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ABSTRACT
Empirical risk minimization (ERM) provides a useful guide-
line for many machine learning and data mining algorithms.
Under the ERM principle, one minimizes an upper bound of
the true risk, which is approximated by the summation of
empirical risk and the complexity of the candidate classifi-
er class. To guarantee a satisfactory learning performance,
ERM requires that the training data are i.i.d. sampled from
the unknown source distribution. However, this may not
be the case in active learning, where one selects the most
informative samples to label and these data may not fol-
low the source distribution. In this paper, we generalize the
empirical risk minimization principle to the active learning
setting. We derive a novel form of upper bound for the true
risk in the active learning setting; by minimizing this upper
bound we develop a practical batch mode active learning
method. The proposed formulation involves a non-convex
integer programming optimization problem. We solve it effi-
ciently by an alternating optimization method. Our method
is shown to query the most informative samples while pre-
serving the source distribution as much as possible, thus
identifying the most uncertain and representative queries.
Experiments on benchmark data sets and real-world applica-
tions demonstrate the superior performance of our proposed
method in comparison with the state-of-the-art methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms
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Active learning, representative and discriminative, empirical
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1. INTRODUCTION
In many machine learning tasks, we need to collect the

training data and manually annotate them by experts. This
procedure is very expensive in most real world application-
s, such as text classification [34], collaborative filtering [23],
outlier detection [1], biomedicine and bioinformatics [33].
Active learning is a very useful tool in such situations when
unlabeled data is cheap to collect but labeling them is ex-
pensive. There are two main intuitions for querying the
unlabeled samples and designing practical active learning
algorithms [14]. The first one is to find the most informa-
tive or discriminative samples for the current classifier. This
mechanism will shrink the space of candidate classifiers as
rapidly as possible. The most typical criteria of this kind in-
clude expected error reduction [25], query by committee [17,
27] and the most uncertain rule [8, 26, 30]. In such method-
s, the queried data are not guaranteed to be i.i.d. sampled
from the original data distribution, as they are selectively
sampled based on the active learning criterion [3]. When
training the classifier using the empirical risk minimization
principle, this sampling bias prevents active learning from
finding a classifier with good performance on future unseen
data, and will also degrade the following query efficiency [14,
29]. The second category of active learning aims to alleviate
this problem by querying the most representative samples
for the overall patterns of the unlabeled data and preserv-
ing the data distribution or its statistics [11, 12, 35]. Such
type of active learning methods gives better performance
when there is few or no initial labeled data. However, their
efficiency will degrade with the increase of queried labels, as
they do not fully use the label information.

Since using either kind of criterion alone is not sufficien-
t to get the optimal result, there are several works trying
to query the unlabeled samples with both high informative-
ness and high representativeness [24, 34]. Usually they are
either heuristic in designing the specific query criterion or
ad hoc in measuring the informativeness and representative-
ness of the samples. Recently, Huang et al. [22] try to use
both discriminative and representative information in one
optimization formulation. They use the most uncertainty
as the query criterion, and use unlabeled data in the semi-
supervised learning setting for boosting the learning perfor-
mance. However, the queried samples may not preserve the
original data distribution. If the data structure does not
satisfy the semi-supervised assumptions [10, 36], they may
not achieve good performance.

In this paper, we extend the empirical risk minimization
principle to the active learning case and present a novel ac-
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tive learning framework. In this framework, we adapt max-
imum mean discrepancy (MMD) [5, 18, 28] to measure the
distribution difference and derive an empirical upper bound
for active learning risk. By minimizing this upper bound,
we approximately minimize the true risk under the original
data distribution. We propose a practical batch mode active
learning algorithm under this framework. In our algorith-
m, we seek to query a subset of unlabeled samples which
help minimize the generalization risk, based on all available
information. To achieve this goal, the samples we query
not only help to rapidly reduce the empirical risk on the
training data, but also preserve the original data distribu-
tion, resulting in a good generalization ability for the unseen
samples. This leads to a proper use of both discriminative
information and representative information simultaneously.
Moreover, using our active learning method, we can natu-
rally handle the situations with or without initial labeled
samples and achieve high active learning efficiency in either
case. We have conducted experiments on benchmark data
sets and real-world applications. Results demonstrate the ef-
fectiveness of the proposed method in comparison with the
state-of-the-art batch mode active learning methods.

The rest of this paper is organized as follows: Section
2 analyzes the empirical risk minimization principle in the
active learning setting and presents the corresponding ac-
tive learning framework; in Section 3 we propose a practical
batch mode active learning algorithm under our novel frame-
work; experimental results are reported in Section 4; Section
5 concludes this paper and discusses the future work.

2. EMPIRICAL RISK MINIMIZATION FOR
ACTIVE LEARNING

In supervised learning, the target of learning is to find
the optimal classifier which is expected to generalize well
on the unseen data. The empirical risk minimization (ER-
M) is a successful guideline for designing machine learning
and data mining methods [7, 31]. It minimizes an upper
bound of the true risk under the unknown data distribu-
tion. This upper bound is approximated by the summation
of empirical risk on the available data and a properly de-
signed regularization term, which constrains the complexity
of the candidate classifiers [31, 2]. Assume we are given a
data source D, with unknown distribution p(z) = p(x, y) for
sample z = {x, y}, and a finite data set S with n points,
which are i.i.d. sampled from the same distribution, p(z).
Using the Rademacher complexity to describe the complex-
ity of the function class, we obtain the uniform convergence
property between the true risk and the empirical risk [2]:

ED(l(z)) ≤ ÊS(l(z)) + 2Rn(L) +
√

ln 1/δ

n
, (1)

which holds with probability at least 1− δ. In this inequali-
ty, l(z) ∈ L is the loss function and l(z) = l(f(x), y) for the
classifier f(x) ∈ F . The true risk is defined as the expecta-
tion of the loss function:

ED(l(z)) =

∫
z∈D

l(z)dz. (2)

The empirical risk is the empirical average of the loss func-
tion:

ÊS(l(z)) =
1

|S|
∑
z∈S

l(z). (3)

The Rademacher complexity of the loss function class L is
expressed as

Rn(L) = ES

[
Eσ

[
sup
l∈L

( 1
n

n∑
i=1

σil(zi)
)]]

,

where σ1, · · · , σn are independent random variables uniform-
ly chosen from {−1, 1}, known as Rademacher variables.

In this framework, the empirical average (3) is under the
same sample distribution as the expectation (2). This re-
quires data in S to be i.i.d. sampled from the original data
distribution p(x, y). However, this assumption may not hold
in the active learning setting. In active learning, we assume
that the labeled data are selectively sampled from another
data distribution q(x, y), which is usually different from the
distribution p(x, y) for the original problem. To extend the
ERM principle to active learning, we reformulate the risk
bound inequality as:

ED(l(z)) ≤ (ED(l(z))− EQ(l(z)))

+ÊQ(l(z)) + 2Rq(L) +
√

ln 1/δ
q

.
(4)

ÊQ(l(z)) is the empirical risk for the available labeled data,
which may include initial labeled samples and query sam-
ples. Rq(L) is the Rademacher complexity based on these
labeled samples. There is a new term in the upper bound,
which is the difference between the true risk under different
data distributions:

ED (l(z))− EQ(l(z)) .

Though in active learning the data distribution for the la-
beled samples q(x, y) may be different from the original dis-
tribution p(x, y), they share the same conditional probabili-
ty p(y|x). Let p(x, y) = p(x)p(y|x) and q(x, y) = q(x)p(y|x),
we rewrite the first term in the upper bound of (4) as

ED(l(z))− EQ(l(z))

=
∫
x
p(x)

∫
y
l(f(x), y)p(y|x)dydx

− ∫
x
q(x)

∫
y
l(f(x), y)p(y|x)dydx

=
∫
x
g(x)p(x)dx− ∫

x
g(x)q(x)dx,

where we define g(x) =
∫
y

l(f(x), y) p(y|x) dy. In learn-

ing problems, the prediction functions have bounded norm
||f ||F . Thus, given a continues loss function, such as the
hinge loss and the least squares loss [31], the function g is
bounded. Since g is also measurable, there exists a bounded
and continuous function ĝ which has the following property
[15]: ∫

x
g(x)p(x)dx− ∫

x
g(x)q(x)dx

=
∫
x
ĝ(x)p(x)dx− ∫

x
ĝ(x)q(x)dx

≤ supĝ∈C(x)
∫
x
ĝ(x)p(x)dx− ∫

x
ĝ(x)q(x)dx,

where ĝ belongs to the function class of bounded and con-
tinuous functions C(x) of x. From [5, 18, 28], we find that
the right side of the inequality is the maximum mean dis-
crepancy term defined as

MMD[C, p(x), q(x)] = sup
ĝ∈C(x)

∫
x

ĝ(x)p(x)dx−
∫
x

ĝ(x)q(x)dx.
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Taking MMD as an upper bound of the expected risk d-
ifference, the ERM risk bound for active learning can be
written as

ED(l(f(x), y)) ≤ ÊQ(l(f(x), y)) +MMD [C, p(x), q(x)]

+
[
2Rq(L) +

√
ln(1/δ)

q

]
.

Following [5, 18, 28], we could empirically restrict the M-
MD on a reproducing kernel Hilbert space (RKHS) with a
characteristic kernel, k(xi,xj), which is associated with a
nonlinear feature mapping function φ(x). Then the ERM
principle in the active learning case is summarized in the
following theorem. The proof is provided in the Appendix.

Theorem 2.1. Assume that the kernel function is upper
bounded by a constant, 0 ≤ k(xi,xj) ≤ M , ∀ xj ,xj . Let the
variables be defined as above. Under the ERM principle for
active learning, the following holds with probability at least
1− δ,

ED(l(f(x), y)) ≤ ÊQ(l(f(x), y)) +MMDφ(S,Q)

+C(L, q, δ).
(5)

In this inequality, the empirical MMD term is

MMDφ(S,Q) =

∥∥∥∥∥∥
1

n

∑
xi∈S

φ(xi)− 1

q

∑
xi∈Q

φ(xi)

∥∥∥∥∥∥
F

.

The function class complexity term is

C(L, q, δ) = 2Rq(L) + c

√
M ln(1/δ)

q
,

where c is a constant.

3. BATCH MODE DISCRIMINATIVE AND
REPRESENTATIVE ACTIVE LEARNING

Suppose we are given a data set with n samples S =
{x1,x2, · · · ,xn} of d dimensions. Initially we have l labeled
samples. Without loss of generality, we denote them as L =
{(x1, y1), (x2, y2), · · · , (xl, yl)}, with labels yi ∈ {−1, 1}, as
we only focus on binary problems. Note that l could be 0.
The remaining u = n − l samples form the unlabeled set
U = {xl+1,xl+2, · · · ,xn}, which is the candidate set for ac-
tive learning. In our batch mode active learning problem,
we iteratively select the best subset Q ⊂ U with b samples
to label, and put them to the labeled set L. In the following
discussion, we use Q to denote the query sample set.

3.1 Active Learning with the ERM Principle
Based on Theorem 2.1, we propose a practical active learn-

ing algorithm by minimizing the active learning risk bound
in (5). Mathematically, it is formulated as an optimization
problem w.r.t. the classifier f and the query set Q:

{Q∗, f∗} = argmin
Q,f

∑
x∈L∪Q

l(y, f(x))

+(l + b)MMDφ(S,L ∪Q) + λ||f ||2F .
(6)

where ||f ||2F is used to constrain the complexity of the clas-
sifier class, which is equivalent to constraining C(L, b, δ) [2].
l(y, f(x)) in the objective function can be any popularly
used loss function, such as the least squares loss, the hinge

loss or the negative log likelihood of logistic regression. We
choose the least squares loss for simplicity.

The optimization problem (6) is difficult to solve, as it
involves a square root in the MMD term. Therefore, we
substitute this term with its quadratic form, and obtain the
following problem

min
Q,f

∑
xi∈L

(yi − f(xi))
2 +

∑
xi∈Q

(ŷi − f(xi))
2 + λ||f ||2F

+βMMD2
φ(S,L ∪Q)).

(7)
The optimal solution is not changed with a properly chosen
parameter β [18, 31]. As we do not know the labels of the
query samples before we get them manually labeled, we use
the pseudo labels ŷi in the objective, which are binary vari-
ables from {−1, 1} [13]. In this objective function, the first
three terms correspond to the regularized risk for all labeled
samples after query, which carries the discriminative infor-
mation embedded in the current classifier. We call them the
discriminative part. The last term describes the distribution
difference between the labeled samples after query and all
available samples, which captures the representative infor-
mation embedded in the labeled samples. The objective in
(7) balances the discriminative and representative informa-
tion in a single formulation. In the remaining part of this
section, we will analyze this objective in a specific form and
propose a practical batch mode active learning algorithm to
solve the resulting optimization problem.

3.2 Discriminative Information by the
Uncertainty of Minimum Margin

First, we show how to determine the b unknown pseudo
labels ŷi. It is clear that the maximum possible regularized
empirical risk after querying the b samples in Q is

max
ŷi:∀xi∈Q

min
Q,f

∑
xi∈L

(yi − f(xi))
2 +

∑
xi∈Q

(ŷi − f(xi))
2 + λ||f ||2F .

(8)
If we solve (8) w.r.t. ŷi with fixed Q and f , we minimize
the worst-case risk introduced by the query samples. In
this case, the pseudo labels are given by ŷj = −sign(f(xj)).
Accordingly, the related risk terms become

min
Q,f

∑
xi∈L

(yi−f(xi))
2+

∑
xi∈Q

[
f(xi)

2+2|f(xi)|+1
]
+λ||f ||2F ,

(9)
which is still an upper bound of the true risk. For any clas-
sifier f , (9) identifies the samples with minimum margin
summation, given by

min
Q

∑
xi∈Q

|f(xi)|.

Intuitively, it looks for the most uncertain query samples.
We use the linear regression model in the kernel space as

the classifier, which is in the form of f(x) = wTφ(x), with
the feature mapping φ(x). The discriminative part of our
objective becomes

min
Q,w

∑
xi∈L

(yi −wTφ(xi))
2

+λ||w||2 + ∑
xi∈Q

[
(wTφ(xi))

2 + 2|wTφ(xi)|
]
.
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3.3 Representative Information by
Distribution Matching of MMD

The representative part in objective (7) is the MMD term,
which is used to constrain the distribution of the labeled and
query samples, and make it similar to the overall sample dis-
tribution as much as possible. It captures the representative
information of the data structure. This part is empirically
calculated as [5, 18, 28]:

MMD2
φ(D,L ∪Q) =

∥∥∥∥∥∥
1

n

∑
xi∈S

φ(xi)− 1

l + b

∑
xi∈L∪Q

φ(xi)

∥∥∥∥∥∥
2

F

.

Similar to [11], we transfer the MMD term into

1

2
αTKUUα+

u− b

n
1lKLUα− l + b

n
1uKUUα+ constant,

where 1l is a vector of length l, with all entries 1; 1u is
of length u; α is the indicator vector with u elements and
each element αi ∈ {0, 1}, and αT1u = b. K is the kernel
matrix with its element as Kij = k(xi,xj) = φ(xi)

Tφ(xj),
and KAB denotes its sub-matrix between the samples from
set A and set B. The objective can be further simplified as

αTK1α+ kα, (10)

where K1 = 1
2
KUU , k = k3 − k2, and ∀xi ∈ U , k2(i) =

l+b
n

∑
xj∈U

K(i, j), k3(i) =
u−b
n

∑
xj∈L

K(i, j).

3.4 The Proposed Formulation
Combining the discriminative and representative parts to-

gether, we obtain the following formulation:

min
αT 1u=b,w

∑l
i=1(yi −wTφ(xi))

2 + λ||w||2

+
∑u

i=1 αi

[
||wTφ(xj)||22 + 2|wTφ(xj)|

]
+ β(αTK1α+ kα).

(11)
This objective function approximates an upper bound of the
generalization risk under the original data distribution. This
problem is not convex, and we propose to employ the alter-
nating optimization strategy [4].

If the query index α is fixed, the objective is to find the
best classifier based on the current labeled and query sam-
ples:

min
w

∑l
i=1(yi −wTφ(xi))

2 + λ||w||2

+
∑b

j=1

[
||wTφ(xj)||22 + 2|wTφ(xj)|

]
.

(12)

We propose to solve (12) by the alternating direction method
of multipliers (ADMM) [6].

If w is fixed, the objective becomes

min
αT 1u=b

∑u
i=1 αi

[
(wTφ(xi))

2 + 2|wTφ(xi)|
]

+β(αTK1α+ kα),

(13)

which can be rewritten as

min
αT 1u=b

βαTK1α+ (βk+ a)α, (14)

where aj = ||wTφ(xj)||22 + 2|wTφ(xj)|. This is a quadratic
programming problem for the indicator vector α. If we relax

α to continuous values in [0, 1]u, this can be solved using
standard quadratic programming.

3.5 The Proposed Algorithm
We provide the details for solving the optimization prob-

lem (11), which is not convex. The alternating procedure
includes two main steps: step 1: for a fixed α, employ the al-
ternating direction method of multipliers (ADMM) to solve
w; step 2: for a fixed w, employ the quadratic programming
(QP) to solve α.

Step 1: Computing w, for a fixed α:

Using the kernel form, the problem is to learn τ for w =∑
xj∈L

τjφ(xj) using the following formulation:

min
τ

∑l
i=1(yi −

∑
xj∈L τjK(xj ,xi))

2 + λτTKLLτ

+
∑b

i=1

[
||∑xj∈L τj(xj ,xi)||22 + 2|∑xj∈L τjK(xj ,xi)|

]
.

By introducing the auxiliary variable zj = wTφ(xj), the
objective function becomes,

min
τ

l∑
i=1

(yi − τTKL(xi))
2 + λτTKLLτ +

b∑
i=1

[
z2i + 2|zi|

]

s.t. zi − τTKL(xi) = 0, ∀xi ∈ Q.
(15)

We construct the augmented Lagrangian as

Lρ = ||yL − τTKLL||2 + λτTKLLτ

+||z||2 + 2|z|+ (z− τTKLQ)γ
T

+(ρ/2)||z− τTKLQ||22.
Then we obtain the updating rules as

τ k+1 = A−1rT ,

with A = K2
LL +

ρ

2
KLQKQL + λKLL,

and r = yLKLL +
1

2
γkKT

LQ +
ρ

2
zkKT

LQ;

zk+1 = argmin
1

2
||z− v||2 + η|z| = sign(v)(|v| − η)+,

with v =
ρ(τ k+1)TKLQ − γk

ρ+ 2
, η =

2

ρ+ 2
;

γk+1 = γk + ρ(zk+1 − (τ k+1)
T
KLQ).

(16)

Step 2: Computing α, for a fixed w:

With a fixed w, the objective function becomes

min
αT 1u=b

αTHα+ dα. (17)

whereH = βK1 and d = βk+a. This problem can be solved
using standard QP toolboxes such as CVX1 and MOSEK2.
With the compute α, we set the largest b elements in α to
1 and set the remaining ones to 0.

The key steps are summarized in Algorithm 1. We can al-
so generalize our method to the semi-supervised setting, by
introducing estimated empirical risk for all unlabeled sam-
ples as in [20, 22].

1CVX: “http://cvxr.com/cvx”.
2MOSEK: “http://www.mosek.com/”.
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Algorithm 1 Discriminative and Representative Queries
for Batch Mode Active Learning (BMDR)

Input: L = {(xi, yi)} with l labeled samples, U = {xi}
with u unlabeled samples, parameters λ, β, batch size b,
tolerance ε for convergence condition
Initialize: Set initial variables and parameters.
repeat

Step 1: optimize the objective function (15) w.r.t τ
using ADMM, updated by (16).
Step 2: optimize the objective function (17) w.r.t α
using QP; set the largest b elements in α to 1 and others
to 0.

until Convergence condition is satisfied
Output: The query indicator vector α.

4. EXPERIMENTS
In our experiments, we compare our method with ran-

dom selection and state-of-the-art batch mode active learn-
ing methods. We list all methods we compared in the ex-
periments as follows:

1. Random: randomly select the query samples.

2. Fbatch: batch mode active learning based on fisher
information [21].

3. Dbatch: discriminative batch mode active learning [20].

4. Tbatch: batch mode active learning using transductive
experimental design [35].

5. Mbatch: batch mode active learning by matrix com-
pletion based on mutual information [19].

6. BMDR: our batch mode active leaning with discrimi-
native and representative queries.

We conduct the experiments on fifteen data sets from UCI
benchmarks3 [16]: australian, banana, chess, crx, diabetis,
heart, image, ionosphere, monk1, ringnorm, splice, thyroid,
twonorm, vote and waveform. We summarize the character-
istics of the data sets in Table 1.

In the experiments, for each data set, we use 60% data for
training and 40% for testing, and the data set is randomly
divided into training and test sets. We use the training set
for active learning and compare the prediction accuracy for
different methods on the test set. We assume there is no la-
beled data available at the very beginning of active learning.
For Fbatch and Dbatch methods which need initial labeled
data, we randomly sample the initial labeled data until there
are enough labeled samples to train an initial classifier. The
number of these initial samples are usually smaller than 10
in our experiments. The experiment stops when 80% of the
training set has been labeled, or the learning accuracy does
not increase for any method. This stopping criterion guar-
antees we show the whole active learning process, though
practically the query process stops much earlier due to the
limited labeling cost. We set the batch size b = 5 in all
experiments. For the parameters involved in the compet-
ing methods, we prefer to use the values recommended in

3Some of the data sets have been preprocessed and released
at “http://theoval.cmp.uea.ac.uk/∼gcc/matlab/
default.html#benchmarks”.

Table 1: Characteristics of the data sets, including
the numbers of the corresponding features and sam-
ples.

Data set # Feature # Instance

banana 2 4000
diabetis 8 768
heart 13 270
twonorm 20 7400
waveform 21 5000
ringnorm 20 7400
thyroid 5 215
chess 36 3196
ionosphere 34 351
splice 60 2991
vote 16 435
image 18 2086
crx 15 690
australian 14 690
monk1 6 432

the original papers. In other cases, we set up a large candi-
date set and select the best parameter value. In our BMDR
method, we set the regularization weight λ = 0.1, and the
trade-off parameter β is chosen from a candidate set by cross
validation. For each data set, we use the same kernel for all
methods, which is properly chosen from the linear kernel or
RBF kernel with the optimal kernel width. For fairness, we
use the same SVM classifier for all methods to evaluate the
informativeness of the selected samples. We report the ac-
curacy curve of the SVM classifier after each query. We use
the SVM implementation provided by LIBSVM [9]. In these
experiments, we use the CVX toolbox as the solver for the
quadratic programming problems and the linear program-
ming problems. Running the Mbatch method needs a large
amount of memory for large data sets. Though we could use
subsampling to save the memory, it will degrade the perfor-
mance of this method. For this reasons, we only provide the
result for this method on relatively small data sets.

4.1 Results
For each data set, we run the experiment independently

for 10 times, and present the average result in Figure 1. We
also show the significance of the comparison results using
the paired t-test. In active learning, we need to compare
the performance during the entire query process. In our ex-
periments, we compare the learning accuracy of our method
versus each competing method after each query, at 95% con-
fidence level, then count the times of our win/tie/loss. We
show them in percentage for all data sets in Table 2.

From all these results, we can observe that our method
outperforms the competitors in three aspects. First, our
method seldom performs worse than random query. All
the other active learning methods are dominated by ran-
dom query in certain cases. Second, the performance of
our method is always among the best ones on all data set-
s. Third, in most cases, our method performs consistently
better than the competitors during the whole active learning
process. These results demonstrate that both discriminative
and representative information are critical for active learn-
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Figure 1: Comparison of different batch mode active learning methods on fifteen benchmark data sets. The
curve shows the learning accuracy over queries, and each curve represents the average result of 10 runs.

163



Table 2: The win/tie/loss counts (%) for our method versus each competing method during the whole active
learning process, based on paired t-tests at the 95% confidence level.

Data set Vs Random Vs Fbatch Vs Dbatch Vs Tbatch Vs Mbatch

banana 13/ 87/0 39/61/0 80/20/0 69/31/0 17/83/0
diabetis 28/72/0 36/64/0 56/44/0 56/44/0 14/86/0
heart 11/89/0 54/46/0 11/89/0 11/89/0 17/79/4
twonorm 44/56/0 21/76/3 81/17/2 32/66/2 51/49/0
waveform 70/30/0 0/97/3 59/41/0 63/37/0 37/60/2
ringnorm 22/78/0 3/97/0 75/25/0 70/30/0 20/80/0
thyroid 4/96/0 39/61/0 9/91/0 78/22/0 17/83/0
chess 18/82/0 22/78/0 45/55/0 83/17/0 —
ionosphere 18/76/6 24/76/0 9/88/3 59/41/0 —
splice 77/23/0 84/16/0 92/8/0 84/16/0 —
vote 36/62/2 29/71/0 76/22/2 55/40/5 —
image 38/62/0 5/90/5 98/2/0 81/18/1 —
crx 3/97/0 3/97/0 3/97/0 0/100/0 —
australian 0/100/0 0/100/0 2/98/0 0/100/0 —
monk1 28/72/0 34/66/0 28/72/0 28/72/0 —

ing, and a proper balance of these two sources of information
will boost the active learning performance.

4.2 Sensitivity
Our algorithm has a tunable parameter β. It balances

the trade-off between the effect of discriminative informa-
tion and representative information in our optimization ob-
jective. In this experiment, we run our algorithm with pa-
rameter values from a candidate set {1, 2, 10, 100, 1000}, and
show the active learning performance. We report results on
two UCI benchmark data sets: breast cancer and german
[16]. The experiment settings are the same as previous ones.

We present the results in Figure 2. From these results,
we observe that the performance on german is not sensitive
to the trade-off parameter. However, the performance on
breast cancer is more sensitive to this parameter. The rea-
son may be that the breast cancer data set may have more
regular data structure. Therefore, using more representative
information helps to boost the active learning performance.
In german, the samples may have more complex distribu-
tion, which is more difficult to capture. As a result, it does
not help much to focus on the representative information.
Though these two experiments show different sensitivity be-
haviors of the parameter, we observe that it does not hurt
to pay more attention to the representative information for
both data sets. We conclude from these experiments that a
relatively larger value of β is recommended, when there are
scarce initial labeled samples. In this situation, we need to
pay more attention to the data distribution.

4.3 Discussion
In the active learning literature, both representative in-

formation and discriminative information are important for
the efficient query. However, they are usually contradictory
in the active learning process. Several existing investigation-
s [14, 26, 35, 20] show that the representative information
is more useful when there is no or very few labeled data;
and the discriminative information is more efficient to boost
the learning accuracy when there are certain amounts of
labeled data, which can train a classifier with good discrim-
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Figure 2: Performance comparison using different
trade-off parameters on breast cancer and german
data sets for our BMDR algorithm. Each curve rep-
resents the average result of 10 runs.

inative capability. Using either information alone may not
obtain the best performance during the entire active learn-
ing process. In the ideal case, the most efficient active learn-
ing method should pay more attention to the representative
samples when there are very few labeled samples, and focus
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on finding the most discriminative sample to label when the
representativeness of the queries decays rapidly.

In this paper, our method accomplishes this goal by prop-
erly using those two kinds of information. In the beginning
phase, there is no or very few labeled samples, and the em-
pirical risk for the labeled samples is negligible in the op-
timization objective. In such situation, our method is very
similar to the pure representative active learning methods
[11, 35]. When the number of labeled samples increases, the
discriminative information plays a more and more importan-
t role during the queries. When there are sufficient labeled
samples, the query of new samples has less effect on the la-
beled data distribution. The discriminative information be-
gins to play the dominant role. The method becomes more
similar to the most discriminative active learning method
[20]. With this mechanism, our method naturally balances
the effect of the two kinds of information, and makes its
queries more efficient.

5. CONCLUSION
In this paper, we generalize the empirical risk minimiza-

tion principle to the active learning setting and propose a
novel active learning method. In our method, we query the
samples which are expected to rapidly reduce the empiri-
cal risk, and preserve the original source distribution at the
same time. This enables our method to achieve consistent
good performance during the whole active learning process.
We also propose a practical batch mode active learning al-
gorithm which is solved by alternating optimization. The
superior performance of our method is verified by our ex-
tensive evaluations using benchmark data sets, compared
with the state-of-the-art batch mode active learning meth-
ods. We observe from our experiments that it is beneficial
to update the trade-off parameter which balances the dis-
criminative and representative information during the query
process. We plan to develop an adaptive mechanism to tune
this parameter automatically, similar to [32]. This could
make our active learning framework more practical. In ad-
dition, we plan to extend our method to the semi-supervised
learning and multi-class learning settings.
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APPENDIX

A. PROOF OF THEOREM 2.1

Proof. Following [18], we know that the relationship be-
tween the true MMD and the empirical MMD is

Pr

(∣∣∣MMD[C, p(x), q(x)]−MMDφ(S,Q)
∣∣∣ ≥ ε+ 2(

√
M
n

+
√

M
q
)

)

≤ 2e
−ε2nq

2M(n+q) .

with the empirical MMD term given by

MMDφ(S,Q) =

∥∥∥∥∥∥
1

n

∑
xi∈S

φ(xi)− 1

q

∑
xi∈Q

φ(xi)

∥∥∥∥∥∥
F

.

In the active leaning scenario, Q ⊆ S and q ≤ n. We have

e
−ε2nq

2M(n+q) ≤ e
−ε2nq

2M(n+n)

and √
M

n
+

√
M

q
≥ 2

√
M

n
.

Then

Pr
(
MMD[C, p(x), q(x)] ≥ MMDφ(S,Q) + ε+ 4

√
M
n

)
≤ 2e

−ε2q
4M .

Let 2e
−ε2q
4M = δ/2. We obtain ε =

√
4M ln (4/δ)

q
.

From the analysis in Section 2, we know by the classic
ERM principle that

ED(l(f(x), y)) ≤ ÊQ(l(f(x), y)) +MMD[C, p(x), q(x)]

+
[
2Rq(L) +

√
ln (2/δ)

q

]
,

holds with probability at least 1− δ/2.
Combining all the results above, we show that with prob-

ability at least 1− δ, the following holds:

ED(l(f(x), y)) ≤ ÊQ(l(f(x), y))+MMDφ(S,Q)+C(L, q, δ).
The function complexity term is

C(L, q, δ) = 2Rq(L) +
√

ln (2/δ)

q
+4

√
M

n
+

√
4M ln (4/δ)

q
.

It can be rewritten as:

C(L, q, δ) = 2Rq(L) + c

√
M ln (1/δ)

q
,

where c is a constant.
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