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ABSTRACT

Many people share their activities with others through on-
line communities. These shared activities have an impact
on other users’ activities. For example, users are likely to
become interested in items that are adopted (e.g. liked,
bought and shared) by their friends. In this paper, we pro-
pose a probabilistic model for discovering latent influence
from sequences of item adoption events. An inhomogeneous
Poisson process is used for modeling a sequence, in which
adoption by a user triggers the subsequent adoption of the
same item by other users. For modeling adoption of multiple
items, we employ multiple inhomogeneous Poisson processes,
which share parameters, such as influence for each user and
relations between users. The proposed model can be used for
finding influential users, discovering relations between users
and predicting item popularity in the future. We present an
efficient Bayesian inference procedure of the proposed model
based on the stochastic EM algorithm. The effectiveness of
the proposed model is demonstrated by using real data sets
in a social bookmark sharing service.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining ; I.2.6 [Artificial Intelligence]: Learning; I.5.1
[Pattern Recognition]: Model—Statistical

General Terms

Algorithms

Keywords

Poisson processes, social community, latent variable models,
Bayesian inference

1. INTRODUCTION
Many people share their activities with others through on-

line communities, such as social sharing, social networking,
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and microblogging services. For example, in social shar-
ing services, users share their favorite items, such as web
pages [1], photographs [2], video [3], music [4] and scientific
papers [5]. These shared activities have an impact on other
users’ activities. Users are likely to become interested in fa-
vorite items of their friends. A web page that is praised by
an influential user in a social network service is likely to get
popular.

We can obtain activity data from these online services.
However, we cannot generally obtain data that directly de-
scribe which activity has had an impact on the following ac-
tivities. The user interactions in some online communities
have been referred to as “ballot box communication” [34],
in which users do not directly interact with each other by
exchanging messages, but they implicitly interact with one
another by expressing their preferences on the shared items.

In this paper, we propose a probabilistic model for discov-
ering latent influence between users in social communities.
As activities, we consider adopting items by users over time,
such as sharing web pages, voting for music and joining com-
munities. The given data is multiple event sequences, where
each event sequence is associated to an item, and contains
user and timestamp information for each event of adopting
the item. The proposed model can be used for finding in-
fluential users, discovering relations between users and pre-
dicting trends in item popularity in the future.

With the proposed model, we assume that each user has
some latent degree of influence. Each adoption event can
trigger the subsequent adoption events for the same item
by other users. The possibility of triggering depends on
the influence of the users of the preceding events. The pro-
posed model also assumes that the influence differs among
pairs of users. Friends can have an impact more than people
who have never met. We use a cascade Poisson process [30]
for modeling an event sequence of adopting an item. By
using multiple cascade Poisson processes for modeling mul-
tiple event sequences and sharing their parameters, we can
infer influence for each user and relations between users. We
call the proposed model shared cascade Poisson processes
(SCPP).

We present an efficient probabilistic inference procedure
for the proposed model based on the stochastic EM algo-
rithm. In the E-step, we sample the latent trigger for each
event from the preceding events using collapsed Gibbs sam-
pling while analytically integrating out parameters for influ-
ences and relations. By integrating out parameters, we can
drastically reduce the memory requirement. In the M-step,
we estimate the other model parameters by maximizing the

266



joint likelihood. By alternately iterating E- and M-steps, we
infer the proposed model from the given data.

The paper is organized as follows: In Section 2, we out-
line related work. In Section 3, we propose the shared cas-
cade Poisson processes for discovering latent influence from
multiple sequences of item adoption events. We present its
Bayesian inference procedure in Section 4, and discussion
on scalability of the inference in Section 5. In Section 6,
we describe a sampling procedure for generating data from
the inferred model. In Section 7, we demonstrate the effec-
tiveness of the proposed framework by using real data sets
in a social bookmark sharing service. Finally, we present
concluding remarks in Section 8.

2. RELATEDWORK
Great interest is being shown in developing methods for

analyzing online social communities. Those methods are
used for viral marketing [12, 28, 21, 6], ranking influential
users [31, 18] and personalized recommender systems [32, 11,
19, 7]. Learning degree of influence of users is useful for pre-
dicting future item adoption and recommendations [31, 11].
However, in many social communities, users may not neces-
sarily declare explicit social ties among themselves even if
such functionality exists and the degree of influence of each
tie is rarely explicitly declared. Thus, estimating influences
and relations among users from their activities are impor-
tant.

Influences in social communities are often analyzed by us-
ing information diffusion models, such as independent cas-
cade models [13, 35, 15] and linear threshold models [16].
They usually assume discrete time although events occur
in continuous time. Some information diffusion models in
continuous time have been proposed [17, 29]. The proposed
model is based on Poisson processes, which are widely used
for modeling events in continuous time. Poisson processes
have been extensively studied in statistics, and have elegant
theoretical properties, such as superposition and subsam-
pling properties [22]. We can use these properties for devel-
oping a procedure of generating samples as described in Sec-
tion 6, and for extending the proposed model. We develop
an efficient Bayesian inference procedure, where parameters
are analytically integrated out. With continuous time infor-
mation diffusion models [29], influences are estimated given
the network structure of users, where each edge represents
the existence of influence. On the other hand, the proposed
model can efficiently estimate influences without the net-
work structure because influence parameters, which require
memory of the order of the square of user size, integrated
out in the Bayesian inference. In recent years, methods for
estimating influences without the network structure based
on maximum likelihood have been proposed [25, 14, 15].

The proposed model is an extension of the cascade Poisson
process [30], which models a sequence of cascading events.
We simultaneously model multiple sequences of adoption
events for multiple items by sharing parameters, such as
influences and relations among users. In [30], parameters
are estimated based on maximum likelihood. We take a
Bayesian approach that discourages overfitting during infer-
ence. Reciprocating Hawkes Processes [9], which are inho-
mogeneous Poisson processes, are used for discovering social
structures from direct interaction time-series data, such as
message exchanges. The proposed model does not use in-
teraction data between users, but uses item adoption event

Table 1: Notation.
Symbol Description
U set of users
I set of items
i item, i ∈ I

uin user of the nth event in item i, uin ∈ U

T observation period
tin time of the nth event in item i, t ∈ [0, T ]
Ni number of events for item i in time [0, T ]
αu influence of user u, αu ≥ 0
αi popularity of item i, αi ≥ 0
θuu′ transition probability from user u to u′,

θuu′ ≥ 0,
P

u′∈U
θuu′ = 1

γ decay parameter, γ ≥ 0
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Figure 1: Example of the given data with three
items and seven users. Latent triggers are shown
by arrows between users.

data to model how users indirectly interact with each other
and influence each other in social communities.

3. MODEL
Suppose that we have a set of |I | event sequences D =

{Di}i∈I , where I is a set of items. An event sequence for
item i consists of Ni events, where an event is a pair of time
and user, Di = {(tin, uin)}Ni

n=1, which represents that user
uin adopts item i at time tin. Without loss of generality,
we can assume that events are sorted by their timestamps,
tin ≤ tin′ for n < n′. Our notation is summarized in Table 1.
An example of the data is shown in Figure 1. Note that
triggers that are shown by arrows between users are not
observed.

In our model, an event can trigger further events in the
future. This property is referred to as cascading, where the
occurrence of an event sprouts the possibility of a chain of
further events. For example, in Figure 1, adoption of Item-1
by User-A causes adoption of Item-1 by User-B and User-
F. In particular, we use the following intensity function for
modeling the rate that user u adopts item i at time t in-
fluenced by the event that user u′ adopts item i at time
t′,

λ(i,t′,u′)(t, u) =



αu′θu′u exp
`

−γ(t − t′)
´

if t′ < t
0 otherwise.

(1)

Here, αu′ ≥ 0 represents the influence of user u′ on the other
users. Note that this user influence remains the same across
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(c) Influence, {αu}u∈U (d) Popularity, {αi}i∈I

Figure 2: Parameters in the proposed shared cas-
cade Poisson processes.

all items. The second factor θu′u ≥ 0 represents the strength
of the relation from user u′ to user u, where we assume
P

u∈U
θu′u = 1. This relation matrix is shared across items.

The third factor exp(−γ(t−t′)) models decay of the influence
over time with parameter γ ≥ 0. Since an event cannot have
an effect on past events, the intensity is zero when t′ ≥ t. A
decaying rate over time is a simple but natural assumption
since, in general, trends evolve or are replaced over time.
There is no influence from other event sequences, and events
of item i do not trigger events of other items i′ 6= i.

Events can occur without influence from preceding events
according to the following background intensity function,

λ(i,0)(t, u) = αiθ0u. (2)

Here, αi ≥ 0 represents the rate that item i is adopted with-
out being triggered by the preceding events. It represents
the general popularity of item i; if it is high, many users
adopt the item without copying or influence from peers.
θ0u ≥ 0 represents the probability that a user who adopts an
item without any trigger is in fact user u, and

P

u∈U
θ0u = 1.

In Figure 1, User-A, User-E and User-G adopt Item-1 inde-
pendently from the preceding events. The first event for
each item always occurs from the background as, by defini-
tion, there are no previous users to be influenced by. The
background intensity can be seen as influence from outside
the social community, such as newspapers, TV programs and
online news sites as [26].

Figure 2 shows the parameters in the proposed shared
cascade Poisson processes: (a) relations between users, Θ =
{θ}u∈U+

, θu = {θuu′}u′∈U , (b) parameter of influence decay
over time, γ, (c) influence for each user {αu}u∈U , and (d)
popularity for each item {αi}i∈I . Here, U+ ≡ U ∪ {0}
represents a set of users contain a virtual user who is used for
the background intensity as well as actual users U . Notice
that influence can occur in both directions amongst a pair
of users e.g. in Figure 2 (a) we see that User-B and User-C
influence each other.

Let D
(n)
i be an event sequence of item i, which consists of

events caused by the nth event, D
(0)
i be an event sequence

without triggers. They are disjoint, D
(n)
i ∩ D

(n′)
i = ∅ for

n 6= n′. We assume that each sequence is generated by a
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Figure 3: Dynamics of intensity in the shared cas-
cade Poisson processes.

Poisson process as follows,

D
(0)
i ∼ PoissonProcess

`

λ(i,0)(t, u)
´

, (3)

for events from the background intensity, and

D
(n)
i ∼ PoissonProcess

`

λ(i,tin,uin)(t, u)
´

, (4)

for events triggered by the preceding event n = 1, · · · , Ni.
The whole event sequence of item i is represented by their

union, Di =
SNi

n=0 D
(n)
i . Note that Di is a union of Poisson

processes. The superposition of Poisson processes is also a
Poisson process (a proof can be found in [20]) and we use
this fact to rewrite the generative process using a Poisson
process,

Di ∼ PoissonProcess (λi(t, u)) , (5)

where the recursive intensity function is given by

λi(t, u) = λ(i,0)(t, u) +
X

(t′,u′)∈Dit

λ(i,t′,u′)(t, u), (6)

where Dit = {(t′, u′)|(t′, u′) ∈ Di and t′ < t} is the set
of events before time t.

Figure 3 shows the dynamics of intensity for each item.
The horizontal line in each item represents the background
intensity, which is constant over time, but different depend-
ing on the item. At the time of an event occurrence, the in-
tensity increases depending on the influence of its user. For
example, since User-A has high influence, the event by User-
A increases the intensity largely. The intensity decreases
over time with parameter γ. The total intensity is the su-
perposition of the background intensity and intensities from
the preceding events.

The probability of multiple event sequences D given pa-
rameters α = {αm}m∈U∪I , Θ and γ is described as follows,

p(D|α,Θ, γ)

=
I
Y

i=1

exp
“

−

Z T

0

X

u∈U

λi(t, u)dt
”

Ni
Y

n=1

λi(tin, uin), (7)
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where we can analytically calculate the integral as follows,

Z T

0

X

u∈U

λi(t, u)dt

= αiT +
1

γ

Ni
X

n=1

αu

“

1 − exp
“

−γ(T − tin)
””

. (8)

This value is called the expectation function, which repre-
sents the expected number of occurrences in the time period
from 0 to T .

4. INFERENCE
We present a Bayesian inference algorithm for the shared

cascade Poisson processes based on a stochastic EM algo-
rithm. The algorithm alternates collapsed Gibbs sampling
of latent triggers and maximum joint likelihood estimation
of hyperparameters, while integrating out parameters for in-
fluences, popularities and relations.

We introduce latent variables for simplifying the inference
without changing the model. Let zin ∈ {0, 1, · · · , n′|tin′ <
tin} be the latent index of the event which caused the ar-
rival of the nth event in item i, where zin = 0 indicates
that the event was triggered by background intensity. The
trigger event must occur before the arrival of this nth event,
therefore tin′ < tin, since cause precedes effect. By using
latent variable z, the recursive intensity function (6) can be
written as

λi(t, u) =
X

z

λi(t, u, z), (9)

where

λi(t, u, z) =



λ(i,0)(t, u) if z = 0
λ(i,tiz,uiz)(t, u) otherwise.

(10)

In words, (9) states that the intensity is a sum of intensities
for each possible trigger of the event.

Combining (7)–(10), the joint probability of data D and

latent variables Z = {{zin}
Ni
n=1}i∈I given parameters α, Θ

and γ is as follows,

p(D, Z |α,Θ, γ)

=
I
Y

i=1

exp

„

−αiT −

Ni
X

n=1

αu
1

γ

“

1 − exp
`

−γ(T − tin)
´

”

«

×

Ni
Y

n=1

λi(tin, uin, zin). (11)

We assume a Gamma prior for each of user influences and
item popularities αm, m ∈ U ∪ I ,

p(αm|a, b) =
1

Γ(a)
baαa−1

m exp(−bαm), (12)

and a Dirichlet prior for relations θu, u ∈ U+,

p(θu|β) =
Γ(β|U |)

Γ(β)|U |

Y

u′∈U

θβ−1
uu′ , (13)

where | · | represents the number of elements in the set.
The choice of a Gamma and Dirichlet prior permit analytic
marginalization over the parameters α and Θ, respectively,

and the joint likelihood is given by

p(D, Z |γ, β, a, b)

=

Z Z

p(D, Z |α,Θ, γ)p(α|a, b)p(Θ|β)dαdΘ

= exp
“

−γ
X

i∈I

X

n:zin 6=0

(tin − tizin
)
”

×

„

ba

Γ(a)

«|U |+|I |
Y

m∈U∪I

Γ(Mm + a)

(Cm + b)Mm+a

×

„

Γ(β|U |)

Γ(β)|U |

«|U |+1
Y

u∈U+

Q

u′∈U
Γ(Muu′ + β)

Γ(Mu + β|U |)
, (14)

where Muu′ =
P

i∈I

PNi

n=1 δ(uizin
=u)δ(uin =u′) is the num-

ber of events for user u′ caused by user u, Mu =
P

u′∈U
Muu′

is the number of total events caused by user u, and Mi =
PNi

n=1 δ(zin = 0) is the number of events caused by the back-
ground intensity in item i. Here, δ(·) represents indicator
function; δ(A) = 1 if A is true, and δ(A) = 0 otherwise. For
each item i ∈ I , Ci = T , and for each user u ∈ U ,

Cu =
1

γ

X

t∈Du

„

1 − exp
“

−γ(T − t)
”

«

, (15)

where Du is a set of timestamps of events of user u.
Based on the joint likelihood (14), we develop a stochastic

EM procedure for the inference. In the E-step, given the
current state of all but one latent assignment zin, a new
value for zin is sampled from the following probability,

p(zin = y|D, Z\in, γ, β, a, b)

∝
p(D, Z\in, zin = y|γ, β, a, b)

p(D\in, Z\in|γ, β, a, b)

=

8

<

:

Mi\in+a

Ci+b

M0uin\in+β

M0\in+β|U |
if c = 0

exp
“

−γ(tin−tiy)
”

Muiy\in+a

Cuiy\in+b

Muiyuin\in+β

Muiy\in+β|U |
otherwise,

(16)

where y ∈ {0, 1, · · · , n′|tin′ < tin}, and subscript \in repre-
sents the value or set excluding the nth event in item i.

In the M-step, the decay parameter γ and Dirichlet pa-
rameter β are estimated by maximizing the logarithm of the
joint likelihood (14). We estimate γ using Newton’s method.
The objective function to be maximized as a function of γ
is given by

S(γ) = −γ
X

i∈I

X

n:zin 6=0

(tin − tizin
)

−
X

u∈U

(Mu + a) log(Cu + b). (17)

The update rule is given by

γ ← γ −
∂S(γ)/∂γ

∂2S(γ)/∂γ2
, (18)

where the first and second derivatives of the joint likelihood
with respect to γ are described in Appendix A.

We estimate the Dirichlet parameter β by using the fixed-
point iteration method described in [24]. The update rule
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is

β ← β

P

u∈U+

P

u′∈U

“

Ψ(Muu′ + β) − Ψ(β)
”

P

u∈U+

“

Ψ(Mu + β|U |) − Ψ(β|U |)
” , (19)

where Ψ(·) is the digamma function defined by Ψ(x) =
∂ log Γ(x)

∂x
.

By alternately iterating the E-step with (16) and M-step
with (18)–(19), we can estimate latent variables Z , decay
parameter γ and Dirichlet parameter β. Note that because
we are able to analytically integrate at all other parameters
(influences αu, item popularities αi, and the relation matrix
Θ), there is very little risk of overfitting. The posteriors for
α and Θ are given by

p(αm|D, Z , a, b, γ) = Gamma(Mm + a, Cm + b), (20)

p(θu|D, Z , β) = Dirichlet(Muu′ + β). (21)

Thus, we can obtain point estimates of the integrated out
parameters as follows,

α̂m =
Mm + a

Cm + b
, (22)

which can be used for finding influential users, and

θ̂uu′ =
Muu′ + β

Mu + β|U |
, (23)

which can be used for discovering relations between users.
In the experiments, we fixed the hyperparameters as follows:
a = b = 1.

5. SCALABILITY
The proposed model has relation parameters between users

Θ, which require memory of O(|U |2). The memory require-
ment increases quadratically with the number of users if we
were to explicitly sample the relation parameters in our in-
ference procedure. It makes analyzing data with a huge
number of users prohibitively expensive. However, in the
proposed inference procedure, we do not need to store these
parameters as they are integrated out. Instead, we need to
store count Muu′ for u ∈ U+ and u′ ∈ U , which represents
the number of events of user u′ which were caused by user
u. In general, most of the counts are zero since the count is
incremented only when the two users adopt an item within
a short time of one another. In addition, the Bayesian infer-
ence procedure exploits sparsity. When Mu′u > Mu′′u, the
probability of selecting the event of user u′ is high, because
the probability is proportional to Mu′u in (16). The model
has “the rich gets richer” effect. In the experiment using
the ‘science’ data set with 4,543 users, which is described in
Section 7, 59,590 elements of the influence parameters have
nonzero value after the inference, which make up only 13.1
elements per user. Thus, by using the proposed inference,
we can analyze data with a huge number of users efficiently.

The most demanding part of the inference is Gibbs sam-
pling in the E-step. The computational complexity of each
Gibbs sampling (16) is O(R), where R is the average num-
ber of events for each item, since we have R options for each
latent variable on average. In total, the computational com-
plexity becomes O(IR2). The computational time for the
inference with the ‘science’ data set, which consists of activ-
ities in four years, was 12 minutes when using a computer
with 3.20GHz CPU.

Algorithm 1 Generate an event sequence from shared cas-
cade Poisson Processes from time T to T ′ for item i.
Input: Parameters, α,Θ, γ, and data before T , D =
{(tn, un)}N

n=1

Output: Data from T to T ′, D
′ = {(tn, un)}n>N

1: D
′ ← ∅

2: n ← N
3: loop
4: sn ∼ Exponential(1)

5: tn+1 ← inf{t|
R t

T

P

u∈U
λi(t

′, u)dt′ ≥
Pn

n′=N sn′}

6: un+1 ∼ Discrete(λ̄i(tn+1, u))
7: if tn+1 > T ′ then
8: break
9: end if

10: n ← n + 1
11: D

′ ← D
′ ∪ {(tn+1, un+1)}

12: end loop

6. SIMULATION
By generating sequences, we can simulate when users adopt

items in the future. We can generate event sequences based
on the shared cascade Poisson processes given parameters
and the data up to the present time. Based on Monte Carlo
method, we can predict informative values, such as the num-
ber of adoptions for each item, by averaging the simulation
results. The simulation can be also used for targeting users
who are influential and trigger the most events, which is
useful for sociology and viral marketing [21, 6].

Algorithm 1 shows the procedure of generating an event
sequence for item i from time T to T ′, which is based on
Çinlar’s method [10, 27]. The inputs are parameters, α, Θ,
γ, and the data before T , D = {(tn, un)}N

n=1. At line 4, an
exponential random variable is sampled, which corresponds
to a timestamp from a homogeneous Poisson process with
rate one. At line 5, we obtain a timestamp of the shared cas-
cade Poisson processes by inverting the expectation function
R ·

T

P

u∈U
λi(t

′, u)dt′. The solution is given by

tn+1 = E +
1

γ
W

 

−E

n
X

n′=1

αun exp(γtn)

!

, (24)

where W (·) is the Lambert W function, which solves the
equation x = W (x) exp(W (x)), and

E =
1

αi

 

n
X

n′=N

sn′ + αiT −
1

γ

n
X

n′=1

αun exp(−γ(T − tn))

!

.

(25)

At line 6, user un+1 is sampled depending on the intensity
at time tn+1, where

λ̄i(t, u) =
λi(t, u)

P

u′ λi(t, u′)
, (26)

is the intensity normalized to sum to one. This term repre-
sents the probability that the user adopting item i at time
t is u given the previous history of user item adoptions. Al-
gorithm 1 can be used to efficiently forecast future event
sequences and simulate the effect of various social interven-
tions.
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Table 2: Data statistics
tag #items #users #events
ajax 35,231 9,554 563,605
javascript 47,256 11,258 779,845
java 60,386 6,645 474,325
linux 101,367 13,879 920,352
news 67,188 5,434 324,406
opensource 44,483 6,925 432,379
photography 71,962 11,872 614,143
science 45,986 4,543 268,231
webdesign 79,315 18,037 1,271,192

7. EXPERIMENTS
We evaluated the proposed shared cascade Poisson pro-

cesses using large data sets collected from a social bookmark
sharing service, Delicious [1]. Here, adopting an item cor-
responds to bookmarking a web page. The original data,
described in [33], is distributed by the authors for research
purpose. We used nine data sets obtained from the origi-
nal data, where each data set consist of events of adopting
items that are tagged with one of nine frequently used tags.
The tags and their statistics are shown in Table 2. The
sets of users and items are different depending on each data
set. We omit users who appear less than 30 times in each
data set. The data was collected between September 2003
to December 2007. Since the data only contain the date on
which a certain item was adopted, the timestamp in all our
experiments is measured in days.

We evaluated the predictive performance using the log-
arithm of the likelihood for timestamps at the test period
from T to T ′, which is given by

L =
X

i∈I

“

−

Z T ′

T

X

u∈U

λi(t, u)dt
”

X

t∈Dtest
i

log
X

u∈U

λi(t, u),

(27)

where D
test
i represents the test data for item i. For each

data set, we prepared 10 different training and test data
splits by changing the test time period from 10 to 100 days.
Figure 4 shows the test likelihoods, which are averaged by
the test period, T ′ − T . We compared the proposed shared
cascade Poisson processes (SCPP) with the homogeneous
Poisson processes (PP). The proposed model achieved higher
predictive performance than the Poisson processes with all
of the data sets except for the ‘news’ data set. In general,
the test likelihood decreases as the test period increases,
because long term prediction is more difficult than short
term prediction. Many web pages in the ‘news’ data set
are adopted by influence from portal or news sites, not by
influence of other users, which may explain why the Poisson
processes achieved better performance.

We also evaluated the predictive performance of users by
using the logarithm of the likelihood for users at the test
period as follows,

L′ =
X

i∈I

X

(t,u)∈Dtest
i

log λ̄i(t, u). (28)

We compared the proposed model with latent Dirichlet allo-
cation (LDA) [8], and multinomial distribution as the base-
line. LDA is a widely used probabilistic model for discrete
data, such as text documents, where each document consists

Figure 7: Relations between users estimated by the
proposed model in the ‘science’ data set. Each node
represents a user, and users who are influenced are
connected. We omit isolated users who are not con-
nected with others.

of a set of words. In our data sets, a word corresponds to
a user, and a document corresponds to an event sequence
of an item. Figure 5 shows the result. The proposed model
achieved higher user predictive performance than the other
methods with all of the data sets except for the ‘news’ data
set. These results indicate that modeling influences and re-
lations is important for analyzing social activity data sets.

Figure 6 shows the event sequences in the ‘science’ data
set with the estimated results of influence between events.
Some events occur in a short time interval, and they were
learned to have been triggered by the precedent events in the
sequence. Events which occurred in isolation were estimated
as being generated from the background intensity.

Figure 7 shows relations between users estimated by the
proposed model in the ‘science’ data set. The relation graph
is visualized using the method in [23] so that connected
nodes are located closely. Most users have a small number
of edges, but a few users have a lot of edges; these would be
the main influencers or most influenced depending on the
direction. Some users form clusters, where users in each
cluster are connected to each other, representing communi-
ties of influence. Overall the influence graph for this data
set is quite sparse.

Figure 8 shows the values of influences and popularities
estimated by the proposed model in the ‘science’ data set,
where user and item indices were sorted by their values.
Only a small number of users and items have high influence
or popularity, whilst most have very small values.

8. CONCLUSION
In this paper, we have proposed a probabilistic model for

discovering latent influence in social activities. Our model
is based on multiple inhomogeneous Poisson processes, in
which events are triggered by preceding events, and param-
eters are shared among the Poisson processes. We also pre-
sented its efficient Bayesian inference procedure based on
the stochastic EM algorithm. We have confirmed experi-
mentally that the proposed model can appropriately model
sequences of item adoption events in social bookmark shar-
ing data sets.
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Figure 4: Average test likelihood for timestamps with different test periods in nine social bookmark data
sets. The vertical axis is the test likelihood, and the horizontal is the test time period.
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Figure 5: Average test likelihood for users with different test periods in nine social bookmark data sets. The
vertical axis is the test likelihood, and the horizontal is the test time period.
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Figure 6: Event sequences in the ‘science’ data set with the estimated results of influence between events.
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APPENDIX

A. ESTIMATING DECAY PARAMETER
This appendix describes the first and second derivatives

of the joint likelihood (14) with regard to decay parameter
γ, which are required for estimating the decay parameter
based on Newton’s method. The first derivative of S(γ) is
given by

∂S(γ)

∂γ
= −

X

i∈I

X

n:zin 6=0

(tin − tizin
)

−
X

u∈U

Mu + a

Au + γb

„

−
Au

γ
+ A′

u

«

, (29)

and the second derivative of S is given by

∂2S(γ)

∂γ2
= −

X

u∈U

Mu + a

Au + γb

„

A′′
u +

„

−
Au

γ
+ A′

u

«

×

„

A′
u + b

Au + γb
+

1

γ

««

, (30)

where Au = γCu, A′
u = −

P

t∈Du
exp
`

−γ(T − t)
´

(T − t),

and A′′
u =

P

t∈Du
exp
`

−γ(T − t)
´

(T − t)2.
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