
MI2LS: Multi-Instance Learning from
Multiple Information Sources

Dan Zhang
Facebook Incorporation

Menlo Park, CA
danzhang2008@gmail.com

Jingrui He
Computer Science

Department
Stevens Institute of

Technology
Hoboken, NJ

jingrui.he@gmail.com

Richard D. Lawrence
Machine Learning Group

IBM T.J. Watson Research
Center

Yorktown Heights, NY
ricklawr@us.ibm.com

ABSTRACT
In Multiple Instance Learning (MIL), each entity is normally ex-
pressed as a set of instances. Most of the current MIL methods only
deal with the case when each instance is represented by one type of
features. However, in many real world applications, entities are of-
ten described from several different information sources/views. For
example, when applying MIL to image categorization, the charac-
teristics of each image can be derived from both its RGB features
and SIFT features. Previous research work has shown that, in tradi-
tional learning methods, leveraging the consistencies between dif-
ferent information sources could improve the classification perfor-
mance drastically.

Out of a similar motivation, to incorporate the consistencies be-
tween different information sources into MIL, we propose a novel
research framework – Multi-Instance Learning from Multiple In-
formation Sources (MI2LS). Based on this framework, an algo-
rithm – Fast MI2LS (FMI2LS) is designed, which combines Con-
straint Concave-Convex Programming (CCCP) method and an adap-
ted Stoachastic Gradient Descent (SGD) method. Some theoreti-
cal analysis on the optimality of the adapted SGD method and the
generalized error bound of the formulation are given based on the
proposed method. Experimental results on document classification
and a novel application – Insider Threat Detection (ITD), clearly
demonstrate the superior performance of the proposed method over
state-of-the-art MIL methods.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – Knowledge acquisition

General Terms
Algorithms, Performance, Experimentation

Keywords
Multi-View Learning, Multi-Instance Learning, Stoachastic Gradi-
ent Descent

1. INTRODUCTION
Traditional learning methods normally treat each example as a

non-separable entity, and represent the example by one feature vec-
tor. However, the semantic meanings of each individual example
could vary among its constituent parts, rather than being consistent
throughout the whole content. As one variation of traditional learn-
ing methods, Multiple Instance Learning (MIL) [11] has been pro-
posed to solve the label ambiguity problem. In particular, in MIL,
each example/bag is divided into several different parts/instances.
The labels are assigned to the bags, rather than individual instances.
In this way, the features for the desired local object in each exam-
ple will be less likely affected by its irrelevant parts, and therefore
the learned model can be more accurate. A lot of work has been
done for MIL classification [2, 11, 14, 23, 32, 46] and its variants,
such as outlier detection [44], online learning [3], and ranking [19].
These methods have been widely employed in applications such as
text mining [2], drug design [11], localized content based image
retrieval (LCBIR) [32], human action recognition [1] and market
targeting [46].

Most of the current MIL methods focus merely on solving prob-
lems where examples are described by only one set of features.
However, in many real-world applications, examples are often de-
rived from several different information sources/views, and there-
fore are represented by multiple sets of features. For example, in
webpage classification, each webpage has disparate descriptions
such as in-bound, out-bound links and textual content. In image
retrieval, each image can be described by different kinds of fea-
tures, such as RGB features, SIFT features [27], and texture fea-
tures. Different sets of features normally have different statistical
properties. As shown in previous studies in multi-view learning
work [5, 12, 22, 25, 35, 39, 50], by leveraging the consistencies
between different views, the classification performance can be im-
proved. Therefore, designing a MIL algorithm that incorporates
information from multiple sources is also expected to bring in per-
formance improvements.

The existing research in this direction is rare. In [31], the au-
thors did some experiments by using MIL on different views sep-
arately and then combined them with equal weights. This method
is straightforward. However, it does not consider the consisten-
cies between different views. On the contrary, in this paper, to
integrate the consistencies into MIL, a novel framework – Multi-
Instance Learning from Multiple Information Sources (MI2LS) is
proposed. From the MIL perspective, MI2LS integrates the na-
ture of the multi-view setting into the MIL framework and impose
the consistencies among multiple views. From multi-view learn-
ing perspective, the new formulation explicitly handles the prob-
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lem of label ambiguity through modeling different segments of
examples. More precisely, the new framework aims at designing
classifiers for MIL on individual views and constraining the con-
sistencies between these classifiers simultaneously. Based on the
proposed framework, a concrete optimization formulation is sug-
gested. However, the proposed formulation is non-convex and con-
tains too many constraints derived on both the bag and the instance
levels. Therefore, to solve the resulting optimization problem, we
propose a novel method – Fast MI2LS (FMI2LS), which is a com-
bination of Constrained Concave-Convex Procedure (CCCP) and
Stochastic Gradient Descent (SGD). We prove that the proposed
method is guaranteed to converge with some derived convergence
bounds. Furthermore, the generalized error bound of the proposed
method is analyzed. To show the effectiveness and efficiency of the
proposed method, in the experiment part, a series of experiments
are conducted on two benchmark text datasets, Reuters21578, We-
bKB, as well as a newly introduced application of MIL – Insider
Threat Detection (ITD). In this new application, MIL is employed
to find the potential harmful insiders through analyzing their online
behaviors, where the features during each time period is modeled
as a bag and each bag contains instances derived from daily fea-
tures. The different views in ITD indicate different types of online
behaviors. Experimental results on this application and the two
text datasets clearly demonstrate the advantages of our proposed
method over state-of-the-art techniques.

The rest of this paper is organized as follows. Section 2 intro-
duces the related work. Section 3 proposes the research problem
and presents the proposed algorithm. Some theoretical analysis are
given in Section 4. Section 5 presents the experimental results.
Section 6 concludes the whole paper.

2. RELATED WORKS

2.1 Multi-Instance Classification
The concept of MIL was first introduced by Dietterich et al.

[11] for predicting musk molecular. Since then, numerous research
work has been done in MIL. Roughly speaking, MIL methods can
be separated into three groups, (1) the group that is specifically de-
signed to solve MIL [11, 29]; (2) the group that converts MIL to
traditional single-instance problems and solve the resulting prob-
lem through traditional learning methods [8, 9]. (3) the group that
revises traditional single-instance learning methods by imposing
MIL constraints [2, 7, 15, 16, 23, 24].

For the first group, APR [11], which encloses positive instances
by an axis-parallel rectangle in the feature space, is the first method
to solve MIL problems. Later, Maron and Lozano-Pérez proposed
Diverse Density (DD) [29, 30], which tries to identify the con-
cept point that resembles positive instance most, and classify un-
labeled bags according to the distances between the instances in
these bags and this concept point. In [33, 49], the authors acceler-
ated DD method by applying Expectation-Maximization (EM), and
proposed EM-DD.

In the second group, DD-SVM [9] picks a set of prototypes
among the local solutions from DD method returned by different
initializations and then design a large margin classifier based on
the bag level features extracted from these selected prototypes. In
[8], the authors embedded bags into a feature space spanned by
instances, and apply 1-norm SVM to build the bag level classifiers.

Most of the MIL methods fall into the third group. Andrew et
al.[2] proposed two different MIL formulations based on SVM [6],
i.e., misvm for the instance level classification and MISVM for
the bag level classification. Since the MIL formulations are non-
convex, Gehler and Chapelle tried to use deterministic annealing

and achieved better local solutions [16]. Gärtner et al. [15] put
forward a kernel function directly based on bags. Later, Kwok and
Cheung [24] advanced their work through proposing a marginal-
ized MIL kernel and converting the MIL from an incomplete data
problem to a complete data problem. In [7], the authors revised the
loss functions of single-instance SVM and focus more on the pos-
itive bags with smaller sizes. To improve the efficiency of misvm
and MISVM, bundle method is adapted to solve the non-convex
optimization problem [4]. Furthermore, some research work incor-
porates the MIL constraints into gaussian process [23] and condi-
tional random fields [10]. In [20, 26, 48, 51], the multi-instance
multi-label problem has also attracted a lot of attentions, in which
the labels are not restricted to be binary, but can be a vector. More-
over, some other variants of MIL are also proposed, such as multi-
instance outlier detection [44], multi-instance online learning [3]
and multi-instance ranking [19].

The previous research work is reasonable, and solves emerging
MIL problems from different perspectives. However, few of them
considered the case when examples are derived from multiple in-
formation sources, while the previous work on traditional single
instance learning methods has demonstrated superior performances
of methods that consider the consistencies between different infor-
mation sources over the ones that do not. Out of this motivation, the
proposed framework MI2LS integrates the consistencies between
different sources into a unified framework for MIL, and Fast MI2LS
is proposed to solve the suggested formulation in an efficient and
effective way.

2.2 Learning with Multiple Information Sour-
ces

In a lot of real-world applications, examples are usually extracted
from multiple information sources/views. It has been shown ex-
tensively in prior research that utilizing the consistency between
the multiple sources/views could achieve better performance [5,
12, 22, 25, 35, 39, 45, 47, 50]. In particular, one of the earliest
work in multi-view learning is [5], in which the authors propose
the co-training method to solve problems where the examples are
described by two distinct views. In [12], the authors build clas-
sifiers on different views and constrain the consistencies between
different classifiers on each individual view. Moreover, they show
that the Rademacher complexity of the function class can also be
greatly reduced by regulating the consistencies.

This idea is further exploited in [25], in which the consistency
term is incorporated into multi-view semi-supervised learning prob-
lems, and it has shown a substantial improvement on the classifica-
tion performance. Likewise, in [47], the authors introduce the con-
sistency into local learning [43] and design a novel way to define
the graph Laplacian. When applied to transfer learning [17, 45],
imposing the consistencies between different views also shows su-
perior performances in transferring the knowledge between differ-
ent domains. Most existing multi-view learning methods are for the
single instance settings, while MIL problem naturally exists in real
world applications. So, different from the prior work, in this paper,
the view consistency constraint is further applied to MIL problems,
such that the label ambiguity problem in multi-view learning can
be handled in a more principled way.

3. THE PROPOSED METHOD

3.1 Problem Statement and Notation
Suppose a set of n labeled bags: D = {(Bi,Yi), i = 1, . . . , n}

are available for training, where Bi represents the i-th bag and
Yi ∈ {1,−1} is its binary label. The bag Bi consists of a set
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of instances, and each instance is described by different views. In
particular, the p-th view of instances in the i-th bag Bi are denoted
as {B(p)

i1 , . . . ,B
(p)
ini
}, p = 1, . . . ,M , and B

(p)
ij ∈ R

dp 1. dp is
the dimensionality of the p-th view. ni is the number of instances
in the i-th bag and M is the total number of views. The objec-
tive of Multi-Instance Learning from Multiple Information Sources
(MI2LS) is to design a function f : B → {1,−1} by integrat-
ing the consistencies between different views into MIL, such that
classification on the unlabeled bags could be accurate.

3.2 Formulation
We aim to leverage the instances derived from different informa-

tion sources (views) and their labels simultaneously. The general
framework of MI2LS is as follows:

min
w(p)

Ω(w(1), . . . ,w(M)) + Lc(D,w(1), . . . ,w(M))

+ La(D,w(1), . . . ,w(M)),

where Ω(w(1), . . . ,w(M)) is regularizer that depicts the capacity
of the classifiers on different views, Lc(D,w(1), . . . ,w(M)) rep-
resents the classification loss on the different views given by the
classifiers, La(D,w(1), . . . ,w(M)) measures the consistencies of
the classifiers on different views based on the corresponding classi-
fication outputs. Since in MIL the outputs can be measured on both
the instance level and the bag level, La(D,w(1), . . . ,w(M)) can
also be defined on the bag level, the instance level or on both of the
two levels. Through incorporating these three components, the pro-
posed framework ensures that the classification on each individual
view should be accurate enough and the output of each individual
instance or bag given by the classifiers on different views should be
consistent.

Following this framework and considering the case when fea-
tures are derived from two views without the loss of generality
(M = 2), there are multiple ways of formulating the three dif-
ferent terms. For the first part, one of the possible options to de-
fine the regularizer, which is also the one used in this paper, is
Ω(w(1), . . . ,w(M)) =

∑2
p=1 ‖w

(p)‖2. The hinge loss can be ap-
plied to Lc(D,w(1), . . . ,w(M)) similar to most large marge meth-
ods. The ε-insensitive loss is used to defineLa(D,w(1), . . . ,w(M))2,
which requires the inconsistency between different views of each
instance be within ε error bound and penalizes the discrepancy be-

1In MI2LS, the instances on different views could be derived from
different partition ways and the numbers of instances in the same
bag could be different on different views. Here, we do not con-
sider this case out of simplicity. As we shall see later, the proposed
framework could handle this situation by imposing consistencies
on the bag level.
2In the proposed method, for simplicity, we only consider the case
when the consistency is defined on the instance level. If the consis-
tency is defined on the bag level, then the last constraint of problem
(1) can be re-written to restrict the differences between the outputs
of each bag on different views in a similar way. The resulting opti-
mization problem can be solved using a similar method as the one
proposed in this paper. If the consistency is defined on both of the
two levels, the constraint can be considered as a combination of the
bag and instance level consistencies.

yond this bound. Then, a concrete formulation can be given as:

min
w(1),w(2)

1

2

2∑
p=1

‖w(p)‖2 +
1

n

2∑
p=1

n∑
i=1

C(p)ξ
(p)
i +

C

N

n∑
i=1

ni∑
j=1

ηij

s.t. ∀i ∈ {1, 2, . . . , n}

Yi max
j∈ni

w(1)TB
(1)
ij ≥ 1− ξ(1)i

Yi max
j∈ni

w(2)TB
(2)
ij ≥ 1− ξ(2)i

∀i ∈ {1, 2, . . . , n},∀j ∈ {1, 2, . . . , ni}

|w(1)TB
(1)
ij −w(2)TB

(2)
ij | ≤ ε+ ηij , (1)

where N =
∑n
i=1 ni, C

(1), C(2) and C are trade-off parameters
tuning the importances on the classification losses on the corre-
sponding views as well as the penalty term that measures the con-
sistencies between different views.

The proposed optimization formulation imposed the view con-
sistency assumption into the framework of MIL in a reasonable
way. However, this is a non-convex optimization problem. So, it
cannot be solved directly. Moreover, in many real world problems,
the numbers of bags and instances are huge, which would result
in a large number of constraints and therefore could drastically in-
crease the computational complexity for solving this problem. To
deal with this optimization problem efficiently and effectively, a
concrete method – Fast MI2LS (FMI2LS) is therefore proposed in
the following sections.

3.3 Method
For the convenience of computation, without loss of generality,

we introduce three concatenated vectors as:

w̃ = [w(1)T ,w(2)T ]T ,

B̃
(1)
ij = [B

(1)T
ij ,0d2T ]T , B̃

(2)
ij = [0d1T ,B

(2)T
ij ]T ,

where 0dp is a 1 × dp zero vector. After this transformation, it
is clear that w(p)T B̃

(p)
ij = w̃T B̃

(p)
ij . Then, problem (1) can be

converted to the following form:

min
w̃

1

2
‖w̃‖2 +

1

n

2∑
p=1

n∑
i=1

C(p)ξ
(p)
i +

C

N

n∑
i=1

ni∑
j=1

ηij

s.t. ∀i ∈ {1, 2, . . . , n}

Yi max
j∈ni

w̃T B̃
(1)
ij ≥ 1− ξ(1)i

Yi max
j∈ni

w̃T B̃
(2)
ij ≥ 1− ξ(2)i

∀i ∈ {1, 2, . . . , n},∀j ∈ {1, 2, . . . , ni}

w̃T B̃
(1)
ij − w̃T B̃

(2)
ij ≤ ε+ ηij

w̃T B̃
(1)
ij − w̃T B̃

(2)
ij ≥ −ε− ηij . (2)

Compared with problem (1), although this form is simplified, it is
still non-convex and contains too many constraints. There are mul-
tiple ways of handling the non-convex optimization problems, such
as Constrained Concave-Convex Procedure (CCCP) [41], adapted
bundle method [13] and deterministic annealing [16]. Due to the
popularity of CCCP, we use this method to decompose this non-
convex problem into a series of convex sub-problems and focus on
the resulting convex subproblems. Furthermore, to reduce the time
complexity on solving these subproblems, Stochastic Gradient De-
scent (SGD) [37] method is adapted, such that the algorithm can
find a local optimal solution in linear scale.
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3.4 CCCP with Stochastic Gradient Descent
Given a starting point w̃(0)3, CCCP iteratively computes w̃(t)

from w̃(t−1) by replacing maxj∈ni w̃
T B̃

(1)
ij and maxj∈ni w̃

T B̃
(2)
ij

with their first order Taylor expansions at w̃(t−1). More precisely,
for the t-th iteration of CCCP, the derived subproblem for solving
problem (2) is:

min
w̃

1

2
‖w̃‖2 +

1

n

2∑
p=1

n∑
i=1

C(p)ξ
(p)
i +

C

N

n∑
i=1

ni∑
j=1

ηij

s.t. ∀i ∈ {1, 2, . . . , n}

Yiw̃
T B̃

(1)
ij∗1
≥ 1− ξ(1)i

Yiw̃
T B̃

(2)
ij∗2
≥ 1− ξ(2)i

∀i ∈ {1, 2, . . . , n},∀j ∈ {1, 2, . . . , ni}

w̃T B̃
(1)
ij − w̃T B̃

(2)
ij ≤ ε+ ηij

w̃T B̃
(1)
ij − w̃T B̃

(2)
ij ≥ −ε− ηij (3)

where j∗p = arg maxj w̃
(t−1)T B̃

(p)
ij , and represents the most posi-

tive instance for the i-th bag on p-th view. Through solving a series
of subproblems derived from CCCP, the method is guaranteed to
converge to a local optimal solution of problem (2).

The resulting subproblem is convex. However, the cost of di-
rectly solving this problem is non-trivial, especially when the num-
bers of bags, instances, as well as the resulting constraints for the
optimization problem are large. A lot of research work, such as
bundle method [21, 40] and SGD method, has been proposed to
improve the efficiency of similar optimization problems. In this
paper, due to the superior performance, SGD is employed. Differ-
ent from the traditional SGD method, in problem (3), we have two
different sets of constraints, i.e., the ones on the bags and the ones
on instances. The algorithm receives several parameters, i.e., S -
the number of SGD iterations to perform; k1 and k2 (k1 << n,
k2 << N ) - the number of bags and instances to use for approx-
imating the sub-gradients. At the beginning of SGD algorithm for
the t-th CCCP iteration, we set w̃(t0) to be w̃(t−1)S

α
4, whose norm

is at most
√
C(1) + C(2). Here, the subscript α means that the

output of SGD for the t-th CCCP iteration is an averaged result of
the last corresponding αS SGD iterations. The averaged result is
adopted here because of the superior performance as shown in [34].
For the s-th iteration of the SGD algorithm, we randomly pick a set
of bags As ∈ {1, . . . , n}, and another set of instances Bs from all
of the instances (as indicated by As) in selected bags. By doing so,
the computational cost can be reduced on both the bag level and
the instance level. More precisely, during each SGD iteration, we
replace problem (3) with an approximated convex sub-problem as
follows:

min
w̃

f(w̃, As, Bs) (4)

=
1

2
‖w̃‖2 +

1

k1

2∑
p=1

k1∑
i=1

C(p) max{0, 1− yiw̃
Tx

(p)
i }

+
C

k2

k2∑
i=1

max
{
w̃T z

(1)
i − w̃T z

(2)
i − ε, w̃T z

(2)
i − w̃T z

(1)
i − ε, 0

}
,

where, (x
(p)
i ,yi) represents the instance whose output is the largest

in the corresponding bag given by the classifier w̃t0 , i.e., the in-
3w̃(t) represents the result from the t-th CCCP iteration.
4Here, the superscript ts means the s-th SGD iteration for the t-th
CCCP iteration.

stances indicated by j∗p in Eq.(3), and its corresponding label from
the selected bags inAs5. zi ∈ Bs represents the instances sampled
from all of the instances in selected bags, i.e., As. It is clear that
the subgradient of f(w̃, As, Bs) can be calculated as:

∂f(w̃, As, Bs)

∂w̃
=w̃ − 1

k1

2∑
p=1

k1∑
i=1

C(p)I
(p)
i1 yix

(p)
i

+
C

k2

k2∑
i=1

(Ii2 − Ii3)(z
(1)
i − z

(2)
i ), (5)

where I(p)i1 , Ii2, Ii3 are indicator functions. I(p)i1 equals 1, if
yiw̃

Tx
(p)
i < 1, and otherwise 0; Ii2 equals 1 if w̃T z

(1)
i −w̃

T z
(2)
i >

ε and otherwise 0; Ii3 equals 1 if w̃T z
(2)
i − w̃T z

(1)
i > ε and oth-

erwise 0. By setting the step length to be ηs = 1
s

, the updating
scheme can be written as w̃ts+1 = w̃ts − ηs ∂f(w̃,As,Bs)∂w̃

|w̃=w̃ts .
w̃ts+1 will then be projected to the set {‖w̃‖ ≤

√
C(1) + C(2)}.

Here,
√
C(1) + C(2) is radius of the ball that the optimal solution

of (4) should fall into, as shown in the later section. The final output

is averaged from w̃t(1−α)S to w̃tS as: w̃tS
α = w̃

t(1−α)S+...+w̃tS

αS
for some constant α ∈ (0, 1). Based on the above derivation, the
whole algorithm can be summarized in Table 1.

4. THEORETICAL ANALYSIS
In this section, some important properties of the proposed method,

such as the optimality and generalized error rate, will be analyzed.

4.1 Optimality
It has already been shown in previous work that the CCCP [41]

will converge asymptotically. During each CCCP iteration, SGD is
used for solving the resulting convex sub-problem. In this section,
we will investigate some important properties of the adapted SGD
method, such as the bound of the optimal solution and the differ-
ence between the objective function values of w̃tS

α and that of w̃t∗,
where w̃t∗ refers to the optimal value for the t-th iteration.

Theorem 1: Suppose G(w̃, As, Bs) = 1
k1

∑2
p=1

∑k1
i=1 C

(p)

max{0, 1 − yiw̃
Tx

(p)
i } + C

k2

∑k2
i=1 max{w̃T z

(1)
i − w̃T z

(2)
i −

ε, w̃T z
(2)
i − w̃T z

(1)
i − ε, 0}. Then, ‖∂G(w, As, Bs)‖2 ≤ H2,

where,H2 = C(1)2U (1)2+C(2)2U (2)2+C2 max{U (1)2, U (2)2}+
2C(1)C(2)U (1)U (2) + 2C(1)CU (1)2 + 2C(2)CU (2)2,
U (1) = maxi,j{‖B(1)

ij ‖}, U
(2) = maxi,j{‖B(2)

ij ‖}.
Proof: Please check the Appendix.
Theorem 2: The optimal solution of problem (3) should fall

within the ball of
√
C(1) + C(2).

Proof: Please check the Appendix.
Theorem 2 justifies the reason why during each SGD iteration,

at step 11 of Table 1, the solution will be regulated within the
ball
√
C(1) + C(2), since the optimal solution is guaranteed to be

falling within this ball.
Theorem 3: For the s-th SGD iteration, the following inequality

holds 6:

1

S

S∑
s=1

fs(w̃
ts) ≤ 1

S

S∑
s=1

fs(w̃
t∗) +

(H2 + C(1) + C(2))(1 + lnS)

S

5To avoid confusion, please note that yi indicates the label for the
i-th selected bag from As, while Yi in the previous formulations
refers to the label for the i-th bag in the whole dataset.
6fs(w̃

ts) here refers to f(w̃ts , As, Bs) in problem (4).
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Table 1: The description of FMI2LS
Input: 1. Labeled bags: {(Bi, Yi), i = 1, 2, · · · , n}; 2. parameters: trade-off parameters C(1), C(2) and C; subsample
sizes k1 for bags and k2 for instances; SGD iterations S; averaging constant α.
Output: The classifier w̃tS

α .
CCCP Iterations:
1. Initialize w̃0, t = 0.
2. repeat
3. Derive problem (3).

Stochastic Gradient Descent Iterations:
4. for s = 1, . . . , S
5. Choose As ∈ D, where |As| = k1.
6. Set A+

s = {(x(p)
i ,yi) ∈ As : yi〈w̃ts−1 ,x

(p)
i 〉 ≤ 1}.

7. Choose Bs ∈ As, where |Bs| = k2.
8. Set B+

s = {zi ∈ Bs : max
{

(w̃ts−1)T z
(1)
i − (w̃ts−1)T z

(2)
i − ε, (w̃

ts−1)T z
(2)
i − (w̃ts−1)T z

(1)
i − ε

}
> 0}

9. Calculate ∂f(w̃,As,Bs)
∂w̃

|
w̃=w̃

ts−1 according to Eq.(5).
10. Calculate w̃ts = w̃ts−1 − 1

s
∂f(w̃,As,Bs)

∂w̃
|
w̃=w̃

ts−1 .

11. Update w̃ts = min{1,
√
C(1)+C(2)

‖w̃ts‖ }w̃ts .
12. end for
13. t = t+ 1.
14. w̃(t0) = w̃

(t−1)S
α .

15.until convergence
16. w̃tS

α = (w̃t(1−α)S + . . .+ w̃tS )/αS.

Proof: ‖ ∂fs(w̃)
∂w̃
‖2 ≤ (‖w̃‖+H)2 ≤ (

√
C(1) + C(2) +H)2. By

plugging this result to Corollary 1 of [36], we can get:

1

S

S∑
s=1

fs(w̃
ts) ≤ 1

S

S∑
s=1

fs(w̃
t∗) +

(H +
√
C(1) + C(2))2(1 + lnS)

2S

≤ 1

S

S∑
s=1

fs(w̃
t∗) +

(H2 + C(1) + C(2))(1 + lnS)

S

Theorem 4: With probability over the choices of (A1, . . . , AS)
and (B1, . . . , BS), we have that:

E[F (w̃tS
α )− F (w̃t∗)] ≤

2 + 5
2

log( 1
1−α )

α

(
√
C(1) + C(2) +H)2

S
,

where F (∗) is the objective function in problem (3).
Proof: ‖ ∂fs(w̃)

∂w̃
‖2 ≤ (‖w̃‖+H)2 ≤ (

√
C(1) + C(2) +H)2. By

plugging this into Theorem 5 of [34], we can get this conclusion.

4.2 Generalized Error Bound
In this section, we consider the class of functionsFC(1)+C(2),D =

{g|g : B̃∗ 7−→ 1
2
(maxj w̃

T B̃
(1)
∗j + maxj w̃

T B̃
(2)
∗j )} such that

‖w̃‖2 ≤ C(1) + C(2), and with probability of at least 1− δ,

|w̃T B̃
(1)
ij − w̃T B̃

(2)
ij | ≤ ε+ E(ηij) ≤ D

⇒w̃T (B̃
(1)
ij − B̃

(2)
ij )T (B̃

(1)
ij − B̃

(2)
ij )w̃ ≤ D2

⇒‖w̃‖2 ≤ D2

minij((B
(1)
ij )2 + (B

(2)
ij )2)

⇒‖w̃‖2 ≤ E2, (6)

where E , D/
√

minij((B
(1)
ij )2 + (B

(2)
ij )2).

Theorem 5: The empirical Rademacher complexity of the func-
tional space FC(1)+C(2),D on D = {(Bi, Yi), i = 1, . . . , n} is

upper bounded by: P̂n(FC(1)+C(2),D) =
min{
√
C(1)+C(2),E}
n

×

(maxρij≥0,ρTi 1=1

√∑n
i=1

∑ni
j=1 ρijK(B

(1)
ij ,B

(1)
ij )

+ maxρij≥0,ρTi 1=1

√∑n
i=1

∑ni
j=1 ρijK(B

(2)
ij ,B

(2)
ij )).

Proof: Please check the Appendix.
Theorem 6: Fix κ ∈ (0, 1). Then, with probability at least 1−κ,

every g ∈ FC(1)+C(2),D satisfies: P (Y∗ 6= sign(g(B̃∗))) ≤
1

n
∑2
i=1 C

(p)

∑2
p=1

∑n
i=1 C

(p) max{0, 1−Yig(B̃
(p)
i )}

+ P̂n(FC(1)+C(2),D) + 3
√

ln(2/κ)
2n

.
Proof: This result can be got by applying Theorem 5 to Theorem

4.9 in [38].

5. EXPERIMENTS
In this section, an extensive set of experiments on document clas-

sification and a novel application – insider threat detection is pre-
sented to demonstrate the effectiveness and efficiencies of the pro-
posed method.

5.1 Datasets

5.1.1 Reuters21578
Reuters215787 is a benchmark dataset from Reuters newswire

in 1987. It has 135 categories, with 21578 documents. We pick
documents from 2 sub-categories as the positive examples. The
same amount of documents from the remaining dataset are ran-
domly picked as negative ones. In document classification, if a
document belongs to a specific category, it is highly possible that
not every passage of this document is related to this category. So, it
could be better modeled as a MIL problem. More specifically, sim-
ilar to [2], we treat each document as a bag and use the different

7http://daviddlewis.com/resources/textcollections/reuters21578/.
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Figure 1: Performances Comparisons on Reuters. Some of the experiment results of MILES cannot be reported due to the time
complexity issue as stated in Experiment section.
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Figure 2: Performances Comparisons on WebKB. Some of the experiment results of MILES cannot be reported due to the time
complexity issue as stated in Experiment section.

fixed-length passages as instances. For each of the sub-dataset, af-
ter removing the stop words and stemming, tf-idf [28] features are
extracted and processed by PCA for one information source, and
we use the hidden topics information obtained from Probabilistic
Latent Semantic Analysis (PLSA)8 of the binary word features as
another one. For a detailed description of these two datasets, please
refer to Table 2.

5.1.2 WebKB
WebKB9 is also a benchmark dataset for document classification,

which contains webpages from computer science departments in
around four different universities. There are seven categories in this
dataset, i.e., student, faculty, staff, department, course, project and
other, with 8280 webpages in this dataset. The two most frequently
appeared categories, i.e., course, and faculty, are used for classifi-
cation, where each sub-dataset contains all of the webpages/bags
from one of the two categories, and the same number of the neg-
ative bags randomly sampled from the remaining six categories in
WebKB. We use the same way as we do for Reusters21578 to ex-
tract features from different views and model bags and instances.
The detailed description of the two sub-datasets is summarized in
Table 2.

Dataset # Features View1 # Features View2 # Bags #Instances
Reuters1 528 528 1268 2367
Reuters2 528 528 1256 2145
Course 320 320 1348 3528
Faculty 320 320 1590 4248

ITD 17 12 1166 32235

Table 2: The detailed description of the datasets

8Actually, PLSA[18] can be considered as a dimensionality reduc-
tion method, which maps the documents into some fixed number
of hidden topics. The topic distribution for each document can be
used as low dimensional features.
9http://www.cs.cmu.edu/∼webkb/

5.1.3 Insider Threat Detection (ITD)
We obtained this real dataset from a big IT company. ITD is

a project that is devoted to identify the potential harmful insiders
through analyzing their online activities, such as sending emails,
login, logout, downloaded files, etc. In this project, some experts
are hired to decide whether during each period (around 30 days),
each person in the database did malicious things or not. Based on
these labelings, each online activity is quantified as a feature value.
However, it is highly possible that a person may not do malicious
things on each single day during the period in which he is marked as
guilty. Out of this motivation, the features for the online behaviors
within one day is considered as an instance and the instances during
each period is treated as a bag. If a person is known to have done
some malicious things in a specific period, then the corresponding
collection of instances (days) is considered as a positive bag. Oth-
erwise, this collection of instances will be considered as negative.
The different activities are quantified into numeric features. These
features are further divided into two groups according to the nature
of the corresponding behaviors i.e, the group that describes his so-
cial behaviors such as sending emails and interacting with friends
on social media websites, and the group that depicts things he did
by himself, such as logging in and out of a computer system. The
whole dataset contains 1000 negative bags and 166 positive bags,
where each instance is represented by two different views derived
from the two feature groups as described above. Please refer to
Table 2 for details on the size of the dataset.

5.2 Evaluation Metric
In Reuters21578 and WebKB, since the positive and negative

classes are relatively balanced, we use the classification accuracy
as the measurement criteria. But for ITD dataset, the number of
positive bags is far less than that of the negative ones. So, F1 score
for the top 20 returned results is used here for measurement. In
particular, F1 score is defined as F1@20 = 2× Precision×Recall

Precision+Recall
,

where, Precision and Recall are measured for the top 20 results.
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5.3 Comparison Methods
We compare the proposed method with several state-of-the-art

methods. MISVM and misvm [2] are MIL methods based on SVM.
The difference between MISVM and midvm is that during each it-
eration, to update the classifiers, MISVM tries to find a witness for
each bag, while misvm assigns pseudo labels to all of the instances.
MILES [8] tries to use a single vector to represent each bag through
mapping these bags on a learned space. Citation KNN [42] adapts
KNN to multi-instance by considering two different kinds of neigh-
borhood relationships. These baseline methods could not be used
to solve the multiple view problem directly. So, we concatenate the
features in different views together and treat them as from one in-
formation source. To demonstrate the benefits of ensuring the con-
sistencies between different views without concatenating the fea-
tures, we also conduct experiments by setting C to be 0 (FMI2LS-
0). It is clear that the formulation of the experiments proposed in
[31] can be considered as a special case of FMI2LS-0. For the pro-
posed method, k1 is chosen as 10% of the number of bags, while
k2 is 50% of the instances in sampled bags. α is set to be 0.2. The
number of SGD iterations is set to be 30. By using 5 fold cross val-
idation, C(1) and C(2) are searched through the grid 2[−5:1:7], C is
searched though 2[−3:1:5]. The parameters of the baseline methods
are also tuned similarly.

5.4 Results and Analysis
The experiments are conducted by specifying a specific ratio of

each dataset for training and keeping the rest for testing. The av-
erage results of 20 independent experiments on the three datasets
with different training rations are shown in Fig.1, Fig.2 and Fig.3.

From these experimental results, we can see that the proposed
method performs better than the other baseline methods in most
cases. It is clear that considering the consistencies of examples on
different views in MIL could significantly improve the classifica-
tion performance. The time complexity of the proposed method is
also very low, compared with the baseline methods. This is due to
the fact that SGD could significantly reduce the time complexity.
When compared with FMI2LS-0, it can be concluded that the time
complexity of FMI2LS-0 is similar to that of the proposed method.
But the performance of FMI2LS-0 is inferior. It further demon-
strates the advantages of the proposed method by introducing the
consistencies between different views.

For MISVM and misvm, both of these two methods are tradi-
tional MIL methods. Their performances are good in terms of
both the classification performance and time complexity. However,
since these two methods do not consider the different character-
istics from multiple information sources, and merely concatenate
the different features by using only one feature vector, their perfor-
mances are inferior to that of the proposed one.

Citation KNN is an adaption of nearest neighbor method. More
specifically, it defines two different types of neighbors when mea-
suring the similarities between two bags. It can be seen from the
experiments that one of the major drawbacks for this method is that
its time complexity is too high because it needs to calculate the
distances between test bags and training bags each time. Since it
does not consider the consistencies between different views either,
contenting the features on different views cannot bring in much ad-
ditional benefits.

In MILES, during the training phase, the instances in training
bags are mapped to a space spanned by the instances in positive
bags, and then the most relevant examples are selected through
one norm SVM. The method could capture the most important in-
stances in an optimized way. However, the major issue is that its
time complexity could be extremely high when the number of in-

0.01 0.2 0.4 0.6 0.8
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training Ratio

F
1

@
2

0

ITD

 

 

FMILMIS

FMILMIS−0

MISVM

misvm

Citation KNN

MILES

(a)

0.01 0.2 0.4 0.6 0.8

500

1000

Training Ratio

T
im

e

ITD

 

 

FMILMIS

FMILMIS−0

MISVM

misvm

Citation KNN

MILES

(b)

Figure 3: Performances Comparisons on ITD. F1 score for the
top 20 returned results is used here due to the imbalance of this
dataset. Some of the experiment results of MILES cannot be
reported due to the time complexity issue as stated in Experi-
ment section.

stances in positive bags is large. This drawback could potentially
hinder its uses in practical applications. In our experiments, this
time complexity issue is also very evident. Some experimental
results for MILES cannot be acquired due to the extremely large
amount of training time. The performance of MILES is very com-
petitive, compared with the other baseline methods. However, it is
clear that, from these experiments, its performance cannot exceed
the proposed method either.

6. CONCLUSIONS
In this paper, we investigate an interesting but rarely studied

problem – Multi-Instance Learning from Multiple Information Sou-
rces (MI2LS). To solve this problem, a general framework is pro-
posed to incorporate the consistencies between different informa-
tion sources/views into Multi-Instance Learning (MIL). Based on
the proposed framework, a concrete method, FMI2LS (Fast MI2-
LS) is designed. In particular, the proposed method integrates Con-
strained Concave-Convex Programming (CCCP) method with an
adapted Stoachastic Gradient Descent (SGD) method to solve the
non-convex optimization problem in an efficient way. Some im-
portant properties of the proposed method are analyzed thereafter.
Experimental results on different applications, i.e., document clas-
sification and the newly proposed application – Insider Threat De-
tection (ITD), clearly demonstrate the superior performance of the
proposed method against several other state-of-the-art MIL tech-
niques on both efficiency and effectiveness. Based on the proposed
method, in the future, we plan to extend the current work in the
following ways: (1) In this paper, we didn’t tune the weights of dif-
ferent views in the final classifier for simplicity. However, it is often
the case that the data quality on different views could be different.
We plan to design a method to adaptively tune the weights of dif-
ferent views under the current framework. (2) Due to the nature of
MIL, we can define different kinds of consistencies between views,
i.e., on the instance level, the bag level, and the mixture of bag and
instance level. It is an interesting topic to further investigate which
one works better.
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APPENDIX
Proof of Theorem 1: To prove this theorem, we suppose ιi =
∂max{0,1−yiw̃

T x
(1)
i }

∂w̃
, κi =

∂max{0,1−yiw̃
T x

(2)
i }

∂w̃
,

υi =
∂max{w̃T z

(1)
i −w̃T z

(2)
i −ε,w̃

T z
(2)
i −w̃T z

(1)
i −ε,0}

∂w̃
. Then, the fol-

lowing inequality holds:

‖∂G(w, As, Bs)

∂w̃
‖2 = ‖C

(1)
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k1∑
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C

k2

k2∑
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υi‖2

≤ C(1)2U (1)2 + C(2)2U (2)2 + C2 max{U (1)2, U (2)2}

+ 2C(1)C(2)U (1)U (2) + 2C(1)CU (1)2 + 2C(2)CU (2)2

2

Proof of Theorem 2: Through calculating the dual of problem
(4), it can be concluded that:

1

2
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C(1)

k1

k1∑
i=1

ξ
(1)
i +

C(2)

k1

k1∑
i=1

ξ
(2)
i +

C

k2

k2∑
i=1

ηi

≤− 1

2
‖w̃‖2 +

k1∑
i=1

α
(1)
i +

k1∑
i=1

α
(2)
i + ε

k2∑
i=1

(α
(3)
i − α

(4)
i ),

s.t. 0 ≤ α(1)
i ≤

C(1)
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i ≤ 0, α

(4)
i ≥ 0, 0 ≤ α(4)

i − α
(3)
i ≤

C

k2
,

where α(1)
i , α(2)

i , α(3)
i , α(4)

i are the dual variables corresponding
to the four sets of constraints in problem (3) respectively.

It is clear that,

‖w̃‖2 ≤ C(1) + C(2)

So, the optimal solution of w̃ falls within the ball whose radius
is
√
C(1) + C(2). 2

Proof of Theorem 5: The Rademacher complexity of the func-
tional space FC(1)+C(2),D can be upper bounded as follows:

R̂n(FC(1)+C(2),D) = Eσ[sup
g∈F
| 2
n

n∑
i=1

σig(B̃i)|]

=Eσ[sup
f∈F
| 2
n

n∑
i=1

σi
1

2
(max

j
w̃T B̃

(1)
ij + max

j
w̃T B̃

(2)
ij )|]

=Eσ[sup
f∈F
| 1
n

n∑
i=1

σi(w̃
T B̃

(1)
ij∗1

+ w̃T B̃
(2)
ij∗2

)|]

≤min{
√
C(1) + C(2), E}

n
Eσ[|

n∑
i=1

σi(B̃
(1)
ij∗1

+ B̃
(2)
ij∗2

)|]

≤min{
√
C(1) + C(2), E}

n
×√√√√ n∑

i=1

K(B
(1)
ij∗1
,B

(1)
ij∗1

) +K(B
(2)
ij∗2
,B

(2)
ij∗2

)

≤min{
√
C(1) + C(2), E}

n
×

( max
ρij≥0,ρTi 1=1

√√√√ n∑
i=1

ni∑
j=1

ρijK(B
(1)
ij ,B

(1)
ij )

+ max
ρij≥0,ρTi 1=1

√√√√ n∑
i=1

ni∑
j=1

ρijK(B
(2)
ij ,B

(2)
ij ))
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