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ABSTRACT
Online social streams such as Twitter/Facebook timelines
and forum discussions have emerged as prevalent channels
for information dissemination. As these social streams surge
quickly, information overload has become a huge problem.
Existing keyword search engines on social streams like Twit-
ter Search are not successful in overcoming the problem,
because they merely return an overwhelming list of posts,
with little aggregation or semantics. In this demo, we pro-
vide a new solution called KeySee by grouping posts into
events, and track the evolution patterns of events as new
posts stream in and old posts fade out. Noise and redun-
dancy problems are effectively addressed in our system. Our
demo supports refined keyword query on evolving events by
allowing users to specify the time span and designated evo-
lution pattern. For each event result, we provide various an-
alytic views such as frequency curves, word clouds and GPS
distributions. We deploy KeySee on real Twitter streams
and the results show that our demo outperforms existing
keyword search engines on both quality and usability.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Search process

General Terms
Measurement, Experimentation

Keywords
KeySee, Keyword Search, Event Evolution, Social Stream

1. INTRODUCTION
Online social streams such as Twitter/Facebook timelines

and forum discussions have emerged as prevalent channels
for information dissemination. As these social streams surge
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quickly, information overload (a.k.a. infobesity) has become
a spectacular problem, which leads to“information anxiety”,
the gap between the information we are able to access and
the information we are able to perceive [3]. Current social
stream search engines like Twitter Search1 merely return a
huge list of posts to a given keyword query, with little aggre-
gation or semantics, and leave it to the users to sift through
the large collection of results to figure out the very small por-
tion of useful information. The noisy and redundant nature
of social streams degrades user’s experience further.

On the other hand, since a post like tweet only conveys a
very small piece of information, it would be ideal if we can
group the posts talking about the same event together. Here
we define an “event” as a transient group of posts sharing
the same topic words within a short time span. For exam-
ple, supposing the query is ”iphone 6”, instead of showing
thousands of posts containing “iphone 6”, users expect to
see a small number of events, e.g., “iphone 6 release rumor”.
Users can click on each event to dig into details. Moreover,
as time rolls on, new posts stream in and old posts fade out
quickly, making the events evolve over time. Hence, user’s
experience on searching social streams will be improved a
lot if the keyword search on evolving events is supported.

Searching evolving events in social streams is a challenging
problem. First, the effective organization of meaningful in-
formation from noisy unstructured social streams is not easy.
Second, the tracking of evolving events and their evolution
patterns in a streaming environment is a challenging prob-
lem from an effectiveness and efficiency standpoint. Third,
supporting efficient keyword search on evolving events poses
new challenges for query optimization.

In this demo, we propose a system called KeySee to sup-
port Keyword Search on evolving events tracked from social
streams. In related work, an efficient index structure for
tweets is proposed in [1] and an NLP-based tweet search
platform is introduced in [4]. Both [1] and [4] produce re-
sults similar to Twitter Search, as shown in Figure 1(a).
TweeQL [5] is a query language that allows tweets to be
queried by exposing fields like location and text, and of-
fering predicates on them. TwitInfo [6] detects peaks in
tweets containing keywords specified by users. Note that a
peak detected by TwitInfo is a group of tweets containing
designated keywords, but not necessarily an event telling
the same story. There are a handful of related works [6,
8, 7] that focus on detecting new emerging events from
social streams. However, events may evolve in different
ways, and various evolution patterns can be defined, e.g.,

1https://twitter.com/search-home
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Figure 1: (a) Search “Google Nexus” in Twitter
Search. (b) Search “(Google Nexus, 1/1/2013-
4/1/2013, ∅)” in KeySee. For each event result,
KeySee provides four analytic views: volume curves,
word clouds, GPS distributions and timelines.

emerge/disappear, grow/decay and merge/split. Users may
be interested in monitoring the whole life cycle of events,
which is not addressed by existing work on event detection
from social streams.

In this demo, KeySee supports a complete set of event evo-
lution patterns as shown in Figure 2(b), and emerge is just
one pattern in the set. KeySee provides users the ability to
search the events that are evolving with a designated pattern
in a given time span. The form of query input KeySee sup-
ports is (K,T, P ), where K is a set of keywords, T is a time
span and P is an event evolution pattern. Any member in a
KeySee query can be empty but not all of them, i.e., (∅, ∅, ∅)
is not allowed. If the keyword list is empty, the KeySee
query means finding all events satisfying designated pattern
in a specific time span. For example, (∅, 3/1/2013-3/7/2013,
disappear) means finding the disappeared events in the first
week of March 2013. The flexibility of KeySee query makes
it more powerful than traditional keyword search systems.

The techniques we use in this demo are summarized as
follows. We first extract entities (keywords) from a so-
cial stream and transform it into an evolving post network
by measuring pairwise post similarity. Then, density-based
clustering is applied to identify events, defined as dense sub-
graphs, from the post network. As the time window moves,
evolution patterns of events are tracked incrementally. To
support keyword query on evolving events, a event evolution
graph is built by treating each event snapshot as a node,
and the evolution trajectory between snapshots as paths.
An event will be a chain in the evolution graph. Based on
the observation that the distribution of events on keywords,
moments and patterns are very skewed, an optimal query
plan is chosen by heuristically selecting the dimension with
the lowest probability (i.e., highest selectivity) first. Finally,
event results will be ranked and presented to users.

Figure 1 shows the results of searching “Google Nexus”
in Twitter Search and KeySee respectively. While Twitter
Search returns an overwhelming list of tweets with noise and
redundancy, KeySee returns a small number of aggregated
events. Each event is annotated with a short text. Users can
click buttons below each event to view the event from specific
perspectives. KeySee provides four analytic views: volume
curves, word clouds, GPS distributions and timelines.
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Figure 2: (a) The correlation between posts in a
time window of social streams is captured by a post
network, which is indexed by inverted keyword in-
dex. (b) Each event snapshot is a dense subgraph
in post network. The evolution patterns between
event snapshots will be tracked and preserved for
keyword search on evolving events.

2. TRACKING EVOLVING EVENTS FROM
SOCIAL STREAMS

2.1 Social Stream Preprocessing
Social posts such as tweets are usually written in an infor-

mal way with lots of grammatical errors, and even worse, a
correctly written post may have no significance and be just
noise. Our target is to design a processing strategy that can
quickly judge what a post talks about and is robust enough
to the informal writing style. In particular, we treat the en-
tity words in a post as keywords, since entities depict the
topic. For example, given a tweet “iPad 3 battery pointing
to thinner, lighter tablet?”, the entities are “iPad”, “battery”
and “tablet”. Traditional Named Entity Recognition tools
only support a narrow range of entities like locations or or-
ganizations. We broaden the applicability by treating nouns
as candidate entities. Finally, a post p is described as a triple
(pL, pτ , pu), where pL is the list of keywords, pτ is the time
stamp and pu is the author. The similarity between posts is
measured by a combination of content similarity and tem-
poral proximity, written as

S(pi, pj) =
|pLi ∩ pLj |

|pLi ∪ pLj | · e|p
τ
i −pτj |

(1)

We monitor social streams using a sliding time window
with length Len, as illustrated in Figure 2(a). At moment t,
all posts in the time window [max{t− Len, 0}, t] constitute
the snapshot of current social streams. A post network at
moment t can be defined as a graph Gt(Vt, Et), where each
node p ∈ Vt is a post, and an edge (pi, pj) ∈ Et is constructed
iff S(pi, pj) ≥ ε0, where 0 < ε0 < 1. As the time window
moves forward, new posts flow in and old posts fade out
and Gt(Vt, Et) is dynamically updated at each moment, with
new nodes/edges added and old nodes/edges removed. We
illustrate this process in Figure 2(a). Len and ε0 will be
empirically set.
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2.2 Event Identification in Post Network
An event snapshot e can be defined as a dense subgraph

in post network. The intuition is that, since post network
is constructed by pairwise post similarity, a dense subgraph
with high internal connectivity shares the same topical words.
Various clustering approaches can be applied on a post net-
work to extract dense subgraphs. In this demo, we choose
density-based clustering [2] and distinguish nodes in Gt(Vt, Et)
into three types: core posts, border posts and noise posts, by
tuning density parameters. The reason we opt for density-
based clustering is that, compared with partitioning-based
approaches (e.g., K-Means) and hierarchical approaches (e.g.,
BIRCH) [2], density-based clustering (e.g., DBSCAN) de-
fines clusters as areas of higher density than the remainder
of the data set, which is robust to noise in social streams.

2.3 Tracking Event Evolution
We use E to denote an event and e is a snapshot of E

at a specific moment. For simplicity, if we talk about event
e, it actually means event E at moment t. Let St denote
the set of events at moment t. We analyze the evolutionary
process of events at each moment and abstract them into
four primitive patterns and two composite patterns. The
four primitive patterns are emerge, disappear, grow and de-
cay. The two composite patterns are merge and split, which
can be decomposed into a series of emerge and disappear
patterns. From moment t to t+ 1, they are defined below.

• emerge: add event e to the event set St;
• disappear : remove event e from the event set St;
• grow : increase the size of e by adding new posts;
• decay : decrease the size of e by removing old posts;
• merge: remove a list of events {e1, e2, · · · , en} from St

and add a new event e, where e = e1 + e2 + · · ·+ en;
• split : remove an old event e from St and add a list of

events {e1, e2, · · · , en}, where e = e1 + e2 + · · ·+ en.
Compared with primitive patterns, merge and split are

not very common in event evolution. To a specific event,
emerge/disappear or merge/split can only happen once, but
grow/decay may happen at each moment. Thus, if the evo-
lution pattern P in the query (K,T, P ) is grow or decay, it
is natural to find events evolving with pattern P at every
moment in T ; otherwise, it is natural to find events with
pattern P at at least one moment in T .

In the following, we explain how to track event evolution
incrementally as the post network gets updated. Suppose a
post p is added into the post network. If p is a noise post,
we simply ignore p. If p is a border post to the neighboring
event e, grow e. If p is a core post without neighboring event,
a new event emerges. If p is a core post that is a neighbor
of exactly one event e, grow e. If p is a core post that is
a neighbor of multiple events {e1, e2, · · · , en}, merge them
into a new event. The analysis of event evolution patterns
for removing a post p from post network is very similar. We
show evolution patterns of various cases in Table 1.

3. SUPPORTING KEYWORD SEARCH
We built a social stream by aggregating all the timelines

of Twitter users in the Technology category of “Who to fol-
low”2 and their followees. This dataset has 5,196,086 tweets,
created by 224,242 users, with a time span from Jan. 1 to

2http://twitter.com/who to follow/interests

Table 1: Event evolution patterns
Cases Add Remove
If p is a noise post - -
If p is a border post to the
neighboring event e

grow decay

If p is a core post without
neighboring event

emerge disappear

If p is a core post to exactly one
neighboring event e

grow decay

If p is a core post to multiple
neighboring events {e1, e2, · · · , en} merge split

grow 

Jan 16, 2012 
SOPA Wikipedia Protest 

Jan 17, 2012 
SOPA Wikipedia blackout 

Jan 18, 2012 
SOPA PIPA protest 

Jan 18, 2012 
Apple products 

Jan 19, 2012 
SOPA protest and Apple 

Jan 20, 2012 
SOPA PIPA protest and 
Apple iBooks 

Jan 21, 2012 
SOPA PIPA protest 

Jan 21, 2012 
Apple iBooks 

grow 

merge 
merge 

decay 

split split 

Figure 3: (a) The evolution of events related to
“Stop Online Piracy Act (SOPA)”. We illustrate the
snapshots of events by word clouds in this example.
Notice that an event can be described in various
ways, e.g., frequency curves, Map view, timelines
and word clouds.

Feb. 1, 2012. We deploy KeySee on top of this social stream,
by setting Len=1 day and ε0 = 0.3.

3.1 Event Evolution Graph
Each event has its life cycle. An event can be born by

emerging, merging or splitting. As an example, we show
the evolution of events related to “Stop Online Piracy Act
(SOPA)” in Figure 3, by illustrating each event snapshot
by a word cloud. As we can see, the merging of “sopa
pipa protest” and “Apple products” makes the birth of a
new event called “sopa protest and Apple” on Jan 19, which
evolves on Jan 20 and splits into two events on Jan 21.

The evolution of events in a social stream can be captured
by a directed graph, where each node ea is a snapshot of an
event Ea, which is basically a dense subgraph in the post
network, and an edge between node ea and eb means “ea
evolves into eb”, which is annotated by an evolution pattern.
We call this graph event evolution graph. Figure 4(b) shows
the evolution graph regarding events illustrated in Figure
3. If an event spans several time moments, the snapshots
of this event should be connected by grow or decay only.
For example, the chain (e1, e2, e3) is an event. Merge is
a composite pattern, which terminates multiple events and
produces a new event in the same time. Split works in an
opposite way. In a nutshell, event evolution graph preserves
the whole history of event evolution patterns, and serves as
basis for keyword search on evolving events. Given a query

1480



e1 e2 e3

e4

e5 e6

e7

e8

16 17 18 19 20 21
January, 2012

grow grow
merge

merge

grow
split

split

(a)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

Mon Tue Wed Thu Fri Sat Sun

C
ou

nt
 

dotted line: week samples 
solid line: average count 

(b)

0
100
200
300
400
500
600
700
800
900

1000

1 35 69 10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

40
9

44
3

47
7

51
1

54
5

57
9

61
3

64
7

68
1

71
5

74
9

78
3

81
7

85
1

88
5

91
9

95
3

98
7

C
ou

nt
 

Keywords 

(c)

Figure 4: (a) Evolution graph of events shown in Figure 3. Each event has a snapshot at each moment in its
life cycle, and each edge points from an old snapshot to a new snapshot. (b) The number of tweets on each
day of a week in 5 samples (dotted lines) and the average (solid line). All of them show weekend tweet traffic
is obviously smaller than weekdays. (c) The count of tweets for top 1000 keywords ranked in descending
order. The curve suggests the distributions of keywords among tweets are very skew.

(K,T, P ), KeySee will find the events with evolution pattern
P in the time span T that hit keywords K.

3.2 Query Plan Selection
The queries we support in this demo has three dimensions:

keywords, time span and evolution pattern. We observe that
the distributions of social streams on these three dimensions
are very skewed. Figure 4(b) shows the frequency of tweets
on each day of a week in 5 samples, and it indicates that
the frequency of tweets on weekdays are obviously higher
than the frequency on the weekend. Figure 4(c) shows the
count of tweets for top 1000 keywords ranked in descending
order. The power law distribution suggests that a very few
keywords have very high occurrence. Empirical study also
shows merge and split patterns occur much less frequently
than other patterns. All this skewness in social streams
indicates the scope for query optimization.

Theoretically, query optimization relies on the cost esti-
mation of alternative query plans, which are in turn de-
cided by the selectivities on each dimension. In practice, we
maintain the probability mass functions (PMF) of keywords,
moments and patterns and estimate the selectivity on each
dimension. A heuristic rule is applied by always selecting
the dimension with the lowest probability (i.e., highest se-
lectivity), making it likely that the intermediate results fit
in memory, facilitating pipeline processing. For example, if
PMFT < PMFK < PMFP , the query plan chosen by our
system will find all events in time span T first, retain the
events with keywords K, and only keep those with evolu-
tion pattern P . The percentage of events in the result set is
estimated by

P (K,T, P ) = PMFT · PMFK · PMFP (2)

3.3 Rank Event Results
Event results will be ranked by the score function and

presented to users. Given event E and a KeySee query Q =
(K,T, P ), we define the score function as a combination of
normalized keyword frequency and event volume changing
function, that is

s(E,Q) =
min{f(k,E) : k ∈ K}
max{f(x,E) : x ∈ EK} · w(E,Q) (3)

w(E,Q) =

{ |Δ|E||
|E| if P ∈ {grow,decay}

1 otherwise
(4)

where f(x,E) is the frequency of keyword x in event E
and EK is the set of all keywords in E. Δ|E| is the volume
change of the event at the beginning and end of the time
span T , which is applicable only when P ∈ {grow,decay}.

4. CONCLUSION
The information overload problem in current social web

age can be frustrating to the user. Existing keyword search
engines on social streams are not successful in conquering
the problem, because they merely return a huge list of posts,
with little aggregation or semantics. To overcome the infor-
mation overload problem and filter out the noise and redun-
dancy in social streams, we propose KeySee, which trans-
forms a social stream into an evolving post network and
uses density-based clustering to identify the events. As time
rolls on, event evolution patterns are tracked and stored in
an evolution graph. KeySee supports refined keyword query
on evolving events by allowing users to specify the time span
and the evolution pattern. Empirical study on real Twitter
streams shows that KeySee outperforms existing keyword
search engines on both quality and usability. In the fu-
ture work, we look forward to running KeySee on very high
throughput Twitter streams and performing advanced ana-
lytics on events, such as sentiment analysis, link prediction,
recommendation, etc.
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