learning
accuracy. We choose the Area Under the Curve (AUC) ac-
curacy measure as it is a good performance measure for the
datasets with unbalanced ratio of positive and negative la-
bels. The value of AUC is the probability that the algorithm
assigns a higher value to a randomly chosen positive (exist-
ing) edge than a randomly chosen negative (non-existing)

Table 1: The baselines used in evaluations.
Twitter Dataset

Algorithm Description
GLARP-PoG GLARP with Poisson distribution

and Algorithm 1.
Poisson-EM GLARP with Poisson distribution

and EM algorithm inference.
Poisson GLARP with Poisson distribution

without hidden variables.
GLARP-COMG GLARP with COM-Poisson distri-

bution and Algorithm 1.
COM-P EM GLARP with COM-Poisson distri-

bution and EM algorithm inference.
COM-P GLARP with COM-Poisson distri-

bution without hidden variables.
Transfer Entropy Transfer Entropy, a non-parametric

dependency analysis algorithm [22]

Wind Speed Dataset
Algorithm Description
GLARP-GumG GLARP with Gumbel distribution

and Algorithm 1.
Gumbel-EM GLARP with Gumbel distribution

and EM algorithm inference.
Gumbel GLARP with Gumbel distribution

without hidden variables.
Gaussian VAR Gaussian VAR with hidden vari-

ables.
Transfer Entropy Continuous Transfer Entropy [14]

edge in the graph. Since we don’t have the true underlying
influence graph in the wind speed dataset, we only report
the prediction accuracy and the visualization of the results.
In all the experiments, we tune the penalization parameters
via 5 fold cross-validation.

Since we do not have access to the true underlying in-
fluence graph in the social networking, we use the retweet
network as the ground truth. The retweet network GRT (n)
is constructed by adding an edge from user i to user j if user
j has retweeted at least n of the tweets of user i, where n is
varied from 1 to 5. Clearly, the retweet network is not the
actual underlying temporal dependency graph, mainly be-
cause there are possible implicit influence patterns as well.
However, it is the best possible metric that we could obtain
for graph learning accuracy evaluation in our dataset. The
retweet network for the 100 selected users is sparse. For e.g.,
GRT (1) has only 279 out of 10,000 possible edges.

For predictive analysis, in all the datasets, we split them
into the training/testing parts with ratio 9/1 based on time
and report the root mean square error (RMSE) and nor-
malized RMSE on the test set. In particular, we trained
the models with the observations between t = 1, . . . , 9

10
T

and predicted the observations at t′ = 9
10
T, . . . , T using K

past observations at t′ −K, t′ −K + 1, . . . , t′ − 1. In other
words, we evaluate the 1-step prediction performance of the
algorithms. We reported the average RMS error on the test
samples. The predictive analysis is plausible in our Twitter
dataset because it is the full dump of the twitter messages,
not a sub-sampled version of it.

Baselines.
To compare the performance of sparse plus low-rank de-

composition, we use several state-of-art baselines (see Table
1 for details). Specifically, the EM algorithm solutions use
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Figure 2: Synthetic dataset results on the point
process dataset (a) Graph learning accuracy as the
length of the time series increases. (b) Graph learn-
ing accuracy as the number of hidden variables in-
creases.

the EM algorithm to learn the parameters of the GLARP
model in Eq. (3). The parameters in the EM algorithm
are initialized to zeros. Transfer Entropy [22, 14] algorithms
perform pairwise temporal dependency analysis among time
series by measuring the amount of uncertainty resolved in
the future of a time series by knowing the past values an-
other time series, given its own past values.

4.3 Experiment Results
Synthetic Datasets.

The results on the synthetic datasets are shown in Fig.
2. In first set of experiments, we have only one hidden
variable and vary the length of time series to measure the
graph learning accuracy of the algorithms. As we expect,
the performance of the algorithms uniformly increases with
the length of the time series. The algorithms which cap-
ture the impact of hidden variables outperform the other
algorithms by a large margin. Among the hidden variable
detection algorithms, the superior performance of our pro-
posed algorithms is because they are convex programming;
while the EM-based algorithms can be stuck in some subop-
timal local optima. The performance of Transfer Entropy is
only comparable to the Poisson process, in Fig. 2, and with
large number of samples its performance approaches to the
point process.

In the second set of experiments, we fix the time series
length at 500 and vary the number of hidden variables. The
performance of our algorithms slightly drop, mainly because
as we increase the number of hidden variables, the rank
of the low-rank matrix L increases and it becomes harder
to estimate [24]. With five hidden variables in Fig. 2(b),
it reaches to the performance of the EM algorithm which
does not rely on the r � p assumption.The performance of
Transfer Entropy and Poisson degrade too, since the true un-
derlying model deviates more from their assumption about
existence of no hidden variables.

Twitter Dataset.
As shown in Fig. 3, the performance of all the algorithms

increase as we increase the number of retweets requirement n
for the ground truth influence graph GRT (n) (defined in Sec-
tion 4.2). This means all the algorithms detect the strong
influence edges with higher accuracy. In all of the COM-
Poisson auto-regressive models, we have set the dispersion
parameter ν to a fixed large number to model the large un-
derdispersion in the twitter time series. Capturing under-
dispersion in the data, all the COM-Poisson based models
outperform their Poisson counterparts. As we expected the
GLARP-COMG algorithm outperforms the EM counterpart
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Figure 3: The graph learning accuracy when the
number of retweets requirement n for the ground
truth influence graph GRT (n) is varied. The perfor-
mance of (a) Poisson and (b) COM-Poisson autore-
gressive processes confirms that they make better
predictions for the stronger influence edges.

Table 2: The RMS prediction error of the algorithms
in the Twitter dataset. Results have been normal-
ized by the the mean.

Method RMSE Norm-RMSE

GLARP-COMG 0.0059 0.3014
COM-P EM 0.0113 0.5739
COM-P 0.0096 0.4876
GLARP-PoG 0.0017 0.0887
Poisson EM 0.0062 0.3148
Poisson 0.0017 0.0847
Transfer Entropy 0.0030 0.1519

by avoiding the local minima. The prediction performance
in Table 2 confirms this trend as well. The inferior perfor-
mance of the EM algorithm is due to propagation of error; in
other words, EM first infers the values of past hidden vari-
ables (accruing some error) and then uses them to predict
observed time series. The lower prediction performance of
COM-Poisson based algorithms is due to the approximation
error in estimation of the mean EH(t)[x(t)] in Eq. (6).

The transfer entropy results are (0.5427, 0.5915, 0.5924,
0.5785, 0.5442) for n = 1, . . . , 5. In order to keep the res-
olution of the graph high, they are not shown in the graph
because they were far below the rest of the algorithms. The
poor performance of Transfer Entropy can be attributed to
the extreme sparsity of the Twitter time series and the fact
that, unlike the rest of the parametric algorithms, it does
not have any procedure to benefit from sparsity of the un-
derlying data generation model. To evaluate the prediction
performance of Transfer Entropy, we used the graph esti-
mated by Transfer Entropy in the Poisson auto-regressive
process and measured its prediction performance.

In order to evaluate the speedup of using sparse plus low
rank decomposition over the EM solution, we recorded the
run time on the Twitter dataset on an i7 2.67 GHz laptop
running Windows. The Poisson and GLARP-PoG spent 48
and 98 seconds while each iteration of the EM algorithm
took 928 seconds. Given 5 iterations of the EM algorithm,
the speedup by sparse plus low-rank decomposition is near
47 fold.

We next examine whether any meaningful hidden homophily
can be detected by GLARP-COMG. Using the result in Eq.
(28) and because we have identified only one hidden pro-

cess, we can see that the summation of the B(�) matrices
for � = 1, . . . ,K should be proportional to the value in
the left hand side. In other words, we can find the aver-
age impact of the hidden processes on the observed ones

by the
(∑K

�=1 L̂(�)
)
λ̂x. Figure 4 shows the results of the
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Figure 4: The hidden structure identified by
GLARP-COMG approach from the Haiti Dataset.
In the Haiti dataset, a single hidden variable is iden-
tified by our method. The matrix represents B� in
Eq. (3) which corresponds to the effects of the hid-
den variable on the input users; the darker the color,
the larger the influence of the hidden variable on the
user.
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Figure 5: (a) The spatial-temporal dependency
graph obtained via the Gumbel auto-regressive pro-
cess. Note the denseness of the graph. (b)
The sparse part of the spatial-temporal dependency
graph obtained via GLARP-GumG. Removing the
low rank global effect leaves only two main local ter-
rain impacts: one is the local impact of the Ap-
palachian mountains along the east coast and the
other one is the local impact of the Great Lakes on
the weather pattern of their surrounding lands.

GLARP-COMG method on the Haiti dataset. An immedi-
ate observation is that the hidden variables mostly impact
the users on the left side of the matrix, which corresponds
to those Twitter accounts with more tweets. This is reason-
able since the users who are more concerned about the topic
will get key information more from external news sources,
such as TV, radio or personal communications, which act
as hidden external variables in the model. When we zoom
into the group of users affected by the hidden variable, we
can see many of them are organizations or persons with
possible close connections to the authority of Haiti, such
as missionmanna (Mission Manna provides medical care for
malnourished children and continuing health care education
for adults in and around Montrouis, Haiti), haitiinfocus
(HCN provides a safe facility in Thomassin Haiti where
Haitian students can go to school online) and pierrecote

(Realtime transmedia strategist, producer, director, writer
and advisor to the Prime Minister of Haiti).

Wind Speed Dataset.
The prediction performance of the algorithms is listed in

Table 3. The results show that the GLARP-GumG out per-
forms the rest of the algorithms. Two patterns are different

Table 3: The RMS prediction error of the algorithms
in the wind speed dataset.

Method RMSE Norm-RMSE

GLARP-GumG 0.3147 0.0349
Gumbel EM 0.4789 0.0531
Gumbel VAR 0.3233 0.0358
Gaussian VAR 0.8510 0.0943
Transfer Entropy 0.8871 0.0983

in this dataset: first the EM algorithm has lower perfor-
mance than the simple Gumbel VAR algorithm. The sec-
ond observation is that due to short length of time series, the
Transfer Entropy faces the high dimensionality problem and
cannot perform better than the Gaussian model. To evalu-
ate the prediction performance of Transfer Entropy, we used
the graph estimated by Transfer Entropy in the Gaussian
auto-regressive process and measured its prediction perfor-
mance.

The GLARP-GumG algorithm detects only one hidden
variable in the wind speed dataset. The impact of the de-
tected hidden variable can be seen in Fig. 5(a) and 5(b)
which show the spatial-temporal dependency graph obtained
via the Gumbel auto-regressive process and the sparse part
of the spatial-temporal dependency graph obtained via GLARP
GumP, respectively. Comparing the two graphs, we observe
that GLARP-GumG removes the main global weather im-
pact in this season which can be attributed to the summer
weather system in the region. Two main local influence pat-
terns are detected by our algorithm: (i) the impact of the
Appalachian mountains in the stretch of east coast and (ii)
the local impact of the Great Lakes on the weather pattern
of their surrounding lands.

5. CONCLUSION
In this paper, we studied three instances of the general-

ized linear autoregressive processes (GLARPs), in which the
impact of hidden variables in time series data appears as an
additive low-rank matrix in the maximum likelihood estima-
tion of the evolution matrices. We demonstrated that the
convex programming solution solution indeed yields better
prediction and graph learning accuracy than the alterna-
tive EM-based algorithms, and our model is fast enough for
large-scale applications. For future work, we are interested
in generalization of the framework and establishing the sta-
tistical guarantees.
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Appendix
Proof of Theorem 3.1
Without loss of generality, we prove the case where K = 1
and b = 0. The proof for the general case is straightforward,
but algebraically more involved, extension of the simpler
case.

Proof for the Poisson and COM-Poisson GLARPs
Consider the following true model for the time series:

log

(
E

[
x(t)
z(t)

])
=

[
A B
C D

] [
x(t− 1)
z(t− 1)

]
(13)

Let E[x(t)] = λ(t), E[z(t)] = λ′(t) and u(t) = [x(t)�, z(t)�]�

denote the aggregation of the both observed and unobserved
variables. In the maximum likelihood solution with unob-
served time series z(t), we fit the data to the following ob-
served model:

log (E[x(t)]) = Âx(t− 1) (14)

First we show how we can derive the likelihood for any
point process given its rate function, [30]. Suppose we have
divided the time into small enough so that the probability
of xi(t) = 1 for i = 1, . . . , p becomes small in each interval
[11] and we have:

P[xi(t) = 0] ≈ 1− λi(t), (15)

P[xi(t) = 1] ≈ λi(t), (16)

P[xi(t) ≥ 2] ≈ 0. (17)

The probability of observing x(t) in the tth interval can
be written as following:

P[x(t)|x(t− 1)] =

p∏
i=1

(λi(t))
xi(t)(1− λi(t))

1−xi(t). (18)

Now we can approximate the negative log-likelihood func-
tion as follows using the fact that when λi(t) is small, we can
write log(1 − λi(t)) ≈ −λi(t) and log(λi(t)[1 − λi(t)]

−1) ≈
log(λi(t)) [30].

LObs ≈
p∑

i=1

xi(t) log(λi(t))− λi(t). (19)

Substituting the value of λi(t) from the observed model

in Eq. (14) into Eq. (19), we can see that ÂMLE is the
solution of the following problem:

ÂMLE = argmax
̂A

ETrue[LObs], (20)

= argmax
̂A

{
ETrue

[
x(t)�Âx(t− 1)− 1� exp(Âx(t− 1))

]}
.

(21)
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where we have written the equations in the compact vector

format. Differentiation of L with respect to Â and setting
it to zero yields the following results:

ETrue

[
x(t − 1)x(t)� − x(t− 1) exp(Âx(t − 1))�

]
= 0, (22)

Eu(t−1)

[
Ex(t)|u(t−1)

[
x(t − 1)x(t)� − x(t− 1) exp(Âx(t − 1))�

]]
= 0,

(23)

Eu(t−1)

[
x(t − 1)

(
exp([A B]u(t − 1)) − exp(Âx(t − 1))

)�]
= 0.

(24)where A and B are the true values in Eq. (13). Since ui ∈
{0, 1} with high probability, by taking the expectation with
respect to each individual ui we can see that Eq. (24) is
satisfied if and only if the following equality holds:

Eu(t−1)

[
exp([A B]u(t− 1))− exp(Âx(t− 1))

]
= 0. (25)

Suppose A,B, and Â are bounded. Since ui ∈ {0, 1}, the
values inside the exponential functions are bounded, and
the exponential function is one to one. Thus, Eq. (25)
is equivalent to the following equation: (which can also be
obtained by Taylor expansion.)

Eu(t−1)

[
[A B]u(t− 1) − Âx(t− 1)

]
= 0, (26)

Eu(t−1)

[
Bz(t− 1)− (Â−A)x(t− 1)

]
= 0, (27)

Bλ′(t− 1) − (Â−A)λ(t− 1) = 0, (28)

where Eq. (28) is the result of linearity of expectation op-
erator. Since Eq. (28) holds for all values of λ and λ′, the
column space of Â − A is equal to the column space of B.

Thus, rank of L = Â−A can be at most the rank of column
space of B; i.e. rank(L) ≤ r. This concludes the proof. The
proof also holds for Bernoulli and COM-Poisson processes,
due to the fact that Eq. (19) holds for them too [30].

Proof for the Gumbel GLARP
Consider the following true model for the Gumbel time se-
ries:

E

[
x(t)
z(t)

]
=

[
A B
C D

] [
x(t− 1)
z(t− 1)

]
(29)

In the maximum likelihood solution with unobserved time
series z(t), we fit the data to the following observed model:

E[x(t)] = Âx(t− 1) (30)

Similar to the previous theorem, our goal is to find the

expression for ÂMLE as in Eq. (20). The key to approxi-

mation of ÂMLE is to assume that E[x(t)] = 0 and Ax(t) is
small; both of these assumptions can be satisfied in the data
by pre-processing. Proceeding with the proof, we have:

ÂMLE = argmin
̂A

{
ETrue

[
p∑

i=1

(
xi(t) − μi(t)

σ
+ exp

{
−xi(t) − μi(t)

σ

})]}
,

(31)

Using the fact that E[x(t)] = 0 and differentiation with
respect to A yields:

ETrue

⎡⎣x(t− 1) exp

{
−x(t)− Âx(t− 1)

σ

}�⎤⎦ = 0, (32)

ETrue

⎡⎣x(t− 1)

{
1− x(t)− Âx(t− 1)

σ

}�⎤⎦ ≈ 0, (33)

ETrue

[
x(t− 1)

{
x(t)− Âx(t− 1)

}�]
≈ 0, (34)

Eu(t−1)

[
x(t− 1)

{
Ax(t− 1) +Bz(t− 1)− Âx(t− 1)

}�]
≈ 0,

(35)

Â ≈ A+Q−1
xxQxzB, (36)

The step from (32) to (33) is due to the Taylor expansion
of the exponential function around zero; the step from (33)
to (34) is done using the fact that E[x(t)] = 0; the step
from (34) to (35) is done by expectation with respect to
conditional distribution of x(t) given u(t) under the true
model; and the final step is done via the definition of the
co-variance matrices.

Proof of Theorem 3.2
Due to space limit, we provide our proof as a continuation of
the proof in [27]. Given a set S and a norm ‖‖, we define the
Restricted Smoothness Property constant of the likelihood
function L as defined in Eq. (3) in [27]. Following the same
steps, we have:

L(wt + α(ηSa
(S)
t ) + β(ηLa

(L)
t )) ≤

L(wt)− α(−〈∇L(wt), ηSa
(S)
t 〉+ 〈∇SL(wt),wt〉)

− β(−〈∇L(wt), ηLa
(L)
t 〉+ 〈∇LL(wt),wt〉)

+ 2α2LSηSR
2
S + 2β2LLηLR

2
L (37)

Similarly, we can define and show that:

δt � L(wt)−L(w�)

≤ −〈∇L(wt),w
�,(L)〉+ 〈∇SL(wt),wt〉

− 〈∇L(wt),w
�,(S)〉+ 〈∇LL(wt),wt〉 (38)

≤ −〈∇L(wt), ηSa
(S)
t 〉+ 〈∇SL(wt),wt〉

− 〈∇L(wt), ηLa
(L)
t 〉+ 〈∇LL(wt),wt〉 (39)

Plugging Eq. (39) into Eq. (37) and following the reason-
ing in [27], we can show that:

δt+1 ≤ δt+ min
α,β∈[0,1]

(−(α+β)δt+2α2LSηSR
2
S+2β2LLηLR

2
L)

For t = 0, choose α, β = 1 on the right hand side to get
δ1 ≤ 2(LSηSR

2
S + LLηLR

2
L). Since δt is decreasing, we can

see that δt ≤ 2(LSηSR
2
S + LLηLR

2
L) for all t. Thus, choos-

ing α = 4(LSηSR
2
S + LLηLR

2
L) yields for all t > 1: δt+1 ≤

δt − δ2t
BS+BL

where BS � 8LSηSR
2
S and BL � 8LLηLR

2
L.

Solving this yields the desired result. The impact of opti-
mization of b can be captured similarly. �

In the performance analysis of the greedy algorithm that
selects only one sparse or low-rank atom per iteration we
should observe that in Eq. (38) either 〈∇L(wt),w

�,(L)〉 or
〈∇S(wt),w

�,(S)〉 remains unbounded. Bounding this term
introduces the Lipschitz constant of the likelihood function.

Plugging the additional term into Eq. (37) yields αLSηSR
2
S

or αLLηLR
2
L instead of α2LSηSR

2
S or α2LSηSR

2
S. The term

LS denotes the maximum Lipschitz constant of the likeli-
hood function inside the convex hull of the sparsity norm.
Since α < 1 and always LS < LS and LL < LL, we observe
that the bound for the single atom selection should be at
least greater by the differences of the Lipschitz and the re-
stricted smoothness constant of the likelihood function for
one of the atoms.
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