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ABSTRACT
We pose the problem of network discovery which involves
simplifying spatio-temporal data into cohesive regions (nodes)
and relationships between those regions (edges). Such prob-
lems naturally exist in fMRI scans of human subjects. These
scans consist of activations of thousands of voxels over time
with the aim to simplify them into the underlying cogni-
tive network being used. We propose supervised and semi-
supervised variations of this problem and postulate a con-
strained tensor decomposition formulation and a correspond-
ing alternating least squares solver that is easy to imple-
ment. We show this formulation works well in controlled ex-
periments where supervision is incomplete, superfluous and
noisy and is able to recover the underlying ground truth net-
work. We then show that for real fMRI data our approach
can reproduce well known results in neurology regarding the
default mode network in resting-state healthy and Alzheimer
affected individuals. Finally, we show that the reconstruc-
tion error of the decomposition provides a useful measure of
the network strength and is useful at predicting key cogni-
tive scores both by itself and with clinical information.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
fMRI, Tensors, Applications

1. INTRODUCTION
Neuroscience is at a moment in history where mapping the

connectivity of the human brain non invasively and in vivo
has just begun with many unanswered questions. Just as
sequencing the human genome offered tremendous opportu-
nities to advance biology, mapping the human brain offers as
much if not more opportunity to help humans. Whilst the
anatomical structures in the brain have been well known
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for decades, how they are used in combination to form task
specific networks has still not been completely explored. Un-
derstanding what these networks are, how they develop, de-
teriorate, and vary across individuals will provide a range of
benefits from disease diagnosis, to understanding the neural
basis of creativity, and in the future brain augmentation.

Data mining has made significant inroads into real world
practical applications in industry and the sciences. However
most existing work focuses on simple lower-level tasks such
as predicting binary labels, clustering and dimension reduc-
tion. Take for instance predicting binary labels, even though
recent advances in structured, semi-supervised, multi-task
and transfer learning further widens the scope of applica-
tions, the focus is still labels. This often requires the prac-
titioner to “shoe-horn” their more complex tasks into the
algorithm’s setting which is the case for neuroscientists.

The focus of this paper is a first attempt to transition to
more complex higher-level discovery tasks and in particu-
lar eliciting networks from spatio-temporal data represented
as a tensor. The aim of our work is algorithms that can
take event data in the form of activations over a three di-
mensional spatial region x, y, z over time t and simplify that
data into a network. This involves both aggregation so that
the active cohesive regions (nodes) are identified and the for-
mation of relationships (edges) between these regions. The
edges and their weights can indicate properties such as infor-
mation flow, excitation/inhibition or probabilistic relation-
ships. Though we focus on cognitive networks in this paper,
we anticipate the work can be applied to other domains such
as ocean temperature monitoring and climate modeling. In
this paper we shall focus predominantly on node discovery
and explore how to create one type of edge. Figure 1 shows
a simplified example involving just a slice of brain activity.
Here the nodes of the graph represent regions of the slice
whose behavior is cohesive over time and the edges indicat-
ing that the activations of the regions are synchronized or
related in some way. We see this as an initial but important
move away from simple pattern recognition and data mining
towards true knowledge discovery.

We begin this paper by introducing and motivating the
three core problems of network discovery: node discovery,
edge discovery and network verification along with standard
techniques. In the next section we present our constrained
tensor decomposition formulation and in the subsequent sec-
tion our solver. We present extensive experimental results
to test the limitations of our approach first on artificial data
where the ground truth is known and then fMRI data. Fi-
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Figure 1: Our aim is to take spatio-temporal data
and simultaneously discover nodes and edges to un-
cover the underlying network the person is using.

nally we discuss related work and then conclude our work.
We use the typical notation [12] where ◦ is the tensor prod-
uct and � the Khatri-Rao product.

2. PROBLEMS OVERVIEW
We now discuss our proposed contributions at the func-

tional level and go into more detail with respect to formu-
lations and solvers in the next two sections. fMRI is a pre-
dominant method for capturing brain activity as it processes
information. We view fMRI data as containing a complex in-
teraction of signals and noise [9, 23] with a natural question
being to simplify the activity into the underlying cognitive
network being used. However this problem is difficult for
a number of reasons. Consider the Default Mode Network
(DMN)[16] shown in Figure 2 (middle) of a person in rest
state and the Blood Oxygenation Level Dependent (BOLD)
measurement of the DMN structure centers shown in Fig-
ure 2 (right) plus one measurement outside the network in
cyan. Not only does the out-of-network background-noise
have greater intensity than the network signal, each fMRI
scan contains over one quarter million such sequences and
finding correlated pairs of voxels (pixels in the fMRI im-
ages) does not simplify the data to an interpretable level.
Rather we wish to state a region of voxels (what we will call
a node) form a structure and elicit the information pathways
and other relationships between them (what we call edges).
However, there could exist many explanations of the data
and hence much chance for finding interactions that are su-
perfluous, not interesting or even not anatomically possible.

Existing mining and learning algorithms (including our
own previous work) do not directly discover networks and
have several other key limitations: 1) They simplify the spa-
tial temporal data by measuring an arbitrarily chosen corre-
lation between the voxels’ time sequences, 2) They serialize
complex problems in an ad hoc fashion and 3) They can-
not easily encode existing domain expertise. Our proposed
constrained tensor formulation offers the ability to overcome
these limitations.

2.1 Node Discovery Problem
This problem can take on a supervised, semi-supervised

and unsupervised setting though not in the traditional mean-
ing in our field. In the supervised setting, the network to
discover involves coordinated activity among some combi-
nation of given anatomical structures (their complete geo-
metric boundaries are given) such as a subset of those shown
in Figure 2 (left). Since all possible nodes are given along
with their boundaries, this is a termed a supervised prob-
lem. In the data we will perform our experiments on a
canonical anatomical coordinate frame in which the bound-
aries of 116 known anatomical regions have been defined.
In the semi-supervised setting some existing nodes (includ-
ing their anatomical boundaries) are given, and other nodes
whose boundaries are unknown must be discovered to form
the completed network. This is desirable since in some de-
mented and injured individuals the brain forms variations
of networks. Finally, in the most difficult unsupervised set-
ting, all nodes that are part of the network (the anatomical
structures with their precise boundaries) must be discov-
ered. None of these problems have been “solved” for fMRI
data and there is much room for approaches that are both
computationally efficient and theoretically well understood.

Table 1 shows these types of problems, the current stan-
dard approaches and applications. As can be seen these ap-
proaches are not designed to directly discover networks, but
instead the data modified and the output post-processed.
For example in our own earlier work [21, 23] we used Pear-
son correlation to convert the tensor into a 2-Graph and
then must visually search amongst the cuts to find the one
that closest to the DMN.

2.2 Edge Discovery Problem
Here our aim is to create edges between the nodes. The

edges can represent a number of properties between nodes
such as synchronized activity, inhibition (decreases activity),
facilitation (increases activity), or preceding/succeeding (ac-
tivity occurs before/after), with the weight encoding the
strength of the relationship. Some existing work makes use
of hierarchical clustering approaches [10] to first group vox-
els into nodes, and then cluster the nodes into networks
representing synchronized activity. However, this does not
allow encoding anatomical knowledge on which regions do
not activate in the same network or a graph with heteroge-
neous edges. More recent innovative work looks at Dynamic
Belief Networks [4] and covariance matrix estimation [19] to
discover just one type of edge. Neither work seems to be
easily extendable to also simultaneously discover nodes.

2.3 Network Verification
Finally, we will explore the important problem of attach-

ing a strength associated with the network. This problem is
particularly important in neuroscience problems since net-
works typically exists in all individuals but to varying de-
grees/parts. Consider the DMN which will be the focus of
our experimental fMRI work. It is known to exist in even
the most demented individual, but only in a partial form.
Furthermore, it is known that the strength of the network
(the activations) varies over individuals being least strong
in elderly individuals.
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Figure 2: Left: Anatomical structures/nodes in the brain at slice 36. Middle: The default mode network
(DMN). Right: Color-coded activation levels and a fifth part (in cyan) outside the DMN.

Problem Setting Standard Tech-
niques

Uses

Supervised: Given a set of all anatomical re-
gions and their spatial delineations (a node col-
lection), identify active nodes

ICA, Dynamic belief
networks

Discover network nodes and assess their
strength and variability.

Semi-supervised: Given a node collection, dis-
cover additional nodes to form a network

ICA with visual in-
spection

Assess adaptation of functional networks af-
ter focal injury (i.e. traumatic brain injury).

Unsupervised: Discover arbitrary shaped
nodes

ICA, tensor and clus-
tering approaches

Discovery of new brain functional networks,
brain diseases, or treatments / interventions.

Table 1: The three node discovery problems, standard techniques and applications. We shall focus on the first
two in this paper that require guidance. The related work section describes additional emerging techniques.

3. TENSOR DECOMPOSITION WITH TEM-
PLATE/PATTERN CONSTRAINTS

All visualization of results in this paper are presented as
analyzing a slice of the brain (dimensions a and b) over time
t so they can be easily visualized but all results of course are
easily generalized to high order tensors. If needed ai and bi

can be vectorized to represent any arbitrary shaped region.
For illustrative purposes and without loss of generality let
X (2D space × time) be a three-mode tensor representing
the fMRI data for a mid-level slice of the brain. We shall
decompose (simplify) this tensor into f factors (X̂ = X1 +
X2 . . .+Xf ) using a PARAFAC model (though more complex
decompositions could be used). Let factor i be defined by
the outer product of three factor vectors (Xi = ai ◦ bi ◦ ti)

and for brevity we write X̂ = A◦B◦T with the factor vectors
being stacked column-wise so that each factor matrix has f
columns. Then Xi can potentially represent a region of the
brain with the outer product of ai and bi being the active
region (i.e. a single area shown in Figure 2 left) and ti their
activations over time (right hand side of Figure 2). However,
with unconstrained tensor decomposition Xi is typically not
a spatially contiguous region nor does it necessarily match an
anatomical region. To achieve this guidance is introduced.

We propose a constrained tensor decomposition where the
objective function is complemented by adding constraints as
shown in equation 1. The addition of guidance help rule out
solutions that are non-actionable by restricting them to be
consistent with known domain knowledge and expectations.
In section 4 we discuss our solvers to address this new vari-
ation of tensor decomposition.

3.1 Node Discovery
It is worth noting that unconstrained tensor decompo-

sition results for node discovery are poor for fMRI data
since, for example, many spatially adjacent voxels in the
same structure are not active in the same factor which is

anatomically not possible. Pre-processing the tensor by ap-
plying wavelets [2] can alleviate this and could complement
our work, though in practice this pre-processing was time
intensive and yielded only marginally better results.

Supervised. Here the potential groups/nodes/structures
of the brain have been identified. A group is collection of
voxels/activations that are known to behave cohesively and
are defined by a matrix/mask with all given matrices being
Q1 . . . Qm. Such matrices can be used to represent prede-
fined regions that will comprise the possible nodes in the net-
work and in our work will consist of the 116 known anatom-
ical regions in the brain. Examples of the Q matrices used
in this work can be seen in Figure 2 (left) with one matrix
for each anatomical region. However, most networks only
consist of a small number of nodes so we wish to use only
a subset of Q matrices in the decomposition. We can en-
code which structures/nodes/matrices are to be used with
a vector w with one component/entry per factor. We can
represent how closely the discovered factors match these ma-
trices with some deviation allowed which is upper-bounded
by ε which is proportional to the number of voxels outside
the given group. The formulation for supervised node dis-
covery is in equation 1.

argmin
w,A,B,T

||X −
∑
i

wiai ◦ bi ◦ ti||F + ||w||

subject to

w1(a1b1
T −Q1)|| ≤ ε1

...

wm||(ambm
T −Qm)|| ≤ εm

(1)

The output of this computation will be the smallest set of
groups/nodes (defined by ai ◦ bi) that best summarize the
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Figure 3: Supervised Network Discovery. For a
healthy person (left) and a demented person (right)
the top four nodes of the network found amongst
the possible 116 nodes/structures. Compare with
Figure 2 (left).

Figure 4: Semi-supervised Network Discovery Prob-
lem: Given just one node (highlighted and colored
black) in the network what are the other nodes of
the networks? In both cases the remaining three
parts of the DMN are found. Compare with Figure
2 (left).

fMRI scan with ti stating the activations over time. The
penalty term ||w||1 introduces a sparsity constraint to en-
force that the simplest structure is discovered. Furthermore,
by rank ordering the factors by their entry in w we can de-
termine the most important nodes in the network. Figure
3 (left) shows an example of our work where the Q matri-
ces are just of the cores of the anatomical structures. The
top four most important nodes as per the w matrix and the
corresponding Q matrices are shown and are the DMN. An
important negative result is that the DMN is not typically
discovered for demented individual (Figure 3 right).

Semi-Supervised Network Discovery. This is a spe-
cialization of the above problem with the same objective
function except the problem is “relaxed” in that there are
more factors than there are used Q matrices. This is par-
ticularly useful in the setting when we know one node in the
network, but not the others. In particular, we wish to find a
f node network, but require at most r of these to be from the
given nodes (Q matrices). We can achieve this by placing
an additional constraint such as ||w1...r||F ≤ r (where w1...r

masks only the first r factors which are the only ones with
constraints). In this way the discovered network is the most
simplest combination of given nodes and discovered nodes
that match the brain activity. Figure 4 shows some results
where we specify only one part of the network (shown in
blacked and highlighted) and the tensor decomposition fills
in the remaining parts of the network successfully.

3.2 Adding Simultaneous Edge Discovery
The limitation with the previous mentioned formulations

is that it discovers only active groups/nodes but they need
not have anything in common regarding activation (i.e. in
the temporal aspect). A simple way to infer edges between
nodes is to post-process and examine the respective t vectors
and determine if they are similar using some sort of distance
metric. However, a more elegant way is to simultaneously
discover nodes and edges. We can change the above formula-
tion to discover interactions between groups with similar
activation levels by adding the constraint in equation 2 to
discover ‘co-occur’ edges and the constraint in equation 3 to
discover ‘inhibit’ edges. It is easy to encode other types of
constraints to represent other types of edges, but the compu-
tational challenge we will defer to future work is to discover
multiple types of edges simultaneously. In this paper we
focus on only finding one edge type at a time.

subjectto
∑
i,j

wi.wj ||ti − tj|| ≤ ε (2)

subjectto
∑

i,j,i6=j

wi.wj ||tiT .tj|| ≤ ε (3)

4. SOLVERS
Our constrained decomposition formulations are not solv-

able by the two popular existing tensor toolkits by Kolda
(MATLAB tensor toolbox) and Bro (nway). A variety of
approaches to solve tensor decomposition exists [8] and we
chose to explore alternating least squares (ALS) because
it is known to be resilient method for tensor decomposi-
tions that is easy to interpret [12] and when compared to
six other competing techniques was the best performing in
terms of decomposition error [8]. Our experimental results
support this conclusion and we find that ALS does not take
appreciatively more time to converge with constraints than
when there are no constraints. The addition of constraints
to the tensor decomposition requires a more complex algo-
rithm shown in Figure 5. This is an ALS algorithm but at
each step to update each of A,B,T and w is now a con-
strained optimization problem. We describe two methods of
addressing this and choose the latter since it scales better.

4.1 Solving Each Sub-Problem in Figure 5
Without loss of generality consider the sub-problem pre-

sented in Equation 4:

arg min
A

||X1 −AKT ||F

subject to

w1||(a1b1
T −Q1)|| ≤ ε1

...

wm||(ambm
T −Qm)|| ≤ εm

(4)

K = (T �B � w)

We can solve the sub-problem directly by simply plugging
the problem directly into cvx. However, in practice cvx

does not scale to handle problems with large number of con-
straints as we require. Instead of solving for all columns of
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Constrained PARAFAC Alternating Least Squares
Input:
X : The tensor to decompose.
α: The minimum change in error.
Qi, i = 1, . . . ,m: Spatial patterns.
Output: w,A,B,T

1. Calculate matricizations XA, XB , XT , Xw

2. Solve and set A =

arg min
A

||XA −A(T �B � w)T ||F

subject to wi||(aibTi −Qi)|| ≤ εi; i = 1, . . . ,m

3. Solve and set B =

arg min
B

||XB −B(T �A� w)T ||F

subject to wi||(aibTi −Qi)|| ≤ εi; i = 1, . . . ,m

4. Solve and set T =

arg min
T

||XT − T (B �A� w)T ||F

5. Solve and set w =

arg min
w

||Xw − w(T �B �A)T ||F + ||w||1

subject to w ≥ 0

6. ∆||X −A�B � T || < α

(a) Not Satisfied: Goto step 2.

(b) Satisfied: return w,A,B, T .

Figure 5: The constrained ALS algorithm for solv-
ing the canonical decomposition. The algorithm is
shown for an order three tensor but is easily changed
to an arbitrary order tensor.

A,B, T or w simultaneously, we can solve for each column
of say A separately. To solve for column i of A we first cal-
culate the residuals left over from subtracting the effects of
other columns in A then solve least squares problems using
the residuals (constrained only by those constraints on col-
umn i) rather than the original tensor as shown below. This
change will not affect the quality of solution, rather it just
creates not k sub-problems (if the tensor to decompose is k
dimensional) but rather kf where f is the number of factors
in our decomposition. It is faster because though there are
more sub-problems there are far fewer constraints per
sub-problem. Formally:

ai =arg min
a

||R− aki
T ||F

subject to wi||(abi
T −Qi)|| ≤ εi

(5)

ki = (ti � bi � wi)

5. EXPERIMENTS
We present two sets of experimental results in this section.

The first on artificial data allows us to perform a series of
controlled experiments to better understand the strengths
and limitations of our work. The second is on real fMRI
data of healthy and demented (Alzheimer’s) individuals at
rest and allows us to test if the assumptions our work makes
are realistic and applicable to this problem.

5.1 Artificial Data With Known Ground Truth
In this section we attempt to answer three core questions

to better understand our work:

1. How does the approach perform with incomplete guid-
ance (i.e. the core of the underlying nodes are given)?

2. Can the approach handle incorrect guidance, that is, if
wrong nodes are given, can the approach ignore them?

3. How robust is the approach to noise. Can networks
corrupted by noise still be recovered given the ground
truth nodes?

Another important question to address is what types of
networks can be discovered in terms of geometric shapes and
number of such shapes. Since we can vectorize any matrix
any arbitrary shape can be represented, but to demonstrate
our claim the ground truth networks we will use will be: all
squares, all ellipses and then a combination of squares and
ellipses. In all experiments there is a Q matrix for each node
in the network given unless otherwise specified.

Complete versus Partial Guidance. To test this issue
we generate twenty ground truth networks with an example
ground truth network we use shown in Figure 6. To facilitate
partial guidance we give our algorithm only a small central
fraction/proportion of the node itself (encoded in the Q ma-
trices) and compare the difference between the ground truth
network and the network we discover. Figure 7 shows the
results as the fraction of the nodes given to the algorithm
increases. The error is reported as a percentage of the total
possible error where an error occurs if a voxel/pixel in the
ground truth network is not in the discovered network or vice
versa. See section 5.2 for details. The graph can be read as
follows, the x-axis value tells us how much of the underlying
ground truth network is revealed to the algorithm whilst the
y-axis tells us how much of the network is never retrieved
or incorrectly retrieved. We see an important trend that as
the proportion of the node provided increases not only does
the error decrease, but also the variance of the error.

Ignoring Incorrect Guidance. To test this issue we
generate twenty ground truth networks with an example
ground truth network we use shown in Figure 8. To simulate
giving incorrect guidance we start with one superfluous and
irrelevant node (i.e. the node is not present in the ground
truth network) and anticipate our work will ignore it and
steadily increase the number of false nodes that the algo-
rithm has available to choose from. We then compare the
difference between the ground truth network and the net-
work we discover (see section 5.2 for how). Figure 9 shows
that as the number of false/incorrect nodes given to the algo-
rithm increases the error does increase, but only minimally.

All code will be freely available at www.cs.ucdavis.edu/
~davidson
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Figure 6: An example ground truth network for
our experiments on network discovery with varying
amounts of guidance.
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Figure 7: Plot of the results for our experiments
on network discovery with varying amounts of guid-
ance.

Figure 8: An example ground truth network for
our experiments on network discovery with varying
amounts of false nodes given.
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Figure 9: Plot of our experimental results on net-
work discovery with varying amounts of false nodes
given.

Figure 10: An example ground truth network for
our experiments on network discovery with varying
amounts of noise.
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Figure 11: Plot of the results for our experiments
on network discovery with varying amounts of noise.

Robustness to Noise. This is perhaps the most im-
portant result since most guidance will be in some idealized
form whilst the observed data will inherently be flawed. An
example ground truth network we use is shown in Figure
10 and as before we generate twenty such networks to test
the performance of our algorithm. As mentioned, the ideal-
ized nodes are typical, but the observed activity will contain
noise. To facilitate noise we take the idealized nodes and per-
turb them by adding noise uniformly throughout the tensor.
Figure 11 shows the results as the amount of the noise given
to the algorithm increases. Error is measured as before and
discussed in section 5.2. The total magnitude of uniformly
sampled random noise added is reported with respect to the
total network size. The results show that our method is rel-
atively unaffected by noise, but that somewhat surprisingly
the method does slightly worse with a small amount of noise
as compared to a large amount of noise. We believe this is
due to the fact that a small amount of uniformly sampled
noise appears less like uniform noise than a larger sample
and that our method is more likely to try to explain the
noise in the smaller samples.

5.2 Evaluation Measure
To evaluate the quality of nodes discovered we compare

learned nodes (N) to the ground truth nodes (Q∗) using re-
construction error. We pair the learned nodes with the true
nodes by picking the assignment (M) that minimizes the to-
tal reconstruction error across all nodes. This is summarized
in equation 6 and is an assignment problem easily solvable
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in MATLAB in polynomial time.

error = min
M1...Mk

k∑
i=1

||Ni −Q∗Mi
||F (6)

5.3 Experiments with fMRI
We present experimental results on fMRI data of eight

healthy and eight demented (Alzheimer’s) individuals at rest.
Each individual has been interviewed and measured using a
series of cognitive tests to measure Episodic, Executive, Se-
mantic and Spatial scores (whose range is from -2.5 to +2.5)
and are categorized as Normal or having full-set Alzheimer’s
(Demented). When at rest state, an individual’s brain ac-
tivity exhibits the default mode network (DMN) shown in
Figure 2 (middle) in some form and in various degrees in
all people. In normal individuals it is expected to be fully
intact and well exhibited whilst for demented individuals it
may be only partially formed and weak. These insights are
well known and extensively published in the literature [10]
and we expect our method to be able to verify these results.
The ability to determine the strength of the DMN from the
scan is then akin to being able to predict the progression
of Alzheimer’s which we show is possible by predicting the
cognitive scores (see Table 5).

Experiments To Discover The Nodes in a Network.
Here we take all sixteen scans and attempt to discover the
DMN under two settings. The DMN consists of four nodes
and hence in the completely supervised setting we expect
the top four most important nodes (according to w) to be
the DMN masks for the normal people and less so with the
demented individuals. We provided our algorithm with all
116 anatomical regions/masks of the brain encoded each in
its own Q matrix and performed a tensor decomposition
and selected the top four factors (according to the w vec-
tor) to determine which nodes/structures were active in the
brain during the scan. Table 2 (columns 2 and 3) shows the
fraction of the various nodes/parts of the DMN found for
Normal and Demented people in the top four factors. We
clearly see that the DMN is completely discovered in seven
out of the eight healthy individuals with the eighth indi-
vidual’s prefrontal region being ranked fifth according to w.
For demented individuals the DMN in its entirety is only
found twice in the eight patients.

Figure 12 shows the actual network reconstructed from
the top four factors for some healthy individuals and Figure
13 for the demented individuals. These plots are created
using a reconstructed tensor from the first four factors X̂ =
X1 + X2 + X3 + X4. Table 2 (columns four and five) shows
our results where we repeat the above experiments except
in a semi-supervised setting. For each scan, we decomposed
the tensor using four factors but only provided three nodes
from the DMN as guidance and required the algorithm to
discover the boundaries of the fourth missing node. This
produced four experiments per scan since each of the nodes
was left out in turn.

Experiments For Edge Detection. Here we present
results on edge detection by adding in the additional con-
straint shown in equation 2 to supervised network discovery.
These experiments reuse the experimental settings used to
produce the supervised results in the previous sub-section.
Our results (see Table 3) show that for healthy individuals,
the connectivity between the four parts of the DMN are close
to one. On only one occasion was the Prefrontal region not

Table 2: Supervised and Semi-Supervised Setting:
Fraction of times parts of DMN are in top four fac-
tors (according to w) for various sub-populations.
116 possible nodes were given to the algorithm (see
left column of Table 3 for some examples). There
are eight scans per sub-population.

Super- Super- Semi Sup- Semi Sup-
Struc vised vised ervised ervised
-ture Normal Demented Normal Demented
Prefr. 88% 50% 71% 31%

Post. C. 100% 63% 94% 50%
Inf. P. 100% 38% 91% 28%
Med. T. 100% 25% 97% 25%

Table 3: Mean Pearson correlation for healthy indi-
viduals for top four nodes of a network discovered
in each individual. The nodes/structures denoted
by “*” are part of the DMN. There are no entries
for nodes 6,7 and 8 since they never appear in the
top four factors.

(1) (2) (3) (4) (5) (6) (7) (8)
(1) Prefront* 1.0 0.87 0.91 0.94 0.63
(2) Post. Cin.* 0.87 1.0 0.93 0.89 0.45
(3) Inf. Par.* 0.91 0.93 1.0 0.84 0.3
(4) Med.Tem.* 0.94 0.89 0.84 1.0 0.1
(5) Hypothal. 0.63 0.45 0.3 0.1 1.0
(6) Pallium

(7) Hippo.

(8) Basal Gan.

part of the network induced, instead the Hypothalamus was
found to be active in one individual. For demented individu-
als (see Table 4), the correlation between the top four nodes
(according to w) spanned eight different nodes and we see
that the DMN was the most strongest interconnected nodes
but was rarely found in its entirety.

Experiments for Network Verification. Discovering
networks is an important problem, but it is also important
to attach a measure of strength to the network. We explore
the idea of using the reconstruction error ||X −

∑
f Xf || as

such a measure both by itself and with other information.
We expect that the reconstruction error of the data given
the ground truth is inversely related to the strength of the
network. We can verify this claim by noting that cognitive
scores can be viewed as a surrogate of the strength of the
DMN [16] and see if we can predict the cognitive scores from
the reconstruction error. Furthermore, we can compare how
well the reconstruction error is predictive of the network
strength by noting that cognitive score are easily predictive
by three clinical pieces of data (age, education level and
gender) [16] using linear regression. We also tried state of
the art methods to predict cognitive scores from fMRI data
[22, 18]. Table 5 shows the predicted cognitive scores using
the clinical information, just the reconstruction error, the
reconstruction error and clinical information and the two
state of the art methods that make use of machine learning
from features of the scan (rather than the entire scan as we
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Figure 12: The typical networks (red and yellow) discovered using the top four factors for the eight healthy
individuals. Best viewed in color.
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Figure 13: The typical networks (red and yellow) discovered using the top four factors for the eight demented
individuals. Best viewed in color.

Table 4: Mean Pearson correlation for demented in-
dividuals for top four nodes of a network discovered
in each individual. The nodes/structures denoted
by “*” are part of the DMN.

(1) (2) (3) (4) (5) (6) (7) (8)
(1) Prefront* 1.0 0.45 0.52 0.31 0.19 0.32 0.45 0.17
(2) Post. Cin.* 0.45 1.0 0.14 0.21 0.56 0.11 0.19 0.1
(3) Inf. Par.* 0.52 0.14 1.0 0.44 0.13 0.17 0.05 0.1
(4) Med.Tem.* 0.31 0.21 0.44 1.0 0.1 0.05 0.01 0.0
(5) Hypothal. 0.19 0.56 0.13 0.1 1.0 0.12 0.11 0.21
(6) Pallium. 0.32 0.11 0.17 0.05 0.12 1.0 0.15 0.31
(7) Hippo. 0.45 0.19 0.05 0.01 0.11 0.15 1.0 0.15
(8) Basal Gan. 0.17 0.1 0.1 0.0 0.21 0.31 0.15 1.0

Table 5: Mean residual error for each set of predic-
tors and several state of the art methods of predict-
ing cognitive scores from image data.

Test Clin- Decomp. Clinical+ [22] [18]
ical Error Decomp.

Episodic 1.00 0.27 0.19 0.36 0.45
Executive 1.03 0.26 0.22 0.41 0.39
Semantic 1.01 0.20 0.20 0.38 0.41
Spatial 0.99 0.24 0.26 0.35 0.43

do). We can immediately see that the reconstruction error
is far better at predicting cognitive scores than the clinical
information and together produces even better results.

6. RELATED WORK AND COMPARISON
Network Discovery. Most work on network discovery

focuses on either node identification or edge identification
but rarely both and to our knowledge not simultaneously
discovering both as we propose. Furthermore, finding a net-
work with heterogeneous edges to our knowledge has not
been addressed. A variety of current data mining tools
have been used to determine, in an unsupervised setting,

clusterings of voxels (what we refer to as nodes/regions)
that appear to exhibit relatively high connectivity or co-
vary with each other in systematic ways [20][5][15]Another
stream of research focuses on just identifying connectivity
between given brain regions using dynamic belief networks
[4], and using sparse inverse covariance estimation [19][11].
Some supervised learning work could be used to predict the
existence of a network. Such work performs dimension re-
duction, followed by classification or regression, on the 4D
matrix provided by BOLD fMRI [14] [7]. However, probing
functional connectivity goes far beyond a yes or no question
of whether two regions are functionally connected; activity
in one region can lag, excite another region, or coordinate
only in certain circumstances [13].

Tensors, Clustering and fMRI Data. There appears
to be a considerable body of work on tensor analysis and
fMRI data but much of this is due to naming conventions.
The area of diffusion tensor analysis is misleadingly named
and is in fact an imaging method rather than a method of
analysis. A similar situation exists for tensor-based mor-
phometry (TBM) and other developing imaging methods.

There has been work on fMRI analysis using tensor de-
composition [17] but to our knowledge this work is not fo-
cused on inferring networks. Beckmann and collaborators [1]
have extended ICA to factor in time series data and refer to
this as a “Tensor” form of ICA but its contribution is really
to make ICA parameter free. The novel work of combin-
ing wavelets and Tensors (TWave) [2] explores discovering
clusters and classification (but not network discovery as de-
scribed in this work) in fMRI data. The author’s correctly
point out that regular tensor decomposition methods such
as PARAFAC are limited and will fail due to scalability is-
sues and that they ignore the spatial locality requirements to
analyzing brain imaging data. The authors pre-process the
data using a wavelet analysis which helps scale and overcome
spatial locality issues and then apply regular PARAFAC. In
contrast our work overcomes the same limitations by intro-
ducing constraints. The constraints used in the supervised
and semi-supervised setting enforce properties such as spa-
tial continuity and the multi-mode level constraints ensure
applicability to anatomical regions.

Computation times between our methods and these other
tensor decomposition methods are comparable when pre-
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processing of the tensors is also included. In practice de-
composing a single fMRI scan (60× 50 × 70 voxels) over
236 snapshots took less than a minute on an i7 - 4 core ma-
chine. This is directly due to the constraints that result in
faster convergence due to limiting the search space.

7. CONCLUSION
We pose the problem of network discovery which involves

discovering regions of cohesive behavior (the nodes) and the
relationship between those regions (the edges). We pose
three sub-problems: node discovery, edge discovery and net-
work strength verification. We postulated a constrained ten-
sor decomposition formulation for this problem and show
that it readily facilities a supervised setting where the al-
gorithm must chose a small subset of given nodes that best
match the activity and a semi-supervised setting where the
algorithm must chose a subset of given nodes and also dis-
cover new nodes. Such a constrained tensor decomposition
formulation is not solvable using the existing toolkits and
we pose our own algorithm which is a ALS formulation with
each step being a constrained optimization readily solvable
in MATLAB. We show that our work can discover networks
in the presence of incomplete guidance (Figure 7), false/mis-
leading nodes (Figure 9) and noise (Figure 11). This last
result is particularly important. It shows that even if the
guidance given is in an idealized form, it can be used to
discover networks in noisy data.

We then explored fMRI data for two sub-populations:
healthy and demented. We were able to show that our
methods were able to discover the nodes in the DMN in
healthy people with considerable regularity (see Table 2) as
well as the connectivity between the nodes (see Table 3). We
also explored the idea of using the reconstruction error as a
measure of network strength and found that it was able to
predict the well known surrogates for network strength, cog-
nitive scores in far greater precision that well known clinical
information (see Table 5).
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