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ABSTRACT
Analyzing functional interactions between small compounds
and proteins is indispensable in genomic drug discovery.
Since rich information on various compound-protein inter-
actions is available in recent molecular databases, strong
demands for making best use of such databases require to in-
vent powerful methods to help us find new functional compound-
protein pairs on a large scale. We present the succinct
interval-splitting tree algorithm (SITA) that efficiently per-
forms similarity search in databases for compound-protein
pairs with respect to both binary fingerprints and real-valued
properties. SITA achieves both time and space efficiency by
developing the data structure called interval-splitting trees,
which enables to efficiently prune the useless portions of
search space, and by incorporating the ideas behind wavelet
tree, a succinct data structure to compactly represent trees.
We experimentally test SITA on the ability to retrieve sim-
ilar compound-protein pairs/substrate-product pairs for a
query from large databases with over 200 million compound-
protein pairs/substrate-product pairs and show that SITA
performs better than other possible approaches.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods

General Terms
Algorithms, Design

Keywords
Succinct data structure, wavelet tree, similarity search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full citation
on the f rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specif c permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

1. INTRODUCTION
Since most drugs are small compounds that interact with

their target proteins and modulate the biological functions of
the proteins, analyzing functional interactions between small
compounds and proteins plays an important part in genomic
drug discovery [28, 9]. A vast number of small compounds [5,
6], all possible proteins coded in human genomes [8, 10], and
various functional interactions of compound-protein pairs [17,
14, 33, 13] are stored in many recent databases. There is
therefore a strong demand for developing powerful methods
to make best use of such databases and to find new func-
tional compound-protein pairs on a large scale.

Searching for similar compound-protein pairs in databases
for a given query is an example of effective use of databases
with rich information. However, finding such pairs in a short
time remains a challenge, since the number of all possible
compound-protein pairs is calculated by the product of the
number of compounds and the number of proteins, which
makes the database preserving compound-protein pairs ex-
tremely large. So far, although many databases support
options of similarity search for either compounds [5, 6] or
proteins [8, 10], no database supports queries for similar
compound-protein pairs due to a large amount of memory
and excessive runtime required by existing techniques.

Fingerprint, defined as a binary bit string, is a power-
ful representation of various bio-molecules including small
compounds and proteins [31]. In practice, the fingerprint
representation is commonly used in molecular databases [5,
6], because of its facility of recording the presence or ab-
sence of molecular substructures and physicochemical fea-
tures. Jaccard similarity (aka Tanimoto similarity) is the de
facto standard criterion [18] to evaluate similarity of com-
pounds based on their fingerprints in chemoinformatics and
pharmacology. Similarity search of compounds for a query
is usually performed with Jaccard similarity. Despite many
attempts [16, 29, 3, 22, 1], leveraging multibit tree (MT) is
the most efficient approach using the upperbounds of Jac-
card similarity [16]. By splitting the database into clusters of
fingerprints and then building binary trees that recursively
split clustered fingerprints with their upperbound informa-
tion, MT can prune out useless portions of the search space
when searching for similar fingerprints to a query.
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Bio-molecules have several important properties such as
LogP, topological polar surface area, and autocorrelation po-
larizability. These properties are represented by real values
rather than binary values. In the context of compound-
protein pair search, it would be more rational to find similar
compound-protein pairs in terms of both binary fingerprints
and real-valued properties. For example, PubChem sup-
ports such a property similarity search, but the usability is
currently limited to searching for compounds only [5].

When an MT-based algorithm is used to search for simi-
lar fingerprints with similar properties for a query, the algo-
rithm first narrows down candidate fingerprints by using the
aforementioned MT-based technique for finding similar fin-
gerprints. It then checks whether each candidate fingerprint
also has a similar property to the query or not. However,
this approach suffers from performance degradation caused
by intensively checking one-by-one the similarity of the prop-
erty when the number of candidate fingerprints is large. Al-
though any algorithm might inherently have this problem
with large databases or with small thresholds of Jaccard
similarity, the problem is especially pressing in MT-based
approaches. Additionally, despite many attempts to achieve
high-performance similarity search algorithms in data min-
ing (e.g., [19, 21, 20]), these algorithms must also perform
a large number of one-by-one checks when they are adapted
to similarity search for compound-protein pairs.

We present a novel method called SITA that efficiently
performs similarity search for compound-protein pairs with
respect to both binary fingerprints and real-valued proper-
ties. As in MT, the database is split into clusters of fin-
gerprints to narrow down candidate fingerprints. However,
unlike MT, SITA safely excludes the fingerprints that never
have similar properties by sorting the fingerprints in order of
properties and by considering the necessary interval of the
sorted fingerprints. Besides, SITA’s recursive search in a
binary tree with two pruning conditions bypasses the proce-
dure of checking one-by-one the similarity of the fingerprint
and its property. Finally, while preserving the same time
complexity, SITA successfully reduces the memory usage by
using the rank dictionary [25] of the wavelet tree [12, 7] that
is a succinct, memory-efficient data structure. By synthe-
sizing these techniques, SITA’s time complexity is output-
sensitive. That is, the smaller the threshold is, the more
quickly SITA terminates than the existing algorithms.

Experiments were performed on retrieving similar compound-
protein/substrate-product pairs for a query from large databases
with over 210 million pairs. The performance comparison
with other algorithms demonstrates SITA’s superiority.

2. SIMILARITY SEARCH PROBLEM FOR
COMPOUND-PROTEIN PAIRS

We formulate the similarity search problem for compound-
protein pairs with the fingerprint representation. A finger-
print is a fixed-length bit string and is conceptually equiva-
lent to the set that contains element i if i-th bit of the finger-
print is 1. For clarity, notation xi denotes the bit string rep-
resentation of a fingerprint, while notation Wi corresponds
to its set representation. A fingerprint database contains n
compound-protein pairs x1, · · · , xn, where each compound-
protein pair is represented by a fingerprint concatenating the
compound fingerprint and the protein fingerprint. A word
w is an element in Wi and |Wi| denotes the cardinality of

Wi, i.e., the number of words in Wi. F (W ) is the property
of a compound-protein pair W where F maps W to a real
number. There are a number of ways to define F in practice
(e.g., acidic group count and ALOGP descriptors) [27].

Jaccard similarity for W and W ′ is defined as J(W, W ′) =
|W ∩W ′|
|W ∪W ′| . Given a query compound-protein pair Q, the

task of similarity search is to retrieve from the database
all the identifiers of fingerprints PNC = {i1, i2, · · · , ik} that
satisfy the following two constraints for each j (1 ≤ j ≤ k) :

ǫ ≤ J(Wij
, Q), (1)

F (Q)− δ ≤ F (Wij
) ≤ F (Q) + δ, (2)

where ǫ and δ are user-defined thresholds of Jaccard simi-
larity and the similarity of the property, respectively.

3. LITERATURE REVIEW
Several efficient algorithms have been presented to find

similar fingerprints satisfying only constraint (1) in both
chemoinformatics and data mining. The following subsec-
tions review the literature in these research areas.

3.1 Related Work on Chemoinformatics
To our best knowledge, in chemoinformatics, most algo-

rithms try employing better bounds of Jaccard similarity
to reduce the number of similarity checks. For example,
tight bounds are computed with XOR operations in [3].
Approaches to divide the fingerprint database into several
blocks are presented [22, 16, 1]. They reduce candidate fin-
gerprints since a tighter bound is obtained by applying Baldi
et al.’s method to each block. Despite their advantage, their
scalability is limited with respect to the database size.

Kristensen et al. [16] present indexing data structures
called multibit tree (MT) and overcome the scalability prob-
lem. Their algorithm first clusters fingerprints with the same
cardinality into a block and computes Swamidass and Baldi’s
bound [29] for each block to exclude useless blocks that never
satisfy constraint (1). To efficiently search for similar finger-
prints to query Q in the unfiltered blocks, each block is rep-
resented as a binary tree where each node represents a set of
fingerprints. In the binary tree, fingerprints for a node are
disjointly and recursively split to the left and right children
according to whether a word chosen by entropy maximiza-
tion is included in each fingerprint or not until each leaf
contains at most a certain number of fingerprints. In search
of similar fingerprints in the block, the algorithm recursively
traverses the binary tree from the root and computes at each
node the upperbound of the similarity based on [2]. If the
upperbound proves that the fingerprints there are not similar
to Q, the subtree rooted at that node is pruned. If the algo-
rithm reaches a leaf, fingerprints at that leaf are included as
candidates of similar ones. After the tree traversal, the algo-
rithm finally calculates Jaccard similarity between each pair
of those fingerprints and a query for validating the constraint
(1). These procedures are repeated until all the similar fin-
gerprints are retrieved from the database. Recently, Nasr
et al. [23] theoretically analyze MT, and derived a pruning
probability of the search space. At present, MT still remains
as the most efficient algorithm in chemoinformatics.

3.2 Related Work on Data Mining
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Table 1: Summary of similarity search methods
Memory requirement Data structure Accuracy of solutions

Multibit Tree [16] O((2|Bc| − 1) log (2|Bc| − 1) + 2W max + Nc log W max) Tree Exact
DivideSkip [19] O(Nc log |Bc|) Inverted index Exact

b-bit minhash [21, 20] O(|Bc| + Nc log W max) String Approximate

SITA O(Nc log |Bc|) Succinct tree Exact

Several algorithms presented in data mining can be used
to find similar fingerprints satisfying constraint (1).

DivideSkip [19] uses inverted index, an associative array
whose key is a word and whose value is a list of fingerprint ids
containing that word. Inverted-index-based methods have
also been proposed to find all the pairs of similar fingerprints
from a given collection of fingerprints [34, 26].

Although DivideSkip was originally used to solve the prob-
lem of finding all the fingerprints sharing at least T common
words to query Q, the task of finding all the fingerprints sat-
isfying constraint (1) is essentially the same as the problem
in [19]. DivideSkip obtains |Q| lists by retrieving the list of
fingerprint ids for each word in query Q. Those lists are then
divided into a set Ll of long lists and the set Ls of |Q|−|Ll| of
short lists. DivideSkip relies on the fact that fingerprint id i
appears at least T−|Ll| times on the short lists if two finger-
prints Wi and Q share at least T common words. For each
of such ids found on Ls, DivideSkip checks if the id appears
at least T times on Ll. If this is the case, the fingerprint
with that id has at least T common words with Q. If |Ls| is
small, DivideSkip performs efficiently by filtering out the ids
that appear less than T − |Ls| times. However, DivideSkip
often suffers from performance degradation caused by large
|Ls| with a large-scale database containing over hundreds of
millions of fingerprints (see Section 5).

The b-bit minwise hashing (b-bit minhash) algorithm [21,
20] performs a random projection [4] from a fingerprint to a
fixed-length string. Each character of the string consists of a
b-bit symbol. Jaccard similarity between two fingerprints is
then approximately equal to the Hamming distance between
the strings of the fingerprints. In the prepossessing phase,
all the fingerprints in the database are projected to their cor-
responding strings calculated by b-bit minhash and they are
sorted in lexicographical order. When finding similar finger-
prints to query Q, this approach first calculates the string
for Q by using b-bit minhash. It then performs binary search
to find the strings of which Hamming distances are similar
to Q’s string. Although b-bit minhash is known to be both
time and memory efficient, there are cases of which strings
with similar Hamming distances are not similar with respect
to Jaccard similarity (i.e., false positive) and of which finger-
prints that are similar in terms of Jaccard similarity do not
have similar Hamming distances (i.e., false negative). To
filter out false positives, b-bit minhash must check if each
“similar” fingerprint is similar to Q with respect to Jaccard
similarity, which may result in a slowdown of the speed. Ad-
ditionally, because of the possibility of false negatives, b-bit
minhash might fail to return similar fingerprints to Q. Al-
though the probability of occurring false negatives can be
reduced by increasing the value of b, this increase may slow
down the speed of the algorithm.

Despite the importance of considering the similarity of
both fingerprints and properties, no prior work exists con-
sidering constraints (1) and (2) in chemoinformatics and
data mining. The current best possible approach is to first

exclude the fingerprints that break constraint (1) by using
algorithms reviewed in this section and then perform check-
ing whether or not each unfiltered fingerprint satisfies con-
straint (2). However, this one-by-one-check procedure for
constraint (2) must be performed many times, if there are a
large number of fingerprints satisfying constraint (1), which
occurs with a large database or with small ǫ, resulting in
intensive computation.

4. SITA
SITA splits the database into blocks to examine only a

necessary set of blocks. Each block is constructed as a bi-
nary tree with the notion of intervals and depth-first search
is performed with subtree pruning schemes to improve the
efficiency. SITA further incorporates the ideas behind the
inverted index and the wavelet tree to reduce the memory
requirement and to preserve the search efficiency.

Table 1 summarizes the characteristics of the representa-
tive algorithms and SITA, where Bc is a block of fingerprints
with cardinality c in the database, W max is the maximum
word in all Wi belonging to Bc and Nc is the total number
of words in Bc. Unlike b-bit minhash, SITA guarantees cor-
rectness. Additionally, in terms of space complexity, SITA
requires a similar amount of memory to DivideSkip, which
requires less memory than MT. Furthermore, SITA is more
time-efficient than the other algorithms for finding finger-
prints that satisfy constraints (1) and (2) (see Section 5).

4.1 Database Partitioning
Swamidass and Baldi [29] show that ǫ|Q| ≤ |W | ≤ |Q|

ǫ

holds if J(W, Q) ≥ ǫ. This indicates that P1 = {i; ǫ|Q| ≤
|Wi| ≤ |Q|

ǫ
} must contain all elements in PNC (i.e., PNC ⊆

P1). That is, a fingerprint id that is not in P1 is never
a member of PNC . As in [29, 16], excluding such use-
less fingerprints can be performed efficiently by partitioning
the database into blocks each of which contains fingerprint
ids with the same cardinality. More specifically, let block
Bc = {i; |Wi| = c}, which contains all the fingerprints with
cardinality c in the database. SITA then need to examine

no element in Bc if either c < ǫ|Q| or c > |Q|
ǫ

holds.

4.2 Interval-Splitting Tree and Eff icient Sim-
ilarity Search

4.2.1 Interval-Splitting Tree
Once blocks Bc are selected that satisfy ǫ|Q| ≤ c ≤ |Q|

ǫ
,

SITA bypasses one-by-one checks with constraint (2) for
each element in Bc.

First, fingerprint ids in Bc are sorted in ascending order of
properties and are saved as an array (see the left of Figure 1).
For simplicity, let Bc be the sorted block with cardinality c.

A binary tree T c called the interval-splitting tree is then
built on each Bc beforehand. When a query is given, T c is
traversed with pruning schemes to efficiently select all the
ids of fingerprints with cardinality c that satisfy constraints
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5 (1,3) 0.6
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7 (1,5) 1.1

8 (2,5) 1.5

Figure 1: Fingerprints in block Bc sorted by properties (left), interval-splitting tree T c (middle) and T c’s first
two levels (right). The root interval [1, 8] is split into [1, 4] and [5, 8] for the left and right children. Each node
v has a summary fingerprint yv for the fingerprints in its interval.

(1) and (2). Each node in T c represents a set of fingerprint
ids by using an interval of the array of Bc, which is different
from MT. Let Bc[i] be the i-th fingerprint id in Bc and
Ic

v be the interval of node v. Node v with interval Ic
v =

[s, e] contains fingerprint ids Bc[s], Bc[s+1], · · · , Bc[e]. The
interval of a leaf is always in the form of [s, s] indicating that
the leaf has only one id. The interval of the root is [1, |Bc|],
the whole range of Bc.

Let left(v) and right(v) be the left and right children
of node v with interval Ic

v = [s, e], respectively. When
these children are generated, Ic

v is disjointly partitioned to
Ic

left(v) = [s, ⌊(s + e)/2⌋] and Ic
right(v) = [⌊(s + e)/2⌋+ 1, e].

The procedure of splitting the interval is recursively applied
from the root to leaves (see the middle and right of Figure 1
illustrating intervals and sets of fingerprints at the root and
its children of T c).

Each node v is identified by a bit string (e.g., v = 010)
indicating the path from the root to v; “0” and “1” denote
the selection of left and right children, respectively. At each
leaf v, the index of Bc is calculated by int(v) + 1, where
int(·) converts a bit string to its corresponding integer (see
the middle of Figure 1 again).

4.2.2 Pruning Based on Intervals and Summary Fin-
gerprints

Given query Q, SITA recursively examines T c from the
root in a depth-first manner. If SITA reaches a leaf and
its fingerprint and property are similar to Q, the id of that
fingerprint is included as one solution. To avoid exploring
the whole T c, we develop two schemes to prune the subtrees
of nodes if all the fingerprints for these nodes are proven to
break constraint (1) or (2).

The first pruning scheme refers to constraint (2). Before
starting to examine T c, by using constraint (2), SITA cal-
culates the necessary condition of the interval Ic

q that indi-
cates where candidate fingerprints for Bc should be located.
Ic

q = [icl , i
c
r] is calculated as follows:

icl ← min{i; F (Q)− δ ≤ F (WBc[i]), i ∈ [1, |Bc|]},
icr ← max{i; F (WBc[i]) ≤ F (Q) + δ, i ∈ [1, |Bc|]}.

Binary search over Bc can efficiently calculate icl and icr with
the O(log |Bc|) time complexity.

When SITA enters node v, it checks if fingerprints at v
have similar properties. The ids of fingerprints with similar
properties must be in Ic

q . If Ic
v ∩Ic

q = ∅ holds, which is easily
verified without looking at any fingerprints, the properties

of all fingerprints at v are proven to be different from Q and
the subtree rooted at v is safely ignored.

The second pruning scheme is performed at each node v
by using summary fingerprint yv of which Jaccard similarity
to Q is the upperbound of the fingerprints for v. When T c

is built, yc
v is computed. Let xc

i ∈ {0, 1}M and WBc[i] be a
fingerprint of length M and its corresponding set representa-
tion, respectively. Then, yc

v for v is defined as yc
v =

W

i∈Ic
v

xc
i ,

indicating that any word in xc
i is in yc

v (see the right of Fig-
ure 1 that represents y2

v in the first two-level nodes of T 2).
Assume that SITA currently checks fingerprints for Bc

(i.e., |W | = c holds for any fingerprint). The following equiv-
alent constraint is derived from constraint (1):

J(W,Q) =
|W ∩Q|
|W ∪Q| =

|W ∩Q|
|W |+ |Q| − |W ∩Q| ≥ ǫ

⇐⇒ |W ∩Q| ≥ ǫ

1 + ǫ
(|W |+ |Q|) =

ǫ

1 + ǫ
(c + |Q|).

Let Y be the set representation of yc
v and yc

v[i] be the i-
th bit of yc

v. |WBc[i] ∩ Q| ≤ |Y ∩ Q| holds for any i ∈ Ic
v.

Therefore, if |Y ∩ Q| = P

j∈Q
yc

v[j] < ǫ
1+ǫ

(c + |Q|) holds at

node v, any fingerprint xi at v breaks constraint (1). Thus,
SITA can safely prune the subtree rooted at v, which results
in improving the efficiency of similarity search.

Algorithm 1 shows the pseudo-code of SITA.

4.2.3 Time and Space Complexities
SITA’s efficiency comes from the fact that the useless parts

of T c are pruned out. Let τ and m be the numbers of tra-
versed nodes and fingerprints in the query, respectively. The
time complexity of Algorithm 1 is O(τm). SITA is particu-
larly efficient with large ǫ and small δ, because of achieving
the tighter bound regarding Jaccard similarity and narrower
Ic

q . However, since DivideSkip and MT also improve the per-
formance with large ǫ, the empirical performance differences
among SITA, DivideSkip and MT tend to be smaller than
that with large ǫ (see Section 5).

A crucial drawback is that T c requires M
PM

c=1 |Bc| log |Bc|
bits due to the requirement of M bits for each yc

v. Since M
is large in practice (M ≥ 5000 in our experiments), SITA re-
quires a much larger amount of memory than modern PCs.
The next two subsections describe approaches to reduce the
memory usage while preserving the same time complexity.
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Algorithm 1 Algorithm for finding similar fingerprints with
similar properties to query Q

1: function Search(Q)
2: for c satisfying ǫ|Q| ≤ c ≤ |Q|/ǫ do
3: k← ǫ

1+ǫ
(c + |Q|), Ic

root ← [1, |Bc|], v ← φ

4: Ic
q ← [icl , i

c
r] where icl ← min{i; F (Q) −

δ ≤ F (WBc[i]), i ∈ Ic
root} and icr ←

max{i; F (WBc[i]) ≤ F (Q) + δ, i ∈ Ic
root}

5: Recursion(v,Ic
root,Q,c,Ic

q )
6: end for
7: end function
8: function Recursion(v,Ic

v,Q,c,Ic
q )

9: if Ic
v ∩ Ic

q = φ then
10: return
11: else if

P

j∈Q
yv[j] < k then

12: return
13: end if
14: if |v| = ⌈log |Bc|⌉ then ⊲ Leaf Node
15: Output the index id[int(v) + 1]
16: end if
17: Recursion(v +′ 0′,[s, ⌊(s + e)/2⌋],Q,c,Ic

q ) ⊲ To left
child. Note Ic

v = [s, e].
18: Recursion(v +′ 1′,[⌊(s + e)/2⌋+ 1, e],Q,c,Ic

q ) ⊲ To
right child

19: end function

4.3 Representation of Summary Fingerprints
with Inverted Index

5 6 7 1 2 3 6 8 5 3 4 1 7 8 2 4

1 2 3 3 4 2 4 5 6 7 6 8 5 7 8

word j
1 5 6 7
2 1 2 3 6 8
3 5
4 3 4
5 1 7 8
6 2 4

Figure 2: Example of Ac
v for T c in Figure 1

To reduce the large memory requirement for preserving
summary fingerprints, we use the inverted index to calculate
the aforementioned upperbound on the similarity of finger-
prints. The inverted index itself does not always reduce
the memory requirement. However, with the help of the
ideas behind the wavelet tree [12, 7], SITA compactly main-
tains only the minimum amount of information called the
rank dictionary [25] decreasing the memory usage by a large
margin (see the next subsection for details).

Our inverted index is an associative array that maps a
word w to the set of all fingerprint ids that contain w. We
build an inverted index for each node v with Ic

v in T c. Let
zc

vj = {i; xc
Bc[i][j] = 1, i ∈ Ic

v} for word j (i.e., all fingerprint
ids containing j within Ic

v). The inverted index Ac
v for node

v in T c is a one-dimensional array that concatenates all zc
vj

in ascending order of j and is defined as Ac
v = zc

v1 ∪ zc
v2 ∪

· · · ∪ zc
vM . Figure 2 shows the first two levels of the inverted

indexes Ac
root, Ac

left(root) and Ac
right(root) in T c in Figure 1.

Let P c
v [j] be the head of zc

vj in Ac
v. If no fingerprint at node

v has word j, P c
v [j + 1] = P c

v [j] holds. Assume that a query
Q = (q1, · · · , qm) is given, svj = P c

v [qj ] and tvj = P c
v [qj+1]−

1. Then, if svj ≤ tvj holds, there is at least one fingerprint
that contains qj because of Ac

v’s property. Otherwise, no
fingerprint at v contains word qj . Thus, |Y ∩Q| in Subsection
4.2.2 is equal to

Pm

j=1 I[svj ≤ tvj ] where I[cond] is the
indicator function that returns one if cond is true and zero
otherwise, and |Y ∩Q| is safely used as a criterion to perform

pruning. For example, in Figure 2, for Q = (1, 2, 4) and
A2

left(root), |Y ∩Q| = I[1 ≤ 0] + I[1 ≤ 3] + I[4 ≤ 5] = 2.
One advantage is that computing |Y ∩ Q| requires only

svj and tvj . Therefore, after Ac
v is built, by saving a pair of

(P c
v [j], P c

v [j + 1]− 1) for each word j at each node v in T c,
Ac

v can be removed from the memory. However, since this
approach still requires larger spaces than the available mem-
ory of modern PCs, the next subsection presents techniques
to further reduce the memory usage.

4.4 Reduction of Memory Requirement with
Succinct Data Structures

We describe a memory-efficient approach to combine the
inverted index with the rank dictionary. After introducing
the notion of the rank dictionary, we develop bit array rep-
resentations for each node in T c and techniques to check the
similarity between summary fingerprints and a query.

4.4.1 Rank Dictionary
Rank dictionary is a data structure for a bit array B of

length n [25] and supports the rank query rankc(B, i) that
returns the number of occurrences of c ∈ {0, 1} in B[1, i].
Although naive approaches require the O(n) time to com-
pute a rank, several data structures with only the n + o(n)
bit storage are presented to achieve the O(1) time [24, 32].
We employ the verbatim rank dictionary [24] to calculate
I[svj ≤ tvj ] in Subsection 4.3 with the O(1) time and thus
to preserve the same time complexity as the aforementioned
similarity search algorithm. We discuss only how to compute
the rank1 query, because rank0(B, i) = i + 1− rank1(B, i).

First, in verbatim the bit array is divided to large blocks
of length l = log2 n (see Figure 3). The ranks of the bound-
aries of large blocks are then recorded explicitly into an ar-
ray RL[0, . . . , n/l] using O(n/ log2 n · log n) = O(n/ log n)
bits. Next, each large block is further divided into small
blocks of length s = log n/2. For all boundaries of small
blocks, their ranks relative to the large block are recorded
into RS [0, . . . , n/s]. In addition, the popcount data struc-
ture is used and allows to count the number of ones in
S[i, i + j] in constant time using a precomputed table of
size O(

√
n log2 n) [11]. Let popcount(i, j) be the number of

ones in S[i, i + j]. Then rank1(S, i) is computed as:

rank1(S, i) = RL[⌊i/l⌋] + RS [⌊i/s⌋]+
popcount(s⌊i/s⌋, i mod s).

Space complexity of auxiliary data structures for RL, RS,
popcount is sublinear and negligible in the limit n→∞. Al-
though popcount alone can construct a rank dictionary, the
hierarchical construction of verbatim is much more succinct.

4.4.2 Jaccard Similarity Computation for Summary
Fingerprints by Using Rank Dictionaries

Our idea is based on the wavelet tree (WT) [12, 7], a suc-
cinct data structure for efficiently accessing arrays with a
rank dictionary. However, SITA maintains only the memory-
efficient rank dictionary without preserving Ac

v in memory.
Thus, SITA can efficiently compute |Y ∩ Q| in Subsection
4.3 with a small amount of memory.

A WT contains a collection of bit arrays to update the
intervals in the constant time. Let bc

v be a bit array for
node v in T c with size of |Ac

v| and with interval Ic
v, left(v)
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Figure 3: Construction of a rank dictionary from a bit array

5 6 7 1 2 3 6 8 5 3 4 1 7 8 2 4
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0

1 2 3 3 4 1 2 4
0 0 1 1 1 0 0 1

5 6 7 6 8 5 7 8
0 0 1 0 1 0 1 1

Figure 4: First two levels of wavelet tree for Figure 2

and right(v) be v’s left and right children, respectively. We
use the verbatim rank dictionary to represent bv

c .
Ac

left(v) and Ac
right(v) are constructed by moving each el-

ement of Ac
v to either left(v) or right(v) with keeping the

order of elements in Ac
v by considering the fact that Ac

v is
a concatenated inverted index of which fingerprint ids are
restricted with Ic

v, Ic
v = Ic

left(v) ∪ Ic
right(v) and Ic

left(v) ∩
Ic

right(v) = ∅. Bit bc
v[k] indicates that Ac

v[k] should be moved
to whether left(v) or right(v). If bc

v[k] is 0, Ac
left(v) contains

Ac
v[k]. If bc

v[k] = 1, Ac
right(v) inherits Ac

v[k]. Formally, bc
v[k]

with Ic
v = [i, i′] is defined as:

bc
v[k] =



1 if Ac
v[k] > ⌊(i + i′)/2⌋

0 if Ac
v[k] ≤ ⌊(i + i′)/2⌋ .

Figure 4 shows an example of the first two levels of the
WT. For example, because A2

root[7] = 6 ∈ I2
right(root) = [5, 8]

and it is the fourth element of A2
root that must go to the right

child of the root, b2
root[7] = 1 and A2

right(root)[4] = A2
root[7] =

6 hold.
Let Q = (q1, · · · , qm) be a query and svj and tvj be loca-

tions of Ac
v which are used to compute |Y ∩Q| = Pm

j=1 I[svj ≤
tvj ] at node v as in Subsection 4.3. SITA preserves P c

root in
memory so that it can set svj = P c

v [qj ] and tvj = P c
v [qj +

1]−1 if v is the root. Then, by using svj , tvj , the rank oper-
ations for bc

v, locations sleft(v)j , tleft(v)j , sright(v)j, tright(v)j

are obtained with the O(1) time complexity as follows:

sleft(v),j = rank0(b
c
v, svj − 1) + 1,

tleft(v),j = rank0(b
c
v, tvj),

sright(v),j = rank1(b
c
v, svj − 1) + 1,

tright(v),j = rank1(b
c
v, tvj).

Note that SITA need to preserve only bc
v to compute |Y ∩

Q| and does not require P c
v if v is not the root.

As in the WT, SITA requires (1+α)
PM

c=1 Nc log |Bc| bits
for managing bc

v for all nodes v, where α is the overhead of
the rank dictionary (α is about 0.62 in our case), and Nc

is the total number of words in Bc, i.e., Nc =
P

i∈Bc |Wi|.
This is a better representation than managing the summary
fingerprints in memory, which requires M

PM

c=1 |Bc| log |Bc|
bits where M ≥ 5000 in our experiments. Although P c

root

requires M
PM

c=1 log Nc bits, it is not an obstacle even for a
larger database. The storage for P c

root grows only logarith-
mically in the number of fingerprints.

5. EXPERIMENTS

5.1 Setups
We evaluated the performance of binary search (BIN),

MT, b-bit minhash, DivideSkip, and SITA on one core of a
quad-core AMD Opteron Processor 8393 SE (3.1GHz) ma-
chine with 512 GB memory. BIN is a strawman baseline that
first excludes fingerprints breaking constraint (2) by sorting
and binary search, and then calculates Jaccard similarity for
each unfiltered fingerprint to find PNC . As in Section 3, MT
is the best possible algorithm in chemoinformatics, and Di-
videSkip and b-bit minhash are state-of-the-art methods in
data mining. We implemented them in C++ and SITA used
Vigna’s rank dictionary implementation called rank9 [32].

We used 214, 636, 657 compounds-protein pairs in the STITCH
database [17]. We represented each compound-protein pair
by a fingerprint with the dimension of 5, 014, constructed by
concatenating the compound substructure fingerprint (881
substructures) in PubChem [5] and the protein domain fin-
gerprint (4, 133 domains) in PFAM [8, 10]. We used seven
representative properties with a variety of mean values and
standard deviations (see Table 2) to elucidate the behavior of
each algorithm. In particular, SITA tends to perform better
for a property of a large standard deviation, because of the
higher possibility of pruning search spaces. We randomly
sampled 2, 000 compound-protein pairs as queries.

It took 253 minutes to precompute SITA’s necessary data
structures for all compound-protein pairs. Once these data
structures are computed, the query phase using SITA does
not need to recompute them. The data structure construc-
tion time indicates that the overhead incurred in the con-
struction phase is not a serious issue to use SITA in practice.

b-bit minhash is an approximate algorithm that has three
parameters of string length ℓ, hashing value b and search
width k. We tried all combinations of ℓ = {5, 10, 50}, b =
{2, 4, 8, 16} and k = {102, ..., 107}, and chose the parameter
that found solutions most quickly with at most the 5% false
negative rate. As in [23], MT’s single parameter, the max-
imum number of fingerprints associated with a leaf, was set
to 10. DivideSkip’s parameter µ used to choose the length
of long lists was set to the best one by experimenting the
cases of µ = {10−3, 10−2, ..., 103}.

5.2 Results
Tables 3 and 4 show the results of each algorithm with var-

ious properties, two different property thresholds (δ = 0.5
and 5) and ǫ = 0.6, where the search time is the average
over 2,000 queries with its standard deviation, |P1| is the
number of candidate fingerprints chosen by database par-
titioning in Subsection 4.1, |P1 ∩ [il, ir]| is the number of
candidates chosen by database partitioning plus sorting and
binary search (i.e., the total size of Ic

q for unfiltered blocks in
Subsection 4.2.2), #Rank is the number of rank operations,
and |PNC | is the number of solutions.
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Table 2: Means and standard deviations (sdev.) of properties
ALOGP Topological Autocorrelation Polarizability (AP)
(1) (2) XlogP PorlarSufaceArea (TPSA) (1) (2) (3)

mean 15.21 98.04 2.07 102.79 1707.70 1989.37 2780.04
sdev. 106.95 85.54 3.64 109.48 1792.31 2105.02 3001.76

Table 3: Performance summary (average search time, 214,636,657 fingerprints, ǫ = 0.6 and δ = 0.5)
Method ALOGP (1) ALOGP (2) XlogP TPSA AP (1) AP (2) AP (3)

SITA 4.89 ± 7.89 0.35 ± 0.29 2.22 ± 1.99 0.83 ± 0.78 0.26 ± 0.17 0.24 ± 0.15 0.22 ± 0.12
BIN 1257.43 ± 988.90 367.935 ± 88.62 421.95 ± 94.85 344.16 ± 95.37 385.09 ± 120.60 582.87 ± 178.40 568.744 ± 173.57
MT 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05
DivideSkip 48, 235.50 48, 235.50 48, 235.50 48, 235.50 48, 235.50 48, 235.50 48, 235.50

±41, 847.62 ±41, 847.62 ±41, 847.62 ±41, 847.62 ±41, 847.62 ±41, 847.62 ±41, 847.62
b-bit minhash 9, 789.75 9, 789.75 9, 789.75 9, 789.75 9, 789.75 9, 789.75 9, 789.75

±4, 946.18 ±4, 946.18 ±4, 946.18 ±4, 946.18 ±4, 946.18 ±4, 946.18 ±4, 946.18

|P1| 96, 293, 752 96, 293, 752 96, 293, 752 96, 293, 752 96, 293, 752 96, 293, 752 96, 293, 752
|P1 ∩ [il, ir ]| 12, 488, 453 716, 533 1, 051, 232 199, 235 43, 406 45, 185 45, 458
#Rank 200, 662, 960 11, 930, 629 87, 537, 624 5, 258, 371 2, 163, 349 2, 062, 009 1, 989, 990
|PNC | 754, 446 50, 163 71, 155 21, 894 8, 294 7, 922 7, 587

Table 4: Performance summary (average search time, 214,636,657 fingerprints, ǫ = 0.6 and δ = 5)
Method ALOGP (1) ALOGP (2) XlogP TPSA AP (1) AP (2) AP (3)

SITA 17.76 ± 21.25 2.51 ± 2.54 10.39 ± 9.78 0.83 ± 0.78 0.26 ± 0.17 0.24 ± 0.15 0.22 ± 0.12
BIN 5, 400.28 ± 2907.62 895.44 ± 237.626 714.62 ± 161.27 608.02 ± 125.89 472.48 ± 130.99 578.66 ± 164.77 634.28 ± 191.07
MT 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05 746.96 ± 699.05
DivideSkip 48, 235.50 48, 235.50 48, 235.50 48, 235.50 48, 235.50 48, 235.50 48, 235.50

±41, 847.62 ±41, 847.62 ±41, 847.62 ±41, 847.62 ±41, 847.62 ±41, 847.62 ±41, 847.62
b-bit minhash 9, 789.75 9, 789.75 9, 789.75 9, 789.75 9, 789.75 9, 789.75 9, 789.75

±4, 946.18 ±4, 946.18 ±4, 946.18 ±4, 946.18 ±4, 946.18 ±4, 946.18 ±4, 946.18

|P1| 96, 293, 752 96, 293, 752 96, 293, 752 96, 293, 752 96, 293, 752 96, 293, 752 96, 293, 752
|P1 ∩ [il, ir ]| 51, 248, 152 7, 065, 457 5, 102, 828 1, 891, 708 372, 228 323, 858 245, 625
#Rank 746, 507, 456 99, 194, 552 420, 780, 736 30, 032, 964 6, 626, 788 5, 721, 429 4, 536, 575
|PNC | 2, 805, 425 420, 160 308, 234 124, 494 27, 587 23, 715 18, 837

Since MT, DivideSkip and b-bit minhash filter out useless
candidates by only considering constraint (1), their perfor-
mance remained unchanged with different δ and properties.

Although DivideSkip’s efficiency had been verified in pre-
vious work in [19], its performance was evaluated with a
much smaller database consisting of 2 million fingerprints.
In contrast, when a large-scale dataset consisting of 214 mil-
lion fingerprints was used with including an additional con-
straint on properties, DivideSkip did not perform well. It
took 48, 235 seconds for DivideSkip to find PNC on average.

Since BIN’s performance depends on how many finger-
prints are filtered out with δ, its performance was improved
with smaller δ due to a smaller value of |P1∩[il, ir]|, which of-
ten resulted in outperforming MT. However, BIN still needed
to perform many one-by-one checks for constraint (2) due to
large differences between |P1 ∩ [il, ir]| and |PNC |.

Although MT is the most efficient algorithm in the previ-
ous chemoinformatics literature and we observed that MT
was faster than DivideSkip and b-bit minhash which are
state-of-the-art in data mining, SITA performed much faster
than MT. In case of considering properties, it was hard for
MT to reduce the candidate fingerprints, while SITA effec-
tively ignored fingerprints with dissimilar properties. In par-
ticular, SITA was 150-3390 times faster than MT if δ = 0.5.
With larger δ, the performance difference became smaller be-
tween SITA and MT, due to an excessive number of SITA’s
rank operations (see δ = 5 and ALOGP(1) in Table 4). How-
ever, SITA still outperformed MT even in this case.

Figure 5 shows the search time of each algorithm for ǫ =
0.6 and 0.8 with δ = 0.5, three properties of various stan-
dard deviations and various database sizes. SITA consis-
tently outperformed the second best algorithm by 2-3 orders
of magnitude. Although the performance difference became
smaller with different δ and other properties, we still ob-
served the superiority of SITA to other approaches.

Figure 6 shows the average search time for various ǫ with
δ = 0.5 and TPSA. Again, SITA significantly outperformed
the others, despite smaller performance differences with larger
ǫ that increases the possibility of filtering out candidates
for the others except BIN. BIN’s performance remained un-
changed because it performs pruning only with δ.

Figure 7 depicts the memory usage for each method. MT
used the largest amount of memory and consumed 167 GB
to preserve 214 million compound-protein pairs. Although
a space-efficient version of MT was presented in [30], we
verified that the search time of this approach drastically
increased without any significant reduction of memory us-
age. In contrast, BIN kept fingerprints of compound-protein
pairs by using only 16 bits per word in a fingerprint, which
resulted in using only 60 GB memory to store all compound-
protein pairs. b-bit minhash required a similar amount to
BIN at the price of giving up correctness. With the help of
succinct data structures behind the wavelet tree, our SITA
consumed 85 GB memory, which was similar to DivideSkip,
as estimated from the theoretical analysis (see Table 1).

Figure 8 shows an example of querying compound-protein
pairs with XlogP. PubChem and Uniprot IDs are used to
specify compounds and proteins, respectively, followed by
the chemical structures of compounds, protein names and
PFAM domains. Among proteins that could bind to com-
pounds similar to the query compound, SITA found many
ion-transport proteins that play important biological roles
such as neurotransmitter. Considering the fast average search
time (2.2 seconds) and small memory usage (85GB), the re-
sult demonstrated the feasibility to find similar compound-
protein pairs in terms of both compounds and proteins,
which would be beneficial to analyze compound-protein in-
teractions by checking known compound-protein interactions
that are similar to the compound-protein pair of interest.
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Figure 5: Average search time for ǫ = 0.6 (top) and ǫ = 0.8 (bottom)
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Figure 7: Memory usage for each method

As another application, we tested SITA, MT and BIN on
their abilities to search for substrate-product pairs (compound-
compound pairs converted to each other by enzymatic re-
actions). We calculated the average search time of 2, 000
queries per algorithm on a large-scale database consisting
of 243, 438, 006 compound-compound pairs, where each pair
is represented by a fingerprint with the dimension of 1,758
based on differential chemical substructures [15]. In addi-
tion, we used the absolute difference of the molecular weights
of each compound-compound pair as a property. With ǫ =
0.8 and δ = 0.5, the average search time of SITA, MT and
BIN was 0.12, 461.38 and 651.15 seconds, respectively. SITA
used 89 GB memory, while MT and BIN required 114 and
86 GB memory, respectively. This clearly indicates a supe-
riority of SITA on a different dataset. Detailed results are
supplementally available at http://www.bioreg.kyushu-u.
ac.jp/labo/systemcohort/kdd2013/supplement.pdf.

6. CONCLUSIONS AND FUTUREWORK
We have presented SITA, a novel, time-and-memory-efficient

algorithm to find all compound-protein pairs that are similar
to a query in terms of Jaccard similarity and properties from
a large-scale database. Experimental results demonstrated
that SITA outperformed other state-of-the-art algorithms
while reducing the memory requirement to 85 GB.

SITA can currently deal with Jaccard similarly and only
one property at a time. One extension is therefore to find
similarity with many properties that generate additional con-
straints. This would be more beneficial for users to find
potential functional compound-protein pairs.
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