
Recursive Regularization for Large-scale Classification
with Hierarchical and Graphical Dependencies∗

Siddharth Gopal
Carnegie Mellon University

sgopal1@andrew.cmu.edu

Yiming Yang
Carnegie Mellon University
yiming@cs.cmu.edu

ABSTRACT
The two key challenges in hierarchical classification are to
leverage the hierarchical dependencies between the class-
labels for improving performance, and, at the same time
maintaining scalability across large hierarchies. In this pa-
per we propose a regularization framework for large-scale
hierarchical classification that addresses both the problems.
Specifically, we incorporate the hierarchical dependencies
between the class-labels into the regularization structure of
the parameters thereby encouraging classes nearby in the
hierarchy to share similar model parameters. Furthermore,
we extend our approach to scenarios where the dependen-
cies between the class-labels are encoded in the form of a
graph rather than a hierarchy. To enable large-scale train-
ing, we develop a parallel-iterative optimization scheme that
can handle datasets with hundreds of thousands of classes
and millions of instances and learning terabytes of param-
eters. Our experiments showed a consistent improvement
over other competing approaches and achieved state-of-the-
art results on benchmark datasets.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology; Clas-
sifier Design and Evaluation; H.4 [Information Systems]:
General

General Terms
Algorithms,Design,Experimentation

Keywords
Hierarchical Classification, Recursive Regularization, Paral-
lel Optimization, Large-scale Evaluation

∗A preliminary version of this paper was presented to
the Large-scale Hierarchical Text Classification Workshop,
ECML 2012

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

1. INTRODUCTION
Hierarchies provide a natural way to browse and orga-

nize unstructured data at multiple levels of granularity. The
large taxonomies for Web Page categorization at Yahoo! Di-
rectory and the Open Directory Project, the International
Patent Classification Hierarchy for patents are examples of
such widely used hierarchies. Firstly, unlike binary classifi-
cation, we need to address how to use the hierarchy. Sec-
ondly and importantly, we need to develop scalable meth-
ods than can handle large-scale problems, as most real world
Hierarchical Classification (HC) are characterized by large
hierarchies and training set sizes. For example, consider the
Open Directory Project 1, one of the largest human edited
hierarchy of the entire Web containing more than 4.4 million
webpages categorized into a hierarchy of 766,930 class-labels
with more than 10 levels of depth. Developing techniques
that leverage hierarchical dependencies between these hun-
dreds of thousands of class-labels as well as scaling to the
millions of training instances is a non-trivial task.

A primary problem in HC is the data-sparsity issue for
majority of class-labels [22],[36],[5]. For example, 76% of the
class-labels in the Yahoo! Directory have less than 5 positive
instances [22] and 72% of the Open Directory Project have
less than 4 positive instances 1. Learning independent mod-
els (one per class-label) with such limited training examples
might lead to poor performance due to over-fitting. This
raises one of the important questions in HC research, i.e.,
Can we develop solutions that can use the positive train-
ing examples from other classes based on the hierarchical
dependencies between them? and can we do this both effec-
tively and efficiently for large-scale hierarchical classification
(LSHC)?

Previous works have often concentrated on different parts
of the problem. For instance, the most popular in the early
stage of LSHC research are the “pachinko-machine models”
[11], [36] [22], [18] where the classification task is decom-
posed into sub-tasks recursively, and each node of the hier-
archy has an independently trained classifier. The hierarchy
is only used to partition the training data and not used any
further in the training. The simplicity makes these meth-
ods easy to scale, but also makes them limited in effectively
using the hierarchical dependencies.

Several approaches have been proposed for making better
use of the hierarchical structure. In [5], a cascading strat-
egy is employed to add the output of lower-level classifiers
as additional features for higher-level classifiers. In [8], a
Bayesian aggregation on the results of the individual binary

1http://www.dmoz.org

257

classifiers was proposed. In [34], a data-driven pruning strat-
egy is proposed for reducing the size of the original hierarchy.
Some improvements over the results of the pachinko-machine
models have been reported; however, those approaches are
heuristic by nature.

The more principled methods include the large-margin
models by [31],[6],[26],[9],[7] where the discriminant func-
tions take the contributions from all nodes along the path
to the root, and the model parameters are jointly learned
to minimize a global loss over the hierarchy. Similar ideas
have been explored in [40] where orthogonality conditions
are imposed between the parent and children classifiers, in
[27] [16] with Bayesian multinomial logistic models, and in
[24] using Naive Bayes classifiers with hierarchical shrink-
age. Empirical improvements of most of these methods over
simpler approaches have been shown on small datasets, typi-
cally with hundreds (or less) of class-labels and thousands of
instances. The difficulty for most of these methods in scaling
is due to the high-degree of inter-dependencies among model
parameters and the parameters for all the classes cannot be
held in memory at the same time.

What we want is an approach that is both principled
and at the same time computationally tractable for prob-
lems with a very large number of classes, high-dimensional
features and large volume of data. Further, we want the
approach to be generally applicable to both large-margin
classifiers (like Support Vector Machines) as well as prob-
abilistic classifiers (like logistic regression), and finally, to
be flexible for leveraging both hierarchical dependencies as
well as graph-based dependencies among class labels. We
propose such an approach in this paper, namely the recur-
sive regularization framework for Support Vector Machines
(SVM) and logistic regression (LR). It uses the dependencies
among classes and sub-classes to define a joint objective for
regularization of model parameters; the model parameters
of the siblings nodes who share the same parent are regu-
larized towards the common parent node. Intuitively, it is
based on the assumption that the nearby classes in the hier-
archy are semantically close to each other and hence share
similar model parameters. Notice that this model is simpler
than the fully Bayesian models in [27] and [16] where the de-
pendencies are modeled in richer forms, controlling both the
means and covariances in Gaussain models. The simplicity
of the proposed approach makes it easier to scale than the
fully Bayesian approaches.

For the scalability of our method, we develop a paral-
lel and iterative co-ordinate descent scheme that can easily
tackle the large datasets with millions of instances and hun-
dreds of thousands of classes. The key idea here is to for-
mulate the co-ordinate descent objective function in a way
that the dependencies between the various parameters can
be easily localized, and the computations for all the local
regions can be carried out in parallel. More specifically, we
formulate the objective such that the parameters at each
node is independent of the rest of the hierarchy given the
parameters of its parent and children; therefore by fixing
the parameters of the parent and children, the node can be
optimized independently from the rest of the hierarchy. This
aids in achieving a large degree of parallelization and gets
a speedup close to linear in the number of processors used.
Moreover, the local computations at leaf nodes are dualized
in order side-step non-differentiability issues when using loss
functions such as Hinge loss. As we shall see in section 4,

this combination of using iterative parallelization of local
computations and fast dual co-ordinate descent methods for
each local computation leads to optimization schemes that
can easily scale to real life web-scale data.

We tested our proposed approaches in terms effectiveness
as well efficiency by conducting evaluations against other
state-of-the-art methods on nine benchmark datasets for
LSHC problems, including the large-scale datasets from the
Large-scale Hierarchical Text Classification Challenge 2 .
With respect to effectiveness, we found that our methods
outperformed all the other methods on most tested datasets.
With respect to efficiency, we show for the first time that
global hierarchical optimization (with our proposed meth-
ods) can be efficiently computed for the largest datasets such
as wikipedia with 600,000 classes and 2 Million training in-
stances in a matter of 37 hours.

To summarize, the contribution of our work is multifold,

1. We propose a regularization framework that goes be-
yond simple one-versus-rest binary classification schemes
such as [18], [11], [36], and uses the hierarchical or
graphical dependencies among class labels and that is
applicable to both large-margin classifiers (SVM’s) and
probabilistic classifiers (LR’s).

2. We propose a fast iterative co-ordinate descent scheme
with appropriate local dualized computations that side-
steps non-differentiability issues. This method is highly
parallelizable and achieves speed-ups close to linear in
the number of processors.

3. Our proposed schemes achieve state-of-the-art results
on multiple benchmark datasets which are orders of
magnitudes (∼ 1000x) larger than what the most ex-
isting have been scaled to [31],[6],[26],[9],[7], [32].

Indirectly related to our paper are a few works in multitask
learning [12], [2],[3], [32] where regularization was used as a
tool to share information between tasks. However, their fo-
cus is not scalability and their techniques cannot be directly
applied to large scale HC. Other works include regulariza-
tion on graphs such as [39], [29], but the focus is on graphical
dependencies between the instances and not between class-
labels.

2. PROPOSED METHOD
Let the hierarchy be a tree defined over a set of nodes N

by the parent child relationships given by π : N → N where
π(n) is the parent of node n. Let D = {xi, ti}Mi=1 denote
the training dataset of M instances where each xi ∈ X and
ti ∈ T is a label, T ⊂ N is the set of all leaf nodes in the
hierarchy. We assume that each instance is labeled to one or
more leaf nodes in the hierarchy. If there are any instances
assigned to an internal node, spawn a leaf-node under it
and re-assign all the instances from the internal node to this
new leaf node. For convenience, let Cn denote the set of
all children of node n, and binary variable yin ∈ {+1,−1}
denote if xi belongs to class n ∈ T i.e. yin = (2I(ti =
n)−1). The problem of HC is to learn a prediction function
f : X → T that predicts the target class-label of a given
input instance with smallest possible error. More over, the
hierarchical dependencies between the classes are encoded
in the form of a hierarchy used in the learning process.

Following the principle of statistical decision theory the
risk (or error) of a prediction function f is defined as the

2http://lshtc.iit.demokritos.gr/

258

expected value of a loss function over all possible inputs. The
Structural Risk Minimization framework prescribes choosing
f to minimize a combination of the Empirical Risk based on
the training dataset and a regularization term to penalize
the complexity of f . Typically the prediction function f is
parameterized by an unknown set of parameters w which
are then estimated in the learning process. The estimated
parameters ŵ is given by

ŵ = arg min
w
λ(w) + C ×Remp (1)

where Remp denotes the Empirical Risk or Loss on the train-
ing dataset, λ(w) denotes the regularization term and C is a
parameter that controls the trade-off between fitting to the
given training instances and the complexity of f .

In the problem of HC, the prediction function is parame-
terized by a set of parameters W = {wn : n ∈ N} i.e each
node n in the hierarchy is associated with a parameter vec-
tor wn. First, we define the Empirical Risk in our model as
the loss incurred by the instances at the leaf-nodes of the
hierarchy

Remp =
∑
n∈T

M∑
i=1

L(yin, xi, wn)

where L could, in principle, be any convex loss function. Sec-
ond, we propose to use the hierarchy in the learning process
by incorporating a recursive structure into the regularization
term for W. Specifically, we propose the following form of
regularization

λ(W) =
∑
n∈N

1

2
||wn − wπ(n)||2

This recursive form of regularization enforces the parame-
ters of the node to be similar to the parameters of its par-
ent under euclidean norm. Intuitively, it models the hier-
archical dependencies in the sense that it encourages pa-
rameters which are nearby in the hierarchy to be similar to
each other. This helps classes to leverage information from
nearby classes while estimating model parameters and helps
share statistical strength across the hierarchy. We hope that
this would especially enable classes with very few training
instances to pool in information, as well as gain information
from classes with a larger number of training examples, to
yield better classification models despite the limited training
examples.

We explore two choices for the loss function L and de-
fine two different variants of our approach - Hierarchically
Regularized Support Vector Machines (HR-SVM) using the
hinge-loss function and Hierarchically Regularized Logistic
Regression (HR-LR) using the logistic loss function,

HR-SVM

min
W

∑
n∈N

1

2
||wn − wπ(n)||2 + C

∑
n∈T

M∑
i=1

(1− yinw>n xi)+ (2)

HR-LR

min
W

∑
n∈N

1

2
||wn − wπ(n)||2 + C

∑
n∈T

M∑
i=1

log(1 + exp(−yinw>n xi))

(3)

The key advantage of HR-{SVM,LR} over other hierar-
chical models such as [31], [6], [4], [40] is that there are no
constraints that maximizes the margin between correct and
incorrect predictions. This keeps the dependencies between
the parameters minimal and in turn enables us to develop a

Input : D, C, π,T, N
Result : weight vectors W∗

while Not Converged do
foreach n ∈ N do

if n /∈ T then
Update wn using eq (4)

else
if HR-SVM then

1. Solve dual in eq (5)
2. Update wn using eq (7)

end
if HR-LR then

1. Solve eq (8) using LBFGS
end

end

end

end

Algorithm 1: Optimization of HR-SVM and HR-LR

parallel-iterative method to optimize the objective (details
in 3.3) thereby scaling to very large HC problems.

3. OPTIMIZATION ALGORITHM

3.1 HR-SVM
Although the objective function in (2) is convex and has

a unique maximum, it is not differentiable and straight-
forward methods such as gradient descent cannot be used.
To address the non-differentiability, many works have gener-
ally resorted to subgradient techniques such as [40], [28], [1].
However, the general problem with subgradient approaches
is that the learning rate of the optimization routine needs
to be specified [17]. In our initial experiments using sub-
gradient approaches, we found that the optimization was
highly sensitive to the learning rate used and tweaking this
parameter for each dataset was a difficult task involving sev-
eral trials and adhoc heuristics. In order to overcome such
issues, we resorted to an iterative approach where we up-
date the parameters associated with each node n iteratively
by fixing the rest of the parameters. To tackle the non-
differentiability in some of the updates (i.e. the updates at
the leaf-nodes), we converted these sub-problems into their
dual form which is differentiable and optimized it using co-
ordinate descent. This iterative scheme offers several advan-
tages compared to standard approaches,

1. There are no learning rates that need to be tweaked.

2. The non-differentiability of the objective at the leaf
nodes is side-stepped by solving a differentiable dual
subproblem.

3. It can easily incorporate closed form updates for the
non-leaf nodes, thereby accelerating the convergence.

For each non-leaf node n /∈ T , differentiating eq (2) w.r.t
wn yields a closed-form update for wn given by,

wn =
1

|Cn|+ 1

(
wπ(n) +

∑
c∈Cn

wc

)
(4)

For each leaf node n ∈ T , the objective cannot be differen-
tiated due to a discontinuous Hinge-loss function. Isolating
the terms that depend on wn and introducing slack variables
ξin, the primal objective of the subproblem for wn is given

259

by,

min
wn

1

2
||wn − wπ(n)||2 + C

M∑
i=1

ξin

subject to ξin ≥ 0 ∀i = 1..M

ξin ≥ 1− yinw>n xi ∀i = 1..M

The dual of the above subproblem by introducing appropri-
ate dual variables αi , i = 1..M is

min
α

1

2

M∑
i=1

M∑
j=1

αiαjyinyjnx
>
i xj −

M∑
i=1

αi(1− yinw>π(n)xi)

(5)

0 ≤ αi ≤ C (6)

To solve this subproblem, one can easily use any second or-
der methods such as interior-point methods etc. The down-
side of such solvers is that it takes a long time even for
a single iteration and requires the entire kernel matrix of
size O(M2) to be stored in memory. Typical large-scale HC
problems have at least hundreds of thousands of instances
and the memory required to store the kernel matrix is in
the order of 100 GB for each class, thereby rendering it
impractical. Instead we propose a co-ordinate descent ap-
proach which has minimal memory requirements and con-
verges quickly even for large problems. Our work is based
on the dual co-ordinate descent developed in [17].

The core idea in co-ordinate descent is to iteratively up-
date each dual variable. In the objective function eq (5),
the update for each dual variable has a simple closed form
solution. To derive the update for the ith dual variable αi
given by αi+d, we solve the following one-variable problem,

min
d

1

2
d2(x>i xi) + d

(
M∑
i=1

αiyinxi

)>
xi

− d(1− yinw>π(n)xi)
subject to 0 ≤ αi + d ≤ C

Basically, we substituted αi by αi+d in eq (5) and discarded
all the terms that do not depend on d. This one-variable
problem can be solved in closed form by considering the
gradient of the objective and appropriately updating αi to
obey the constraints. The gradient G for the above objective
and the corresponding update for αi is given by,

G = a′>xi − 1 + yinw
>
π(n)xi

αnewi = min

(
max

(
αoldi −

G

x>i xi
, 0

)
, C

)
where a′ =

M∑
i=1

αiyinxi is an auxilary variable maintained

and updated throughout the optimization of the subprob-
lem. The time complexity for each αi update is O(#nnz in
xi) - the number of non-zero dimensions in xi and the mem-
ory requirement for solving the entire subproblem is O(M) -
far more efficient than that O(M2) compared to the second
order methods. Finally, after solving the dual subproblem,
the update for wn in the primal form is given by the K.K.T
conditions for the subproblem,

wn = wπ(n) +

N∑
i=1

αiyinxi (7)

The pseudocode for the entire optimization routine is shown
in Algorithm 1. Note that the convergence of the above op-

timization method can be derived by viewing the procedure
as a block co-ordinate descent scheme on a convex function
where the blocks corresponds to parameters at each node of
the hierarchy [23], [30].

Although co-ordinate descent methods are easy to imple-
ment, have low memory requirements and reach an accept-
able solution quickly, they have their own pitfalls. If the data
is highly correlated or dense in the dimensions, they take a
much longer time to converge [25] . Even in simpler cases,
identifying the rate of convergence is hard and the stopping
criteria might not be accurate [23]. However, in the case of
HC text classification, the documents are sparse and there
is not much correlation between the dimensions. Moreover,
most of the classes are linearly separable and finding a deci-
sion boundary is an ‘easy’ problem - this makes co-ordinate
descent a natural choice for optimization in the context of
text classification [13], [38].

3.2 HR-LR
We follow a similar iterative strategy for optimizing HR-

LR, i.e. we update the parameter wn of each node n it-
eratively by fixing the rest of the parameters. Unlike HR-
SVM, the objective function in HR-LR is convex and differ-
entiable and therefore second order methods such exact new-
ton’s methods as well as quasi-newton methods are applica-
ble. Typically, exact newton methods require the computa-
tion of the inverse of the Hessian of the objective function.
For large-scale problems with high dimensions, it might not
even be feasible to store the Hessian in memory. There-
fore, we resort to a limited memory variant of a quasi new-
ton method - Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) [21].

The update for each non-leaf node is exactly the same as in
HR-SVM eq (4). For each leaf node n, isolating the terms
that depend on wn, the objective and the corresponding
gradient G can be written as

min
wn

1

2
||wn − wπ(n)||2 + C

M∑
i=1

log(1 + exp(−yinw>n xi))

(8)

G = wn − wπ(n) −
M∑
i=1

1

1 + exp(yinw>n xi)
yinxi (9)

Since the gradient can be computed in closed-form it is pos-
sible to directly apply quasi newton methods such as LBFGS
to solve the above optimization problem. The pseudocode
for the optimization routine is shown in Algorithm 1

3.3 Parallelization
For large hierarchies, it might be impractical to learn the

parameters of all classes, or even store them in memory,
on a single machine. We therefore, devise a parallelization
scheme for our optimization algorithm. The key idea is to
note that the interactions between the different wn’s are only
through the parent and child nodes. By fixing the parame-
ters of the parent and children for a node n, the parameter
wn associated with node n can be optimized independently
of the rest of the parameters. Following our previous work
[16], we iteratively optimize the odd and even levels in the
hierarchy - if we fix the parameters at the odd levels, the
parameters of parents and the children of all nodes at even
levels are fixed, and the wn’s at all even levels can be opti-
mized in parallel. The same goes for optimizing the odd level

260

Table 1: Dataset Statistics

Dataset #Training #Testing #Class-Labels #Leaf-labels Depth #Features
Avg #labels
per instance

CLEF 10,000 1,006 87 63 4 89 1
RCV1 23,149 78,446 137 101 6 48,734 3.18
IPC 46,324 28,926 552 451 4 541,869 1
LSHTC-small 4,463 1,858 1,563 1,139 6 51,033 1
DMOZ-2010 128,710 34,880 15,358 12,294 6 381,580 1
DMOZ-2012 383,408 103,435 13,347 11,947 6 348,548 1
DMOZ-2011 394,756 104,263 27,875 27,875 6 594,158 1.03
SWIKI-2011 456,886 81,262 50,312 36,504 11 346,299 1.85
LWIKI 2,365,436 452,167 614,428 325,056 - 1,617,899 3.26

parameters. To aid in convergence, we also used other tricks
such as warm-starting with the previously found solution
and random permutation of subproblems in co-ordinate de-
scent method [17]. For large hierarchies, this method yields
a speedup almost linear in the number of processors. Note
that for HR-SVM, since only some of the dual variables (α’s)
are non-zero, we can reduce the storage requirements by rep-
resenting wn by the corresponding non-zero dual variables
instead of a full vector.

We tested our parallelization framework on a cluster run-
ning map-reduce based Hadoop 20.2 with 64 worker nodes
having 8 cores and 16GB RAM each. Around 300 cores were
used as Mappers and 220 cores were used as Reducers.

3.4 Extension to Graphs
In several real life scenarios, the dependencies between the

class-labels are given in the form of a graph rather than a
hierarchy. For instance, in Wikipedia where thousands of
people edit pages at the same time, it is common to see
editors quickly linking a topic of interest with other related
topics. To enable our approach to be applicable in such
scenarios, we extend our method to be able to handle graph
based dependencies.

The regularization paradigm in the case of graphs can be
stated as follows - the parameters of each node in the graph
is regularized towards each of its neighbours (instead of its
parent and children). Specifically, given a graph with a set
of edges E = {(i, j) : i, j ∈ N}, the regularization term is
given by ,

λ(W) =
∑

(i,j)∈E

1

2
||wi − wj ||2

The optimization algorithms for HR-SVM and HR-LR can
be derived similarly. In the interest of space, we just present
a brief outline. For those nodes which do not have any
training instances, the update is given by,

wn =
1

Sn

∑
j:(n,j)∈E

wj

where Sn denotes the number of neighbours of node n. For
the nodes which have associated training instances; in HR-
SVM, the optimization objective at node n is given by

1

2

∑
j:(n,j)∈E

||wn − wj ||2 + C

M∑
i=1

(1− yinw>n xi)+ (10)

To derive the dual, we re-write the above objective using
the mean of the neighbouring parameters. Define the mean

m = 1
Sn

∑
j:(n,j)∈E

wj . The new objective is given by

1

2
||wn −m||2 +

C

Sn

M∑
i=1

(1− yinw>n xi)+ (11)

It can be easily shown that the optimal solution for objec-
tive (11) is the same as the optimal solution for (10) by
expanding the regularization term and discarding constant
terms in the optimization. Now (11) can be solved using the
same co-ordinate descent technique as described earlier.

For HR-LR, we have a similar optimization of the sub-
problem, the only difference is that the gradient in eq (9)
would now have a summation over all the neighbours instead
its parent and children.

Parallelization: The parallelization scheme for hierar-
chies cannot be straight-forwardly extended to graphs as
there is no notion of odd or even levels. The best possi-
ble parallelization on graphs involves finding the chromatic
number of the graph - which is the smallest K such that
each node of the graph is assigned one of K different col-
ors from 1 to K and no two adjacent nodes have the same
color. Once the nodes have been assigned colors, we can
iterate over the K different colors and parallely optimize
the parameters of the nodes which have been assigned that
color. However, finding the chromatic number of the graph
is a NP-complete problem, therefore, we can only resort to
approximate schemes to find the chromatic number. The

degree of parallelization in graphs is given by |N|
K

which is

in sharp contrast to |N|
2

for hierarchies. Alternatively, one
could also resort to other schemes such as performing mul-
tiple iterations of optimizing all nodes in parallel (although
convergence is not guaranteed in theory). A complete dis-
cussion of the various approximate parallelization schemes
on graphs is however beyond the scope of this paper. For re-
lated issues, refer [14] which discuss parallelizing belief prop-
agation on graphs.

4. EXPERIMENTAL DESIGN

4.1 Datasets
We used several large-scale benchmark datasets whose

statistics are listed in Table 1. To maintain comparability
with previously published evaluations, we used the conven-
tional train-test splits where-ever available.

• CLEF [10] A hierarchical collection of medical X-ray
images with EHD-diagram features.

261

• RCV1 [20] A collection of Reuters News from 1996-
1997. We used the topic-based classification as it has
been most popular in evaluations.

• IPC [33] A collection of patents organized according
to the International Patent Classification Hierarchy.

• LSHTC-small, DMOZ-2010, DMOZ-2012 and DMOZ-
2011 Multiple web-page collections released as a part
of the LSHTC (Large-Scale Hierarchical Text Classi-
fication) evaluation during 2010-12 3. It is essentially
a subset of the web pages from the Open Directory
Project.

• SWIKI-2011, LWIKI Two subsets (small and large,
respectively) of Wikipedia pages with human-generated
topic class-labels. The dependencies between the class
labels in SWIKI-2011 are given as links in a directed
acyclic graph while in LWIKI they are given as links
in a undirected graph.

Note that RCV1, DMOZ-2011, SWIKI-2011, LWIKI are
multi-label datasets, meaning that an instance may have
multiple correct labels; the other datasets only have one
correct label per instance.

4.2 Methods for Comparison
We include three categories of methods for comparison:

• HR models: Our proposed methods, i.e., HR-SVM
and HR-LR;

• Flat baselines: One-versus-rest binary Support Vec-
tor Machines (SVM) and one-versus-rest regularized
logistic regression (LR), as conventional flat classifiers;

• Hierarchical baselines: We choose 4 hierarchical
methods with competitive performance:

a Hierarchical SVM (HSVM) [31] a large-margin
discriminative method with path dependent discrim-
inant function;

b Hierarchical Orthogonal Transfer (OT) [40], a
large-margin method enforcing orthogonality between
the parent and the children;

c Top-down SVM (TD)[22], [11], [18] a top-down
pachinko-machine style support vector machine; a
popular baseline in several previous works.

d Hierarchical Bayesian Logistic Regression (HBLR),
[16], our recent work using a fully Bayesian hier-
archical model, which computationally more costly
than HR-LR, and also not applicable on datasets
with graph-based dependencies.

We implemented all the above methods, and tuned the
regularization parameter using cross-validation with a range
of values from 10−3 to 103. On the multi-label datasets,
to make the baselines as competitive as possible, we used
an instance-based thresholding strategy as proposed in [15].
This provided a better performance than using the default
threshold of zero as well as other thresholding methods like
rcut or scut [35]. Note that HSVM, OT and HBLR are in-
herently multiclass methods and are not applicable in mul-
tilabeled scenarios.

To scale up to the larger datasets (e.g., LWIKI), for the
HR models we used the approximate parallelization as dis-
cussed in section 3.3. The parallelization for the flat base-
lines (SVM and LR) is straightforward, i.e., simply learn-
ing the models for all the class-labels in parallel. Among

3http://lshtc.iit.demokritos.gr/node/3

the hierarchical baselines, TD can be easily parallelized as
the class models can be trained independently; HSVM and
OT cannot be parallelized and hence cannot be scaled to
the larger datasets. Therefore, we only report the results of
HSVM and OT on the smaller datasets (CLEF and LSHTC-
small) where they scaled. In addition, we also include the
best results in benchmark evaluations for comparison, ac-
cording to the numbers available on the LSHTC website.

4.3 Evaluation Metrics
We use the following standard evaluation metrics [37] to

measure the performance of all the methods.

• Micro-F1 is a conventional metric used to evaluate
classification decisions [37], [19]. Let TPt, FPt, FNt
denote the true-positives, false-positives and false-negatives
for the class-label t ∈ T . The micro-averaged F1 is

P =
Σt∈TTPt

Σt∈TTPt + FPt

R =
Σt∈TTPt

Σt∈TTPt + FNt

Micro-F1 =
2PR

P +R

• Macro-F1 is also conventional metric used to evaluate
classification decisions; unlike Micro-F1 which gives
equal weight to all instances in the averaging process,
Macro-F1 gives equal weight to each class-label.

Pt =
TPt

TPt + FPt

Rt =
TPt

TPt + FNt

Macro-F1 =
1

|T |
∑
t∈T

2PtRt
Pt +Rt

5. RESULTS
We present three sets of results. The first set of results

compares the performance of our proposed HR-models with
the best results on the datasets in the benchmark evaluations
conducted by LSHTC 4. The second set of results presents
pairwise comparison for SVM/HR-SVM and LR/HR-LR, re-
spectively, to examine the same classifiers with and without
recursive regularization. The third set of the results focus
on the efficiency in computational time.

5.1 Effectiveness Comparison
Table 2 compares the results of our proposed HR-models

(HR-SVM and HR-LR) with some of the well established re-
sults on the large-scale datasets released by the LSHTC com-
munity. We focus on only those datasets for which bench-
mark evaluations were available on the website4. Table 2
shows that the HR-models are able to perform better than
the state-of-the-art results reported so far on most of these
datasets. In fact, on four out of the five datasets, HR-SVM
shows a consistent 10% relative improvement than the cur-
rently published results.

Table 3 summarizes the results of pairwise comparison be-
tween HR models against the corresponding non-HR base-
lines i.e. HR-SVM against SVM and HR-LR against LR.
For an informative comparison, we also include the results

4 http://lshtc.iit.demokritos.gr/lshtc2 evaluation, excluding
our own own submissions to these evaluations.

262

Table 2: Macro-F1 and Micro-F1 of well established benchmark results (excluding our own submissions to the
system) against our proposed models. Bold faced number indicates best performing method.

LSHTC Published
Results

HR-SVM HR-LR

DMOZ-2010
Macro-F1 34.12 33.12 32.42
Micro-F1 46.76 46.02 45.84
DMOZ-2012
Macro-F1 31.36 33.05 20.04
Micro-F1 51.98 57.17 53.18
DMOZ-2011
Macro-F1 26.48 25.69 23.90
Micro-F1 38.85 43.73 42.27
SWIKI-2011
Macro-F1 23.16 28.72 24.26
Micro-F1 37.39 41.79 40.99
LWIKI
Macro-F1 18.68 22.31 20.22
Micro-F1 34.67 38.08 37.67

of the other hierarchical baselines TD, HSVM and OT as
well as the results from our work [16] where ever applica-
ble. Note that all our baseline implementations have been
thoroughly tested and all convergence parameters have been
appropriately set to optimize the objective as much as pos-
sible. Regularization parameters have been appropriately
tuned using cross validation and have NOT been arbitrarily
set to heuristic values such as ‘1’ as was done in [5], [40].
In fact we found that setting the regularization parameter
to ‘1’ was suboptimal and lowered the performance of the
baselines.

The results in Table 3 shows that the HR models consis-
tently outperforms the non-HR counterparts on all tested
datasets. They are able to successfully leverage the hierar-
chical dependencies and further push (especially in Macro-
F1) beyond the performance of the baseline methods.

To further validate our results, we conducted pairwise sig-
nificance tests between SVM and HR-SVM; LR and HR-LR,
on the CLEF, IPC, LSHTC-small and RCV1 datasets. We
used the sign test for Micro-F1 and wilcoxon rank test for
Macro-F1. We are unable to conduct significance tests on
the other datasets since we did not have access to class-wise
performance scores and true-test labels - our reported eval-
uation measures on these datasets are from the output of an
online evaluation system 5 which does not reveal classwise
performance measures nor true test labels. The results of the
significance tests (Table 3) on the four datasets show that
the HR-models significantly outperform the non-HR models
on three out of the four tested datasets.

Comparing the performance of the HR-models to the other
hierarchical baselines (TD, HSVM and OT), we see that
the former outperforms the latter on most of the datasets.
The unusually low performance of OT seems contrary to
the results published in [40], we believe the reason is be-
cause the regularization parameter was arbitrarily set to
‘1’ without using cross-validation. In some of the datasets
like LSHTC-small, the HR-models show a significant gain in
performance, more than 16% relative improvement in both
Macro and Micro measures.

5http://lshtc.iit.demokritos.gr/LSHTC2 oracleUpload

5.2 Efficiency Comparison
Table 4 reports the training time taken for all the HR

models and the flat baselines. The results on the CLEF,
RCV1, IPC and LSHTC-small dataset are from a 32 core
Intel Xeon X7560 @ 2.27GHz, 32GB RAM. For all the other
datasets, we used the Hadoop cluster as described in section
3.3.

Comparing the training time of the HR-models with cor-
responding the non-HR counterparts, HR-SVM is on an av-
erage about 1.92 slower than SVM and HR-LR about 2.87
slower than LR. This is not surprising - the better perfor-
mance of the HR models comes at the cost of increased
computational time. However, even on the largest dataset
LWIKI, SVM takes about 18 hours while the HR-SVM about
37 hours. Although the HR-models which offer better per-
formance are slower, the computation time certainly falls
within the tractable range even for the largest datasets.

Comparing the HR-models against other hierarchical base-
lines; TD is the only one among the baseline methods that
scaled to all the data sets but has low performance. HSVM
and OT could only scale to the smallest data sets (CLEF
and LSHTC-small) and both of them are about 3.5x slower
on CLEF and about 86x slower on LSHTC-small compared
to HR-SVM. On the rest of the datasets, neither of these
could even be trained successfully. HBLR, even with a su-
perior performance, is on an average 7.3x slower than HR-
SVM. None of the hierarchical baselines are applicable to
graphical dependencies between clases (SWIKI and LWIKI
dataset).

6. CONCLUSIONS
In this paper, we proposed a recursive regularization frame-

work along with scalable optimization algorithms for large-
scale classification with hierarchical and graphical depen-
dencies between class-labels. We explored 2 different vari-
ants of our framework using the logistic loss function and
the hinge-loss function. Our proposed approaches achieved
state-of-the-art results on multiple benchmark datasets and
showed a consistent improvement in performance over flat
and hierarchical approaches.

263

Table 3: 1. Macro-F1 and Micro-F1 on the 9 datasets. Bold faced number indicates best performing method.
2. ‘-’ denotes the method cannot scale to the dataset or not applicable (e.g TD, HSVM, OT and HBLR are
not applicable on SWIKI/LWIKI datasets due to graphical dependencies between class-labels).
3. The significance-test results are denoted † for a p-value less than 5% and †† for p-value less than 1%. The
tests are between HR-SVM and SVM; HR-LR and LR on the first 4 datasets alone as the true test-labels
were unavailable on the other datasets (refer section 5)

Comparison with Flat baselines Other Hierarchical Baselines
SVM HR-SVM LR HR-LR TD HSVM OT HBLR

CLEF
Macro-F1 48.59 53.92†† 53.26 55.83† 32.32 57.23 37.12 59.65
Micro-F1 77.53 80.02†† 79.92 80.12† 70.11 79.72 73.84 81.41
RCV1
Macro-F1 54.72 56.56† 53.39 55.81† 34.15 - - -
Micro-F1 80.82 81.66†† 80.08 81.23†† 71.34 - - -
IPC
Macro-F1 45.71 47.89† 48.29 49.60 42.62 - - 51.06
Micro-F1 53.12 54.26†† 55.03 55.37† 50.34 - - 56.02
LSHTC-small
Macro-F1 28.62 28.94 28.12 28.48 20.01 21.95 19.45 30.81
Micro-F1 45.21 45.31 44.94 45.11 38.48 39.66 37.12 46.03
DMOZ-2010
Macro-F1 32.64 33.12 31.58 32.42 22.30 - - -
Micro-F1 45.36 46.02 45.40 45.84 38.64 - - -
DMOZ-2012
Macro-F1 31.59 33.05 14.18 20.04 30.01 - - -
Micro-F1 56.44 57.17 52.79 53.18 55.14 - - -
DMOZ-2011
Macro-F1 24.34 25.69 21.67 23.90 21.07 - - -
Micro-F1 42.88 43.73 41.29 42.27 35.91 - - -
SWIKI
Macro-F1 26.57 28.72 19.51 24.26 17.39 - - -
Micro-F1 40.87 41.79 37.65 40.99 36.65 - - -
LWIKI
Macro-F1 19.89 22.31 18.65 20.22 - - - -
Micro-F1 37.66 38.08 36.96 37.67 - - - -

7. ACKNOWLEDGMENTS
This work is supported, in part, by the National Sci-

ence Foundation (NSF) under grant IIS 1216282. We thank
Alexandru Niculescu-Mizil for useful discussions about model
design and parallelization, Guy Blelloch for sharing his com-
putational resources, and the Open Cloud cluster for the
Hadoop framework . The Open Cloud cluster is supported,
in part, by NSF, under award CCF 1019104, and the Gor-
don and Betty Moore Foundation, in the eScience project.

8. REFERENCES

[1] http://leon.bottou.org/projects/sgd.

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Convex
multi-task feature learning. Machine Learning,
73(3):243–272, 2008.

[3] A. Argyriou, C.A. Micchelli, M. Pontil, and Y. Ying.
A spectral regularization framework for multi-task
structure learning. 2007.

[4] S. Bengio, J. Weston, and D. Grangier. Label
embedding trees for large multi-class tasks. NIPS,
23:163–171, 2010.

[5] P.N. Bennett and N. Nguyen. Refined experts:
improving classification in large taxonomies. In
SIGIR, 2009.

[6] L. Cai and T. Hofmann. Hierarchical document
categorization with support vector machines. In
CIKM, pages 78–87. ACM, 2004.

[7] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni.
Incremental algorithms for hierarchical classification.
JMLR, 7:31–54, 2006.

[8] C. DeCoro, Z. Barutcuoglu, and R. Fiebrink. Bayesian
aggregation for hierarchical genre classification. In
Proceedings of the International Conference on Music
Information Retrieval, pages 77–80, 2007.

[9] O. Dekel, J. Keshet, and Y. Singer. Large margin
hierarchical classification. In ICML, page 27. ACM,
2004.

[10] I. Dimitrovski, D. Kocev, L. Suzana, and S. Džeroski.
Hierchical annotation of medical images. In IMIS,
2008.

[11] S. Dumais and H. Chen. Hierarchical classification of
web content. In ACM SIGIR, 2000.

[12] T. Evgeniou and M. Pontil. Regularized multi–task
learning. In SIGKDD, pages 109–117. ACM, 2004.

264

Table 4: The training time (in mins) for all the methods.

Comparison with Flat baselines Other Hierarchical Baselines
SVM HR-SVM LR HR-LR TD HSVM OT HB-LR

CLEF .15 .42 .24 1.02 .13 3.19 1.31 3.05
RCV1 .273 .55 2.89 11.74 .213 - - -
IPC 3.12 6.81 4.17 15.91 2.21 - - 31.2
LSHTC-small .31 .52 1.93 3.73 .11 289.60 132.34 5.22
DMOZ-2010 5.12 8.23 97.24 123.22 3.97 - - -
DMOZ-2012 22.31 36.66 95.38 229.73 12.49 - - -
DMOZ-2011 39.12 58.31 101.26 248.07 16.39 - - -
SWIKI 54 89.23 99.46 296.87 21.34 - - -
LWIKI 1114.23 2230.54 2134.46 7282.09 - - - -

[13] A. Genkin, D.D. Lewis, and D. Madigan. Large-scale
bayesian logistic regression for text categorization.
2007.

[14] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash
for optimally parallelizing belief propagation. Aistats,
2009.

[15] S. Gopal and Y. Yang. Multilabel classification with
meta-level features. In Proceeding of the 33rd
international ACM SIGIR conference on Research and
development in information retrieval, pages 315–322.
ACM, 2010.

[16] Siddharth Gopal, Yiming Yang, Bing Bai, and
Alexandru Niculescu-Mizil. Bayesian models for
large-scale hierarchical classification. In Advances in
Neural Information Processing Systems 25, pages
2420–2428, 2012.

[17] C.J. Hsieh, K.W. Chang, C.J. Lin, S.S. Keerthi, and
S. Sundararajan. A dual coordinate descent method
for large-scale linear svm. In ICML, pages 408–415.
ACM, 2008.

[18] D. Koller and M. Sahami. Hierarchically classifying
documents using very few words. 1997.

[19] D.D. Lewis, R.E. Schapire, J.P. Callan, and R. Papka.
Training algorithms for linear text classifiers. In
SIGIR, pages 298–306. ACM, 1996.

[20] D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv1: A
new benchmark collection for text categorization
research. JMLR, 5:361–397, 2004.

[21] D.C. Liu and J. Nocedal. On the limited memory bfgs
method for large scale optimization. Mathematical
programming, 45(1):503–528, 1989.

[22] T.Y. Liu, Y. Yang, H. Wan, H.J. Zeng, Z. Chen, and
W.Y. Ma. Support vector machines classification with
a very large-scale taxonomy. ACM SIGKDD, pages
36–43, 2005.

[23] Z.Q. Luo and P. Tseng. On the convergence of the
coordinate descent method for convex differentiable
minimization. Journal of Optimization Theory and
Applications, 72(1):7–35, 1992.

[24] A. McCallum, R. Rosenfeld, T. Mitchell, and A.Y. Ng.
Improving text classification by shrinkage in a
hierarchy of classes. In ICML, pages 359–367, 1998.

[25] T.P. Minka. A comparison of numerical optimizers for
logistic regression. Unpublished draft, 2003.

[26] J. Rousu, C. Saunders, S. Szedmak, and
J. Shawe-Taylor. Kernel-based learning of hierarchical

multilabel classification models. The Journal of
Machine Learning Research, 7:1601–1626, 2006.

[27] B. Shahbaba and R.M. Neal. Improving classification
when a class hierarchy is available using a
hierarchy-based prior. Bayesian Analysis,
2(1):221–238, 2007.

[28] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos:
Primal estimated sub-gradient solver for svm. In
ICML, pages 807–814. ACM, 2007.

[29] A. Smola and R. Kondor. Kernels and regularization
on graphs. Learning theory and kernel machines, pages
144–158, 2003.

[30] P. Tseng. Convergence of a block coordinate descent
method for nondifferentiable minimization. Journal of
optimization theory and applications, 109(3):475–494,
2001.

[31] I. Tsochantaridis, T. Joachims, T. Hofmann, and
Y. Altun. Large margin methods for structured and
interdependent output variables. JMLR, 6(2):1453,
2006.

[32] C. Widmer, J. Leiva, Y. Altun, and G. Rätsch.
Leveraging sequence classification by taxonomy-based
multitask learning. In Research in Computational
Molecular Biology, pages 522–534. Springer, 2010.

[33] IPC WIPO. http://www.wipo.int/classifications
/ipc/en/support/.

[34] G.R. Xue, D. Xing, Q. Yang, and Y. Yu. Deep
classification in large-scale text hierarchies. In SIGIR,
pages 619–626. ACM, 2008.

[35] Y. Yang. A study of thresholding strategies for text
categorization. In SIGIR, pages 137–145. ACM, 2001.

[36] Y. Yang, J. Zhang, and B. Kisiel. A scalability
analysis of classifiers in text categorization. In SIGIR,
pages 96–103. ACM, 2003.

[37] Yiming Yang. An evaluation of statistical approaches
to text categorization. Information Retrieval, 1:67–88,
1999.

[38] T. Zhang and F.J. Oles. Text categorization based on
regularized linear classification methods. Information
retrieval, 4(1):5–31, 2001.

[39] T. Zhang, A. Popescul, and B. Dom. Linear prediction
models with graph regularization for web-page
categorization. In SIGKDD, pages 821–826. ACM,
2006.

[40] D. Zhou, L. Xiao, and M. Wu. Hierarchical
classification via orthogonal transfer. Technical report,
MSR-TR-2011-54, 2011.

265

