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ABSTRACT
Temporal dependencies between multiple sensor data sources
link two types of events if the occurrence of one is repeat-
edly followed by the appearance of the other in a certain
time interval. TEDDY algorithm aims at discovering such
dependencies, identifying the statically significant time in-
tervals with a χ2 test. We present how these dependencies
can be used within the GrizzLY project to tackle an en-
vironmental and technical issue: the deicing of the roads.
This project aims to wisely organize the deicing operations
of an urban area, based on several sensor network measures
of local atmospheric phenomena. A spatial and temporal
dependency-based model is built from these data to predict
freezing alerts. A demo of our system is available1.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining

Keywords
Sensor data analysis, temporal dependencies.

1. INTRODUCTION
Every winter, deicing or snow-clearing of roads is an im-

portant issue that impacts on the local economy, the public
finances and the environment. From one hand, city authori-
ties are encouraged to deploy significant means for road de-
icing as the road network is a key infrastructure for a highly
connected and just-in-time economy. Therefore, roads must

1http://liris.cnrs.fr/vasile-marian.scuturici/
video/kdd_demo.mp4
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be kept clear to preserve the local economy. On the other
hand, deicing expenses constitute an important part of the
public works budget that covers the deployment of substan-
tial means: dedicated road agents and patrols, snowplows
and dump trucks spread tonnes of salt on slick roads. For
instance, Canada spends $1 billion on snow removal while
USA and France spread respectively almost 16 million and
2 million tonnes of salt every winter. Moreover, road salt-
ing may have an important negative environmental impact
[2, 4]. Indeed, deicing salts leach into the soils where the
ions may accumulate and eventually become toxic to the or-
ganisms and plants growing on them. The chemicals can
also reach ground water in concentration that is toxic to the
ecosystems. The contamination of the ground water may
result in health impact to urban population. Deicing oper-
ations plays havoc with technical equipment: salt tends to
cause corrosion, rusting the steel used in most vehicles as
well as the threaded rods used in bridge concrete.

Deicing of roads must therefore be organized wisely in or-
der to limit its negative environmental, technical and health
impacts. To this end, road operators rely on weather fore-
casting. However, the weather alerts are on the scale of an
entire urban area whereas topographic (e.g., hill) and urban
(e.g. parks, buildings) disparities can cause differences in
temperature and freezing phenomena. Consequently, many
roads are processed without this being necessary and some
slick roads are not deiced because no freezing alert was trig-
gered at the urban scale. To enhance deicing operation man-
agement, and process only slick roads, the weather forecast-
ing must be done at a smaller scale. It consists in consid-
ering short-lived atmospheric phenomena that are smaller
than mesoscale, about 1 km or less [1].

In this paper, we present the GrizzLY (a.k.a. Grand LYon)
project and its first results. It aims to implement this strat-
egy of weather forecasting at a small spatial scale for the
Lyon urban area (Grand Lyon, France). It consists in the
deployment of HiKoB wireless sensors to monitor roads and
their use to improve the snow removal and salting of the city.
Eight sensors were spread over the urban area and located in
the neighborhoods known to be deicing sensitive. Each sen-
sor provides real time information on in-pavement temper-
ature combined with outdoor air temperature and relative
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humidity. A new technique of temporal dependency discov-
ery [5] is used on these data and provides a two hours pre-
diction model that makes possible to trigger freezing alerts
in a more accurate way than classical weather forecasting
does. Notice that this work is the first to consider data min-
ing techniques in micro-scale meteorology where simulation
techniques are widely used.

2. GRIZZLY AND TEDDY SYSTEM
An overview of GrizzLY [3] and TEDDY system is pro-

vided in Figure 1. The Lyon urban area is instrumented with
eight sensor networks that produce streaming data. Three
months of data are to date at our disposal. We use them to
build and validate a freezing alert prediction model based
on temporal dependencies. In the following, we describe
the smart road sensor network, the temporal dependency
technique used, the freezing alert model construction and
the graphical user interface that displays, in real time, the
freezing alerts as well as the freezing events.

Streaming 
Data

Temporal 
Dependency 
based Model

Freezing 
Alerts

Building
Predictive Model

Application
of the Model

GrizzLY: Smart Road Environment

Online Data

TEDDY: Temporal Dependency Discovery

Figure 1: Overview of GrizzLY and TEDDY system.

2.1 Smart Road Sensor Network
HiKoB provides to the Grand Lyon its unique wireless sen-

sor network technology to power its winter service decision
making process. The solution is deployed on eight locations
spread on the Grand Lyon area. The locations have been se-
lected for their diversity from the environment and weather
context point of view: dense urban locations as well as more
rural locations at the vicinity of the city.

Each deployment site is equipped with ultra low power
wireless sensor nodes that are in charge of collecting outside
air temperature and relative humidity similarly to a classical
weather station. Four nodes are also cored in the roadway
to measure inner road surface temperature as well as tem-
perature at 10 cm and 15 cm below the surface to build a
temperature gradient. The road temperature used in this
experiment is the average of the inner surface temperature
from the four sensing points. These sensors provide mea-
sures every 30 seconds.

All measures are directly sent to a HiKoB gateway that
connects the local wireless sensor network either to the Grand
Lyon metropolitan network or 3G network which then con-
nect to the Internet. Streamed data are sent to a cloud

computing infrastructure using a REST API and can then
be made available for computing, visualization or data ex-
ploitation.

2.2 Temporal Dependency Discovery
TEDDY (a.k.a TEmporal Dependency DiscoverY) is a

data mining tool designed to extract temporal dependen-
cies between multiple sensor data sources [5]. It consists
in discovering inter-stream relations that link two types of
events if the occurrence of one is repeatedly followed by the
appearance of the other in a certain time interval. TEDDY
temporal dependencies are robust to the temporal variabil-
ity of events and identifies the time intervals during which
the events are dependent.

TEDDY is based on the following characteristics: (1) the
time-point event streams monitored by the sensor nodes
are transformed into state streams where events are con-
sidered to change the internal state of each sensor node.
A node nk is in state Xk at time t (state(nk, t) = Xk) iff
the last event before t of node nk is Xk. Actually a single
geographical site may monitor several phenomena. There-
fore, we defined site states A as the combination of several
node events, A = X1 ∧ · · · ∧ X`. For example, when the
air temperature is negative and the route temperature be-
low the frost point value, the site is in freezing state. (2)
Each stream site state A is defined by the set of time in-
tervals where A is active: active(A) = {[ai, ai+1[

∣∣ ai ≤ t ≤
ai+1, state(nk, t) = Xk, k = 1 · · · `} and is characterized

by their length len(A) =
∑#A
i=1(ai+1 − ai). (3) The de-

pendency A → B of two states A and B is evaluated on
the basis of the intersection of their active time intervals:
len(A ∩ B) =

∑
i,j len([ai, ai+1[∩[bj , bj+1[) (4) B can un-

dergo two types of transformation in order to maximizing
its intersection with A:

• B can be shifted by α time units, α ≤ 0:

B[α,α] = {[bj + α, bj+1 + α[}

that is to say each of its time interval is translated
in the past of α time units, and we have len(B) =

len(B[α,α]).

• Or B can be shifted in the past and slightly extended:

B[α,β] = {[bj + α, bj+1 + β[}

with α < β ≤ 0, and in that case len(B) < len(B[α,β]).

Extending the intervals makes the temporal dependency mea-
sure more robust to the inherent variability of the data. The
strength of the dependency is evaluated by the proportion
of time where the two states are simultaneously active over
the active time period of A:

confidence(A
[α,β]−−−→ B) =

len(A ∩B[α,β])

len(A)

The information conveys by this rule is “the occurrence of
state A is often followed by the occurrence of state B through
a transformation [α, β]”.

A dependence is considered valid if it satisfies a Pearson’s
chi-squared test of independence that defines a minimum
confidence threshold that depends on [α, β]. However, a
huge number of time shift intervals may exist that result in
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valid temporal dependencies and many of them are redun-
dant, depicting the same phenomenon several times. That is
why TEDDY focuses in most interesting time shift intervals
that lead to a high confidence value and that are as spe-
cific as possible with respect to the inclusion relation. To
that end, the interval [α1, β1] is considered to dominate the
interval [α2, β2] if [α1, β1] ⊆ [α2, β2] and

1− conf(A
[α1,β1]−−−−→ B)

conf(A
[α2,β2]−−−−→ B)

< 1− len(B[α1,β1])

len(B[α2,β2])

that is to say the loss of the confidence measure of A
[α1,β1]−−−−→

B is less than the reduction of its active time period and
thus len(B[α2,β2]\[α1,β1] ∩A) is almost 0. Thereby, TEDDY
avoids the classical problem of pattern flooding in data min-
ing.

TEDDY extracts all the valid and non-dominated tem-
poral dependencies and their associated time intervals by
a level-wise enumeration of the time shift intervals. The
confidence value of each interval is computed once at the
most. It uses a monotonic property on the confidence mea-
sure and a lower bound on the minimum confidence support
to early prune the search space. It makes also use of an upper
bound on the confidence measure, whose complexity is O(1),
to avoid unnecessary computation of the confidence whose
complexity is linear in the number of intervals. Finally, it
also takes advantage of the transitivity of the dominance re-
lationship in the identification of non-dominated temporal
dependencies.

TEDDY algorithm is implemented in standard C++. In
[5], we conducted an extensive experimental study of both
synthetic and real-world data streams from smart environ-
ments equipped with various kinds of sensors (cameras, mo-
tion sensors, etc.). These experiments demonstrate that the
pruning techniques are very efficient and speed up TEDDY
running time by a factor that varies between 2 and 60. A
qualitative analysis of the output shows that TEDDY pro-
duces a small set of non-redundant dependencies that accu-
rately describe the phenomenon captured by the data.

2.3 Freezing Alert Model Construction
To construct the freezing alert model, we use the data

provided by HiKoB sensor sites between November 2012 and
January 2013. A first analysis of these data show a strong
spatial variability among the temperature measured over the
sites. The difference between the air temperature of the
sites and the one of the weather station of the city varies
between 0.18◦C and 1.5◦C in average: sites that are close to
the weather station have the lower average.

Using these data, we build a model based on the temporal
dependencies that link site states. A site state is defined by
the five following attributes:

1. The site location name (ID),

2. The period of the day (POD): 12 a.m.-6 a.m., 6 a.m.-
12 p.m., 12 p.m.-6 p.m. or 6 p.m.-12 a.m, one of the
four day periods,

3. The road temperature (RT ): the greatest integer less
than or equal to the road temperature,

4. The sign of the road temperature gradient (∇RT ): +1
if RT is increasing, -1 if RT is decreasing, 0 otherwise.

The road temperature gradient at time t (in seconds),

∇RT (t), is evaluated by ∇RT (t) =
RT(t−600)−RT(t−0)

600

with RTt−x = AV G({RT (t) | 600 + x ≤ t < x}). It
evaluates the evolution of the temperature over last
two 10 minutes periods,

5. Freezing condition (FZ): 1 if the weather conditions
are right for it freezes, that is air temperature is less
than 0 and RT is less than or equal to the frost point
value; 0 otherwise.

Site states mainly rely on the road temperature. But as this
value is strongly influenced by day / night phenomenon, we
also take into account this information as well as its trend.
As we want to predict glaze ice on the road, the freezing
condition are also considered. Notice that during the con-
sidered period, freezing condition occurred during 886 hours
among the 14 178 hours of measurement.

TEDDY is used to extract all valid and significant tempo-
ral dependencies among the site states. To take into account
the road operators logistical and technical constraints, and
make the model effective in the deicing decision process, the
freezing alert must be triggered at least two hours before a
freezing event. Therefore, TEDDY computes temporal de-
pendencies with −4hours ≤ α ≤ β ≤ −2hours. Notice that
the construction of the model takes less than one second.
We obtain 1567 valid and significant temporal dependen-
cies among which 1320 conclude to a freezing condition site
state. For example, we obtain the following rule: when the
site Lacassagne has a road temperature equals to 1◦C, with
a decreasing gradient and no freezing conditions during the
night, then SainteFoy has a road temperature equals to 0◦C,
with a decreasing gradient and freezing conditions during the
morning and this appears between 2 and 4 hours later.

2.4 GrizzLY and TEDDY Demo
Once the temporal dependency-based model has been con-

structed, we use it to trigger freezing alerts on new data
that can either be fetched using an online RESTfull API,
or loaded from a file for demonstration or replay purposes.
A graphical user interface makes possible to visualize the
current sensor values as well as the triggered alerts (see Fig-
ure 2). The sensor locations are displayed on the Grand
Lyon city map2. The current temperature is represented by
a bargraph. When a freezing alert is triggered, the site is
surrounded by a square box. A bold blue circle then signals
if a road freezing episode is currently happening. By clicking
on the sensor location on the map, the end-user can obtain
the detail of the temporal dependencies that are triggered
in the current freezing alert.

3. PRELIMINARY RESULTS
The aim of our temporal dependency-based model is to

predict freezing weather condition. However, these events
occur in 6.24% of our data, and half of these events occurred
in last third of the data, that is during January 2013. There-
fore, to evaluate the efficiency of our temporal dependency-
based model, we use the last third of the data to construct
the model and we validate it using the 2 first thirds of the
data.

Table 1 reports the precision and recall for our model. Our
system is set to predict a freezing condition period at least
2We use a map provided by www.openstreetmap.org.
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Figure 2: Road freezing prediction in Grand Lyon.

two hours ahead its occurrence. Since the average time in-
terval size of computed temporal dependencies is 17 minutes,
a freezing alert is considered valid if an actual freezing ap-
pears in the prediction interval or within the four following
hours. Indeed, the salt spread on the road remains active at
least four hours. Most of the sites have high precision and
recall values. Those that have the smallest values are lo-
cated on the periphery of the urban area. Result variability
is explained in the following.

Table 1: Performance of our temporal-dependency
based model for triggering freezing alerts.

Site Precision Recall
Caluire 0.74 0.67
Craponne 0.35 0.43
Limonest 0.64 0.77
Meyzieu 0.46 0.91
StFoy 0.51 0.9
StPriest 0.77 0.85
Wilson 0.74 0.86

Considering the temporal dependencies that conclude to a
freezing state, we have two types of locations: (i) The predic-
tive locations that appear in the premise of many temporal
dependencies concluding on freezing states. Besides, these
locations appears much less in the conclusion of a tempo-
ral dependencies; (ii) The predicted locations involved in the
conclusion of many temporal dependencies depicting freez-
ing phenomena while appearing in the premise part of few
such rules. These types of locations can be explained by
the prevailing winds. On one hand, the two predictive lo-
cations are Craponne and Limonest that are the most west-
erly sites. During the studied winter, the dominant wind
was northwesterly and cold waves often went from West to
East. Consequently, this explains why freezing alerts are
not very well predicted in Craponne and Limonest locations
(no more northwesterly location enabled to trigger a freez-
ing alert that concludes to these locations) while these loca-
tions are good cold sentinels. On the other hand, one of the
most predicted location is Meyzieu, which is the most east-
ern one. Other locations are more balanced with regards
to their appearance in the left or right hand sides of the
temporal dependencies.

Besides providing good performance for triggering freez-
ing episodes, our system produces new actionable insights

that are very hard to obtain using simulation models con-
sidering the whole urban area. Furthermore, considering
both subareas and short time intervals (prediction every ten
minutes) makes possible to highlight trajectories of freezing
alerts. Such insight is very useful to organize and optimize
the deicing operations (e.g. the road operators know that 4
areas must be deiced in a given order).

Lastly, the distribution of the locations in our temporal
dependency based model can be used to place new deploy-
ment site. For instance, if the road operators want to deploy
a new site to enhance the freezing alert triggering on the two
most westerly locations, this new deployment site should be
placed in the West.

4. CONCLUSION
This paper presents a system that relies on a deployed

multi-site sensor network and a data mining technique to
predict freezing alerts. We demonstrate that the fruitful
combination of sensor network data with a model built with
a generic data mining technique makes possible to build pre-
dictive models from observed data. Preliminary results on
a 3 months period including winter season are promising.
These models combines temporal information gathered from
measured time series obtained in geographically spread sites
over a dense urban area. The presented system is the first
attempt, to our knowledge, to apply data mining technique
to micro-scale meteorology. The obtained model is a spatio-
temporal predictive model that can be used by experts in
the fields to make added value from smart environments.
Such an approach can then be used in other contexts, in
particular in structural health monitoring.
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