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ABSTRACT
With the growth of location-based services and social services, low-
sampling-rate trajectories from check-in data or photos with geo-
tag information becomes ubiquitous. In general, most detailed mov-
ing information in low-sampling-rate trajectories are lost. Prior
works have elaborated on distant-time location prediction in high-
sampling-rate trajectories. However, existing prediction models are
pattern-based and thus not applicable due to the sparsity of data
points in low-sampling-rate trajectories. To address the sparsity
in low-sampling-rate trajectories, we develop a Reachability-based
prediction model on Time-constrained Mobility Graph (RTMG)
to predict locations for distant-time queries. Specifically, we de-
sign an adaptive temporal exploration approach to extract effective
supporting trajectories that are temporally close to the query time.
Based on the supporting trajectories, a Time-constrained mobility
Graph (TG) is constructed to capture mobility information at the
given query time. In light of TG, we further derive the reacha-
bility probabilities among locations in TG. Thus, a location with
maximum reachability from the current location among all possi-
ble locations in supporting trajectories is considered as the predic-
tion result. To efficiently process queries, we proposed the index
structure Sorted Interval-Tree (SOIT) to organize location records.
Extensive experiments with real data demonstrated the effective-
ness and efficiency of RTMG. First, RTMG with adaptive tempo-
ral exploration significantly outperforms the existing pattern-based
prediction model HPM [2] over varying data sparsity in terms of
higher accuracy and higher coverage. Also, the proposed index
structure SOIT can efficiently speedup RTMG in large-scale trajec-
tory dataset. In the future, we could extend RTMG by considering
more factors (e.g., staying durations in locations, application us-
ages in smart phones) to further improve the prediction accuracy.
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1. INTRODUCTION
With the growth of location-aware technologies and location based

Internet services (e.g., Foursquare and Places on Facebook), track-
ing or collecting a huge amount of trajectories of users becomes
feasible. Given a set of trajectories, prior work in [2] has formu-
lated a distant-time query, where given a query time, the current lo-
cation and time, an estimate location of moving objects at the query
time is returned. The distant-time query is useful in many applica-
tions, such as content-based delivery networks, inferring regions
for tourism recommendations, and estimating the traffic status for
transportation management [7].
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Figure 1: Framework Overview
Time-ordered check-in records of a user becomes ubiquitous as

users could easily perform check-in services (e.g., Foursquare) to
note their locations with a mobile phone or people can share geo-
tagged photos whose time-stamps and geo-locations on a photo
sharing website (e.g., Flickr). Without loss of generality, the time-
ordered check-in records of a user are able to be expressed as low-
sampling-rate trajectories, where details of movement information
are lost [8]. A considerable amount of efforts has been devoted
to design location prediction models [2, 5, 3]. For example, the
authors in [5] proposed a location prediction model to infers next
location of a user based on collective frequent patterns discovered
from previous trajectories of all users. However, [5] fails to predict
distant-time future locations. A hybrid prediction model (HPM) in
[2] partially address the problem of answering distant-time future
locations. HPM relies on frequent moving patterns discovered from
past trajectories as well as existing motion functions using the ob-
jectąęs recent movements to support future location queries. While
pattern-based prediction models over high-sampling-rate trajectory
databases show promising query results, it fails to effectively pre-
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dict distant-time location queries over low-sampling-rate trajecto-
ries in terms of both coverage and accuracy because HPM can fail
to discover frequent moving patterns due to data sparsity.

In this paper, we address the sparsity issue in low-sampling-rate
trajectories for distant-time query. Specifically, given current loca-
tion at the current time point and a query time, we aim to predict
the location of a user at query time. We present a Reachability-
based prediction model on Time-constrained Mobility Graph (ab-
breviated as RTMG) that investigates user’s reachability and de-
termines the possible candidate locations. Given a query, the core
components in RTMG are as follows:

• Adaptive Supporting Trajectory Retrieval: By expanding
investigation time interval between current time and query
time, we can infer paths from region A to other regions within
the investigation time interval. These trajectories are called
supporting trajectories.

• Time-Constrained Mobility Graph: Based on the support-
ing trajectories, a Time-constrained mobility Graph (abbre-
viated as TG) that captures a user’s moving behavior within
a time interval is constructed.

• Reachability Probabilities: In light of TG, we derive reach-
ability probabilities of vertexes (i.e., the locations) in TG and
thus determine the most likely location at the query time.

2. FRAMEWORK OVERVIEW
RTMG consists of two phases, off-line trajectory pre-processing

and on-line location prediction as shown in Figure 1. The following
subsections briefly describe how each module works.

2.1 Off-Line: Trajectory Pre-processing
Derive Trajectory Snapshots: In off-line phase, we derive a se-
quence of trajectory snapshots from raw trajectories to better cap-
ture the spatial and temporal correlations. Formally, given a trajec-
tory database Td of equal time interval (e.g., a day) and a time cell
size δt, a sequence of trajectory snapshots C(δt,L)={C1, ..., Cn}
is obtained by partitioning the trajectory database in temporal di-
mension into n time cells of equal size (i.e., n · δt = d) and trans-
forming location records into region symbols L discovered from
original location records. Figure 3 illustrates an example of trajec-
tory snapshot in daily scale and the location information of records
is represented by region identifications. For example, trajectory T1

consists of six location records ⟨g1,1, ..., g1,6⟩. Snapshot C2 con-
sists of two regions C and D.
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Figure 3: Trajectory database
Data-centric Index Structure: To improve efficiency of query
processing, we design an index structure, Sorted Interval-Tree (SOIT),
to structure user mobilities according to their time locality into a
data-centric balanced tree. Several operators are defined to effi-
ciently retrieve supporting trajectories and infer time-constrained
mobility network on-the-fly. SOIT indexes a set of location records
into a balanced tree such that each leaf time cell contains similar
amount of data by partitioning a timeline into a sequence of time
cells and maintaining a set of location records in each time cell no

more than the size of b, where b is the branching factor. Figure 4 il-
lustrates a set of location records indexed by SOIT with a branching
factor of three. Centered at Q.ct=5am, the partitions that overlap
with the time point is N12, which consists of three location records,
one locates at location C and the other two locate at location D.

Each leaf time cell of SOIT is associated with a group of inverted
files, where each inverted file stores a group of location records
with their time-stamps covered by the leaf time cell. Each record in
an inverted file that is covered by time cell N contains four entries:
(1) Now: location record covered by N , (2) Next: location record
immediately after Now, (3) TD: travel time between the end time
of Now and the start time of Next and (4) SD: total time that a
user stayed during Next. All leaf time cells are sorted according
their start time in ascending order and are connected into a list with
sibling link for efficient query processing.
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Figure 4: Indexing scheme and query processing
SOIT facilitates efficient retrieval of time cells based on their

temporal locality. To achieve this, we modify the general insertion
procedure of building a balanced R-tree by grouping and ordering
time intervals according to their start points. The idea of finding a
time cell that an incoming location record should be inserted is as
follows. If the time cell has enough space, then the location record
is inserted to the time cell. Otherwise the time cell is split into
two. Let g denote a location record to be inserted. If the minimum
bounding time interval of an entry e in a time cell contains the start
time of g, we can place g in entry e in ascending order of their start
times. Then we follow the pointer of the current entry. Recursively,
we continue this procedure until a leaf time cell is reached.

2.2 On-Line: Location Prediction
Adaptive Supporting Trajectory Retrieval: Adaptive temporal
exploration aims to dynamically determine the time interval for a
query based on the temporal correlation between the query and cur-
rent set of supporting trajectories. We invoke adaptive temporal
exploration if we do no have sufficient and high quality support-
ing trajectories to develops the prediction model for a given query.
Specifically, if we do not have sufficient supporting trajectories in
the desired time interval, we broaden the time interval with the
guidance of temporal correlation between the query and current set
of supporting trajectories. Otherwise, we accomplish the extraction
of supporting trajectories in the desired time interval. If the entire
timeline is investigated, essentially the whole set of trajectories is
used to provide more information, and thus may be more useful.

When the entire timeline is investigated (i.e., full exploration
with k = n

2
), essentially the entire set of trajectories will be con-

sidered as the set of supporting trajectories, where n is the number
of snapshots.
Time-Constrained Mobility Graph: Inspired from the previous
work [3], we model user mobility behavior as a Time-constrained
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(a) All Regions (b) Time-Constrained Regions

Figure 2: Screenshots of region investigation: (a) frequently vistaed regions; (b) frequently vistaed regions constrained on a temporal
condition (i.e., current time)

mobility Graph (abbreviated as TG). TG is represented as a directed
weighted graph TGQ=(V ,E,W ), where each node v ∈ V repre-
sents a location and each edge e(u,v) represents a transition from
location u to location v weighted by transition frequencies denoted
w(u,v). TG is built from the set of supporting trajectories. Explic-
itly, for each supporting trajectory Si,j,k, the set of unique locations
in Si,j,k forms V . A path from the location associated with loca-
tion record j to the location associated with location record k is cre-
ated and the transition probability associated with an edge e(u, v)
is updated accordingly. Consequently, from the set of supporting
trajectories, TG is able to capture movement behaviors during the
time interval [Q.ct, Q.qt].
Reachability Probabilities: Most previous studies evaluated the
possibility of a candidate location merely according to mobility
statistics such as immediate transition probabilities of moving pat-
terns [2] or the traveling probability of a path [3]. For example,
given a candidate path P : v1 → ... → vk up to a prediction length,
MaxLike in [3] returned the path vk as the predicted answer if the
travel probability of the path P is maximized among all possible
paths between v1 and vk.

The mobility statistics collected from low-sampling-rate trajec-
tories are very sparse and making prediction merely based on sparse
mobility statistics of a single transition or a single path derived from
a mobility graph may bias the prediction results. In addition, rather
than probabilities of single immediate transition or single path, the
probability of connectivity between node pairs is an important in-
dicator of closeness of the node pair. Some node pairs that are
located structurally close to each other in a time-constrained mo-
bility graph and can be easily identified based on simple mobility
statistics, e.g., immediate transition probability.

To incorporate both immediate transition frequency and connec-
tivity in distant-time location prediction, we use the metric, reach-
ability RCH , to estimate the probability that a user is located at
each candidate region on a TG.

Definition (Reachability) Let A be the |V | × |V | transition prob-
ability matrix of a time-constrained mobility graph TG GQ. Given
the restart probability c ∈(0,1), the reachability from Q.cl to any
node v ∈ V is denoted as a vector RCHQ.cl. RCHQ.cl can be
derived by

RCHk
Q.cl = cEQ.cl + (1− c)RCHk−1

Q.clA (1)

when RCHQ.cl is converged, where EQ.cl is a vector, the entry
representing Q.cl is one and the rest entries are set to be zero.

Given a query Q and its TG GQ, we propose to compute the
reachability between Q.cl and v ∈ V in GQ as a metric to predict
the user’s location at query time Q.qt.

3. DEMONSTRATION PLAN

3.1 Demonstration Settings
We utilize Gowalla dataset to verify our prediction model. The

dataset contains 50 users, 113 decomposed trajectories in daily-
scale, and 30 distinct user-specific regions on average. The aver-
age time interval between consecutive location records is approxi-
mately 17 days. The regions were discovered by OPTICS [1] with
ε set to be 100 meters and MinPts set to be three.

3.2 Demonstration Scenarios
From this interactive interface 1, users can format several queries

to investigate particular user’s movement behavior and visualize
future locations at query time. We describe each of them as follows:
Show frequently visited regions: To visualize user’s frequently
visited regions, we can format a query by selecting a user ID, each
frequently visited region will be expressed as a red-colored rectan-
gle shown on the map. The set of regions are derived by OPTICS
algorithm which is widely used to mines dense regions from a se-
quence of location points. For example, Figure 2a shows the set of
frequently visited regions of the user (ID=48537).
Show time-constrained regions: To visualize frequently visited
regions constrained at a timepoint of interest, we can format a query
by selecting a user ID and the timepoint of interest. The set of
regions visited at specified timepoint will displayed as purple re-
gions. This helps us to investigate the correlation between time and
locations. For example, Figure 2b illustrates two purple regions
(Region 0 and Region 10) correlated with the timepoint 12pm for
the user (ID=48537).
1http://carweb.cs.nctu.edu.tw/ shiang/DTLP2/index.html
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(a) One Query Time (b) All Query Times

Figure 5: Screenshots of two typical location prediction: (a) future locations at possible query times; (b) top-k future locations at
specified query time and its time-constrained mobility graph

Following this, we implement two functionalities to visualize lo-
cation prediction results as shown in Figure 5.
Future location at specified query time and its time-constrained
mobility graph: Given the user ID, a current location, a current
time, and a query time, this functionality shows the top-3 future lo-
cations with maximum reachabilities at specified query time, where
a region attached with a white label CL is the user’s current loca-
tion, a yellow tag with a ranking number is attached to returned lo-
cations and the actual location at the query time (i.e., ground truth)
is displayed as a green region. For example, given user ID to 48537,
current time 12pm at region 0, specifying query time at 5pm and
pressing prediction button, the system returns top-3 candidate lo-
cations at 5pm with a yellow tag indicating their rank as illustrated
in Figure 5a. In this case, the actual location at 5pm (expressed as
green region) is also the top-1 predicted location.

Additionally, we also illustrate the time-constrained mobility graph
connecting historical traversed regions between the current time
and the query time, where nodes represent regions and edges repre-
sent the transition probabilities between two regions. As illustrated
in Figure 5a, it shows the mobility graph with four nodes and three
edges, where the transition probability from one region to another
is recorded in INFO icon. For example, the INFO shows that the
transition probability from region 10 to region 2 is 0.074.
Future location at all possible query time: Given the user ID, a
current location, a current time, this functionality shows all future
locations at all possible query time. As shown in 5b, given user
ID to 48537, current time 12pm at region 0, selecting all cases at
step 4 and pressing prediction button, the system will return all
possible locations at varying query times. In this case, two possible
locations (region 0 at 2pm and region 11 at 12pm) are returned and
displayed in purple-colored rectangles on the map.

4. FURTHER DISCUSSION
To address the sparsity in low-sampling-rate trajectories, we de-

velop a Reachability-based prediction model on Time-constrained
Mobility Graph (RTMG) to predict locations for distant-time queries.
The prototype of Reachability-based prediction model we imple-
mented can be applied to many different scenarios, including urban
planning[4], location recommendation or even location-based con-
tent delivery networks (e.g., coupons) [6] by incorporating user’s

future location as a feature to intelligently deliver spatio-temporal
sensitive information.
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