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ABSTRACT 

Information about urban air quality, e.g., the concentration of 

PM2.5, is of great importance to protect human health and control 

air pollution. While there are limited air-quality-monitor-stations 

in a city, air quality varies in urban spaces non-linearly and 

depends on multiple factors, such as meteorology, traffic volume, 

and land uses. In this paper, we infer the real-time and fine-

grained air quality information throughout a city, based on the 

(historical and real-time) air quality data reported by existing 

monitor stations and a variety of data sources we observed in the 

city, such as meteorology, traffic flow, human mobility, structure 

of road networks, and point of interests (POIs). We propose a 

semi-supervised learning approach based on a co-training 

framework that consists of two separated classifiers. One is a 

spatial classifier based on an artificial neural network (ANN), 

which takes spatially-related features (e.g., the density of POIs 

and length of highways) as input to model the spatial correlation 

between air qualities of different locations. The other is a 

temporal classifier based on a linear-chain conditional random 

field (CRF), involving temporally-related features (e.g., traffic 

and meteorology) to model the temporal dependency of air quality 

in a location. We evaluated our approach with extensive 

experiments based on five real data sources obtained in Beijing 

and Shanghai. The results show the advantages of our method 

over four categories of baselines, including linear/Gaussian 

interpolations, classical dispersion models, well-known 

classification models like decision tree and CRF, and ANN. 
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H.2.8 [Database Management]: Database Applications - data 
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1. INTRODUCTION 
Real-time air quality information, such as the concentration of 

NO2, PM2.5, and PM10, is of great importance to support air 

pollution control and protect humans from damage by air 

pollution. In reality, however, there are insufficient air quality 

measurement stations in a city due to the expensive cost of 

building and maintaining such a station. As demonstrated in 

Figure 1 A), an air quality monitor station usually needs a certain 

size of land, non-trivial money (about 200,000 USD for 

construction and 30,000 USD per year for maintenance), and 

human resources to regularly take care of it. As a result, for 

instance, Beijing only has 22 stations covering a 50× 50km 

land(113km2/per station), as illustrated in Figure 1 B). 

 
Figure 1. Examples of air quality monitor stations 

Unfortunately, urban air quality varies by locations non-linearly 

and depends on multiple factors, such as meteorology, traffic, land 

use, and urban structures. As depicted in Figure 2 A), the air 

quality indices (AQIs) reported by stations     and     are quite 

different at 11am on 3/27/2013, though they are geospatially close 

(about 3km away). As shown in Figure 2 B), the phenomenon is 

not a coincidence according to the distribution of the deviation 

between the PM2.5 of the two stations reported at the same time of 

day (from Feb. 8 to May 27, 2013). Over 37 percent of the cases 

have a deviation greater than 100. Figure 2 C) further shows the 

mean deviation among the 22 stations in Beijing, changing over 

time of day. Figure 2 D) presents the distribution of the deviation 

among these 22 stations cross 3 months. All these results well 
demonstrate the skew of air quality in urban spaces. 

 
Figure 2. The difference between AQIs from different stations 

In this paper, we infer the real-time and fine-grained air quality 

information throughout a city using (historical and real-time) air 

quality data reported by a limited number of existing monitor 

stations and a variety of data sets we observed in the city, such as 

meteorology, traffic flow, human mobility, structure of road 

networks, and POIs. Although environment scientists have been 

proposing models to approximate the relation between air quality 

and some factors like traffic and wind, these models are usually 

based on empirical assumptions and parameters that may not be 

B) Air quality measurement stations in Beijing
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applicable to all urban environments [9] (detailed in the related 

work section). The methodology based on crowd and participatory 

sensing (e.g., using sensor-equipped mobile phones) could work 

for a very few kinds of gas like CO2 but not applicable to aerosols 

and other pollutants, such as PM2.5, PM10, and NO2. The devices 

for detecting the latter pollutants are not easily portable and 

usually need a relatively long sensing period (e.g., 1~2hours) 

before generating an accurate AQI. 

Recently, big data reflecting city dynamics have become widely 

available [11][14], e.g., traffic flow, human mobility, and 

meteorology, enabling us to solve this challenging problem from a 

data perspective. According to existing studies [9], these data 

have a strong correlation with air qualities (detailed in Section 3). 

Using machine learning and data mining techniques, we build a 

network between air quality labels and features observed across 

multiple heterogeneous data sources. Figure 3 A) shows an 

example (Sept. 19, 2012 1pm in Beijing) of the results inferred by 

our method (U-Air), demonstrating the advantage beyond linear-

interpolation, as depicted in Figure 3 B). To verify the validity of 

our method, we first remove two stations (   and   ) from Beijing 

(marked with two boxes) and predict the AQIs of the two with the 

rest of stations (denoted by gray points). The reports of the two 

stations are then employed as a ground truth (  =M,   =G) to 

evaluate the prediction (refer to Table 1 for the semantic meanings 

of the colors and AQI descriptors). Clearly, our method well 

reflects the ground truth, while linear interpolation generated 

incorrect results (  =   =U-S). The result also indicates another 

story. Besides providing accurate information of air quality, the 

research reported here can also suggest a location to setup a 

monitor station, where the inference of U-Air always differs from 

that of linear interpolation.  

 
Figure 3. Results of PM10 generated by different methods 

The challenges of our approach lie in three aspects. The first is to 

identify discriminative features from a variety of data sources. 

The second one is how to incorporate heterogeneous features into 

a data analytics model effectively. Equally treating these features 

does not work well. Third, the labeled data is insufficient though 

we have many observations represented by big data. While having 

many places to infer, only a few stations generate training data. 

The contribution of this paper lies in the following three aspects: 

 We propose a co-training-based semi-supervised learning 

approach, which leverages unlabeled data to improve the 

inference accuracy. Additionally, the approach consists of 

two classifiers respectively modeling the spatial and 

temporal factors that influence air qualities.  

 We identify spatially-related (such as POIs, road networks, 

and distance to an existing station) and temporally-related 

features (e.g., humidity, temperature, and traffic flow), 

contributing to not only our application but also the general 

problem of air quality inference. Moreover, instead of 

treating these features equally, we feed them into the 

corresponding classifier in the co-training framework, 

therefore, leading to a high inference accuracy. 

 We evaluated our approach using 5 data sources consisting 

of the POIs, road networks, meteorological data, and air 

quality records of Beijing and Shanghai, and the GPS 

trajectories generated by over 30,000 taxis in Beijing, 

justifying the advantages of our approach over 4 baselines. 

2. OVERVIEW 

2.1 Preliminary 
Definition 1: Air quality index. AQI is a number used by 

government agencies to communicate to the public how polluted 

the air is currently. As the AQI increases, an increasingly large 

percentage of the population is likely to experience increasingly 

severe adverse health effects. To compute the AQI requires an air 

pollutant concentration from a monitor or model. The function 

used to convert from air pollutant concentration to AQI varies by 

pollutants, and is different in different countries. Air quality index 

values are divided into ranges, and each range is assigned a 

descriptor and a color code. In this paper, we use the standard 

issued by United States Environmental Protection Agency, as 

shown in Table 1. The descriptor of each AQI level is regarded as 

the class to be inferred, i.e.,  ={G, M, U-S, U, V-U, H}, and the 

color is employed in the following visualization figures.  

Table 1 AQI values, descriptors, and color codes 

AQI Values Levels of Health Concern Colors 

0-50 Good (G) Green 

51-100 Moderate (M) Yellow 

101-150 Unhealthy for sensitive groups (U-S) Orange 

151-200 Unhealthy  (U) Red 

201-300 Very unhealthy (VU) Purple 

301-500 Hazardous   (H) Maroon 

Definition 2: Trajectory. A spatial trajectory   is a sequence of 

time-ordered spatial points,             , where each 

point has a geospatial coordinate set and a timestamp,        . 

Definition 3: POI. A point of interest POI is a venue (like a 

school and shopping mall) in the physical world, having a name, 

address, coordinates, category, and other attributes.  

Definition 4: Road Network. A road network    is comprised of 

a set of road segments     connected among each other in a 

format of graph. Each road segment   is a directed edge having 

two terminal points, a list of intermediate points describing the 

segment, a length      , and a level       denoting its capacity.  

 
Figure 4. Illustration of grid, affecting region, POI, and trajectory 

Definition 5: Grid and Affecting Region. We divide a city into 

disjointed grids (e.g., 1km×1km in the experiments) as illustrated 

in Figure 4 A), assuming the air quality in a grid   is uniform 

(while different grids may have different results). Each   has a 

geospatial coordinate       and a set of AQI labels     
             to be inferred or already associated if having an air 

quality monitor station located. Here,   denotes the type of 
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pollutants, and      (defined in Table 1) means the AQI label 

of the k-th type of pollutant, such as PM10. We believe the air 

quality of a grid (filled by slashes in Figure 4 A)) would be 

influenced by the data (e.g., trajectories and POIs) observed in the 

affecting region     that consists of the grid and its eight 

neighbor grids, as shown in Figure 4 B). 

2.2 Framework 
As shown in Figure 5, our framework consists of two major parts, 

offline learning and online inference, which generate three kinds 

of data flows: preprocessing, inference, and learning data flows. 

Preprocessing data flow: In this flow (denoted by dotted black 

arrows), we receive spatial trajectories generated by vehicles 

(taxicabs in the experiments) and map each trajectory onto a road 

network using a map-matching algorithm [12]. The mapped data 

is then stored in a trajectory database for offline learning and also 
geo-indexed to improve the efficiency of online inference.  

 
Figure 5. Framework of our system 

Learning data flow: In this data flow (represented by broken blue 

arrows), we first extract features for each grid from a variety of 

data observed in its affecting region. In terms of spatio-temporal 

properties, these features can be categorized into two sets. One set 

is temporally-related (i.e., the value of the features vary with time), 

such as temperature, humidity, and average speed of vehicles, 

which are extracted from meteorological data and the spatial 

trajectories. The other feature set is only spatially-related, e.g., the 

density of POIs and the length of roads in a region, extracted from 

POI and road network databases. See Section 3 for details.  

If an air quality monitor station is located in a grid, the grid is 

labeled by the AQIs reported from the station. The features 

extracted from the data observed in the affecting region of such a 

grid and the corresponding labels formulate a training set. As we 

only have a few air quality stations in a city while there are many 

places to infer, the data with labels are very few. To address this 

issue, we propose a semi-supervised learning approach based on 

co-training, where unlabeled data are used to improve the 

inference accuracy. Two separate classifiers are first trained 

respectively based on the labeled data using two separated feature 

sets. One is a temporal classifier (TC) based on a linear-chain 

conditional random field (CRF), which uses temporally-related 

features to estimate the temporal transformation of air quality in a 

location. The other is an artificial neural network (ANN)-based 

spatial classifier (SC) that uses spatially-related features to model 

the spatial correlations between air qualities of different locations. 

The AQIs reported by existing stations are also employed as an 

input in the SC. As different air pollutants (e.g., NO2 and PM10) 

are influenced by these factors differently, we build an individual 

model for each kind of pollutant, as detailed in Section 4.  

Inference data flow: In this flow (denoted as the red solid arrows), 

we calculate the features for each grid based on the data observed 

in the grid’s affecting region. While the spatially-related features 

like distribution of POIs can be calculated offline, the temporally-

related features are computed online; e.g., the traffic-related 

features are extracted based on the spatio-temporal (ST)-index 

built in the preprocessing flow. For each grid, we respectively 

feed the spatially-related features into the SC and temporally-

related features into TC, generating two probability scores. By 

multiplying the two scores, we can select the most possible class 

as a label. As monitor stations usually update the reports every 

hour, we conduct the inference every hour. Detailed in Section 4. 

Problem statement 

Given a collection of grids                     , where 

    (     ) is known and      is unobserved (      ), 

         , a road network    crossing  , POIs located in  , a 

trajectory dataset    passing  , and meteorological data of  , we 

aim to infer     , at periodic intervals, e.g., every 1 hour. 

3. FEATURE EXTRACTION 

3.1 Meteorological Features: Fm 
The concentration of air pollutants is influenced by meteorology. 

Accordingly, we identify five features: temperature, humidity, 

barometer pressure, wind speed, and weather (such as cloudy, 

foggy, rainy, sunny, and snowy). Figure 6 shows the correlation 

matrix between the AQI of PM10 and the first four features, using 

the data we collected from August to Dec. 2012 in Beijing, where 

each row/column denotes one feature and a plot means the AQI 

label of a location. Apparently, a high wind speed disperses the 

concentration of PM10, and high humidity usually causes a high 

concentration. A high pressure would result in a good AQI. The 

impact of temperature is not very clear, but, a good AQI is more 

likely when temperature is high and humidity is low, or when 

pressure is high and temperate is low. In short, these features are 

very discriminative in AQI inferences. 

 
Figure 6. Correlation matrix between Fw and PM10 

3.2 Traffic-Related Features: Ft 
It is widely believed that traffic flow is one of the major sources 

generating air pollutants that could damage air quality [9], though 

researchers are still exploring the specific correlation. Here, we 

identify the following three features for each grid. These features 

are calculated from the spatial trajectories of vehicles traversing 

the grid in the past hour:  
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1) Expectation of speeds:     . Given a spatial trajectory 

generated by a vehicle, we retrieve the points that fall in the 

affecting region of each gird (let us say        ). We calculate 

the distance between any two consecutive points, then compute 

the speed of each vehicle at each point according to Equation 1. 

As the sampling rate of each GPS device is different, we calculate 

the expectation of speed w.r.t. time as Equation 2, which denotes 

the overall travel speed of vehicles in    . 

     
                 

             
,                              (1)  

     
∑                             

∑                       
,              (2) 

2) Standard deviation of speeds:     . We calculate the feature 

according to Equation 3, which reflects how variably different 

vehicles were traveling in     in the past hour. Similar to 

Equation 2, it is normalized based on time.  

     √
∑                                     

∑                       
 .        (3) 

3) The distribution of speeds:     . We employ a widely-used 

empirical setting to discretize the speed into three intervals (i.e., 

0   20, 20   40, and   40), calculating the distribution 

of speeds over the three intervals in terms of Equation 4. 

           
∑                                   

∑                      
     (4)  

Figure 7 shows the correlation matrix between the aforementioned 

traffic features    and NO2, where each row/column still denotes 

one feature and a plot denotes the AQI of a grid. Here,    is 

extracted from a GPS trajectory dataset generated by over 30,000 

taxicabs. As taxis generate about 20% of traffic flow on road 

surfaces of Beijing [14], the dataset is big enough to represent the 

traffic patterns there. Additionally, GPS-equipped taxis can be 

regarded as mobile sensors probing the travel speed of each road. 

As a result, the features w.r.t. speeds are reliable [13].  

 
Figure 7. Correlation matrix between traffic features and NO2 

Clearly, the more vehicles traveling with a speed smaller than 

20km/h, i.e., when       20) becomes larger, more instances 

of unhealthy and very unhealthy occurred. On the contrary, the 

larger     40) is the better AQI would be (e.g., see the sub chart 

on the first row and the third column).This is very intuitive to 

understand given the fact that more air pollutants would be issued 

by a vehicle when traveling in a traffic jam, i.e., the gasoline 

would not be burned efficiently. A surprising discovery is that a 

bigger      indicates a better air quality while a smaller one has a 

very high probability of resulting in a worse AQI of NO2, as 

depicted in the fifth column of Figure 7. It is actually very 

reasonable if we consider the speed limitation of different road 

segments. If there is no traffic jam, vehicles should travel with 

quite different speeds on different roads, e.g., vehicles traveling 

on highways (with a speed limitation of 120km/h) should move 

much faster than those on a local street (usually with a speed 

limitation of 40km/h). As a grid could contain road segments of 

different speed limitations,      tends to be large when the traffic 

condition in the grid is not bad. On the contrary, every vehicle has 

to move very slowly in a traffic jam, leading to a small     . The 

results well matches the commonsense that traffic jams cause 

much heavier air pollution than normal traffic conditions. 

3.3 Human Mobility Features: Fh 
   is comprised of two features, denoting the number of people 

arriving at (  ) and departing from (  ) a grid’s affecting region 

    in the past hour. In practice, people themselves are not major 

air-pollutant-generators. Human mobility, however, implies useful 

information, such as land use of a location, traffic flow, and 

function of a region (like residential or business areas) [11], which 

could contribute to air quality inference. In the experiment, we 

extract the two features from the aforementioned taxi trajectories 

because the data tell the pickup and drop off points of each trip. 

The feature can actually be extracted from other data sources or a 

combination of multiple datasets, like mobile phone signal.   

Figure 8 shows the correlation between AQIs and the human 

mobility features. Apparently, the concentration of PM10 in a grid 

  becomes denser when the number of people arriving at and 

departing from     increases. When    and    becomes very small, 

however, there might be two results. One is a very good AQI; the 

other is very unhealthy. Both results actually make sense, as these 

places may have nature parks (good) or factories (unhealthy) with 

very few people traveling to. 

 
Figure 8. The correlation between AQIs and human mobility 

While the traffic-related and human mobility features are 

calculated online, the feature extraction is very time-consuming. 

To address this issue, we build a ST-index between grids and the 

trajectories [5], as illustrated in Figure 9, where each grid is 

associated with two first-in-first-out lists respectively storing the 

taxi IDs traversing a grid and the pickup/drop-off points falling in 

the grid in the past hour. The two lists are sorted by arriving time 

and pickup/drop-off time respectively, and the trajectory data of a 

taxi is connected to the taxi ID by a hash table. Given an affecting 

region consisting of 9 grids (refer to Figure 4 as an example), we 

merge the taxi IDs falling in these grids by checking the sorted list. 
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We can then quickly retrieve the point data falling in the time 
interval from each trajectory by searching for the hash table.  

 
 Figure 9. ST-index between grids and trajectories. 

3.4 Road-network-related features: Fr 
The structure of a road network has a strong correlation with its 

traffic patterns, therefore providing a good complement to traffic 

modeling. As demonstrated in Figure 4 A), we identify the 

following three features for each grid based on a road network 

database: 1) total length of highways   , 2) total length of other 

(low-level) road segments   , and 3) the number of intersections 

   in the grid’s affecting region. Figure 10 presents the portion of 

instances with different AQI classes (NO2) changing over    and 

  , by analyzing the data we collected in Beijing. The increase of 

road segments in a region significantly brings down the portion of 

good instances, enhancing the presence of U-S and beyond 

instances. We however did not see the phenomenon w.r.t. 

highways. We could say highways are relatively greener than 

other road segments in terms of generating air pollutants (as it 

does not usually contain traffic lights). This is also the reason why 

we need to separate    from   .  

 
Figure 10. AQI of NO2 changing over    and    

3.5 POI-related features: Fp 
The category of POIs and their density in a region indicate the 

land use and the function of the region as well as the traffic 

patterns in the region, therefore contributing to the air quality 

inference of the region. Some POI category may even have direct 

causal relation with air quality. For example, if a region has some 

chemical factories, its air quality tends to be bad. A park, however, 

usually leads to a good air quality. Accordingly, we identify the 

following three features for each grid: 

1) The number of POIs in some categories in    :   . We count 

the number of POIs belonging to the categories shown in Table 3. 

Table 3. Category of POIs we studied 

C1: Vehicle Services (gas stations, repair) C7: Sports 

C2: Transportation spots C8: Parks 

C3: Factories C9: Culture & education  

C4: Decoration and furniture markets C10: Entertainment 

C5: Food and beverage C11:Companies 

C6: Shopping malls and Supermarkets C12:Hotels and real estates 

2) The portion of vacant places in    :   . As illustrated in Figure 

4 C), we further divide a grid into small cells, counting the 

number of cells without a POI located. In short, the bigger    the 

larger vacant places contained in a grid, therefore facilitating the 

dispersion of air pollutants; e.g., the upper subfigure in Figure 4 C) 

shows more vacant places than the bottom one due to the presence 

of a lake.  

3) The change in the number of POIs:   . We compare the POI 

data of two consecutive quarters, calculating the change in the 

number of POIs in the following five categories (C3, C4, C6, C8, 

and C12) in each grid’s affecting region. The change implies the 

construction in which infrastructure was built or removed from a 

region. According to [9], construction is one of the major sources 

of air pollutants, such as PM10 and NO2. 

4. LEARNING AND INFERENCE 
We propose the model based on the framework of co-training and 

the philosophy shown in Figure 11, where a circle denotes a 

location and a plane means the states of these locations at a 

timestamp. We can understand the philosophy of the model from 

the perspective of the state of air quality. First, air quality has 

temporal dependency on its current observations and that of its 

previous state. For example, the AQI of a location tends to be 

good if the AQI of the past hour is also good. Second, the air 

quality of a location is also reflected by its spatial neighbors. For 

instance, the AQI of a location is likely to be bad if the air quality 

of the places close to the location is bad. We can also understand 

the model from the perspective of the generation of air pollutants. 

The AQI of a location is determined by the air pollutants issued in 

the location and that propagated from other locations.  

 

Figure 11. The philosophy of the inference model 

4.1 Co-Training 
Co-training is a semi-supervised learning technique that requires 

two views of the data. It assumes that each example is described 

by two different feature sets that provide different and 

complementary information about an instance. Ideally, the two 

feature sets of each instance are conditionally independent given 

the class, and the class of an instance can be accurately predicted 

from each view alone. Co-training can generate a better inference 

result as one of the classifiers correctly labels data that the other 

classifier previously misclassified [8]. 

Aligning with the co-training framework, we propose a spatial 

classifier (SC) to model the spatial correlation and a temporal 

classifier (TC) to model the temporal dependency of AQI. The 

two models are integrated into a co-training-based learning 

framework presented in Algorithm 1. As shown in line 3 and 4,  

Algorithm 1: U-AIR Co-Training 

Input: A set of features (  ,   ,   ,   ,   ), some labeled grids   , and 

a set of unlabeled grids   , a threshold   controlling the rounds  

Output: The spatial classifier    and temporal classifier TC. 

1.     ; 
2. Do 

3.           SC.Learning (  ,   ,   ); 

4.       TC   TC.Learning (  ,   ,   ,   );  

5.      Apply    to each     , for each class   , pick    grids that    

most confidently classifies as   , and add them to   . 

6.      Apply TC to each     , for each class   , pick    grids that TC 

most confidently classifies as   , and add them to   . 

7.       ++; 

8. Until    is empty or    ; 

9. Return    and   ;   

gi

td

td

Taxi2

Taxi7

Taxim

drop1

drop2

picki

dropm

earliest

latesttd

ta

ta

ta

1
h

o
u

r

Traj: p1→p2→...→pnTaxi1

Taxil

Taxim Traj: p1→p2→...→pn

Traj: p1→p2→...→pn

tp

0 0-2 2-4 4-6 >6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Length of Highways (KM)

 Good

 Moderate

 Unhealthy-S and beyond

0 0-6 6-12 12-18 18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Length of Roads (KM)

 Good

 Moderate

 Unhealthy-S and beyond

A) B) fh fr

P
o

rt
io

n

P
o

rt
io

n

s2

s1

s3

s4

l

s2

s1

s3

s4
l

s2

s1

s3

s4

ti

t1

t2

l

T
im

e

G
eo

sp
ac

e

A location with AQI labels 

A location to be inferred 

Temporal dependency

Spatial correlation

POIs: Spatial 

Fh Temporal

Road Networks: Fr

Ft FmMeteorologic:Traffic:

Human mobility:

Fp

1440



we first train the two classifiers with two separated sets of features. 

The trained SC and TC are then used to infer unlabeled grids    

iteratively, adding the most confidently classified examples into 

the labeled dataset    for the next round of training, until    

becomes empty or a certain rounds   have been performed. When 

this algorithm ends, SC and TC are returned. 

At the inference time, we apply    and    to the corresponding 

features separately, determining the AQI of a grid by the product 

of the two probability scores (    and    ) generated by the two 

classifiers, defined in Equation 5. 

                                            
      

   .                        (5) 

4.2 Temporal Classifier: TC 
The temporal classifier infers the air quality of a grid given the 

temporally-related features consisting of   ,   , and    of the grid, 

using a linear-chain CRF, which is a discriminative undirected 

probabilistic graphical model for parsing sequential data like 

natural language texts [4]. The advantage of CRFs over hidden 

Markov models is the relaxation of the independence assumptions 

between features. Additionally, CRFs avoid the label bias problem 

exhibited by maximum entropy Markov models. 

Figure 12 shows the graphical structure  of the temporal 

classifier, which consists of two kinds of nodes        . The 

gray nodes                represent hidden state variables to 

be inferred given the sequence of observations denoted by white 

nodes               ,       ,   ,   ,  } (  is a timestamp 

by hour, e.g., 8am). The      is structured to form a chain with 

an edge between each      and   , as well as having an AQI 

"label" belonging to  . When conditioned on  , the random 

variables    obey the Markov property with respect to the graph  :  

              =               ,  

where     means   and   are neighbors in  .  

 
Figure 12. The graphic presentation of the temporal model  

The probability of a particular label sequence   given observation 

sequence   is defined as a normalized product of potential 

functions as follows: 

     ∑                    ∑               ,           (6) 

where                 is a transition feature function of the entire 

observation sequence and the label at positions   and    ; 

           is a state feature function of the label at position   and 

the observation sequence;    and    are parameters to be estimated 

from training data. 

Writing                           , we transfer Equation 6 to  

         
 

    
     ∑                    ,             (7) 

where      is a normalized factor [4]. This can be informally 

thought of as measurements on the input sequence that partially 

determine the likelihood of each possible value for   . The model 

assigns each feature a numerical weight and combines them to 

determine the probability of a certain value for   .  

Given   sequences of the training data {           }, learning the 

parameters   is done by maximum likelihood learning         , 

which can be solved by gradient descent.  

     ∑ [   
 

    
 ∑                   ] .     (8) 

4.3 Spatial Classifier: SC 
The spatial classifier infers the AQI of a grid, using its own 

geospatial features and that of some grids having a monitor station. 

As depicted in Figure 13, the SC consists of two parts: input 

generation (in the left box) and an artificial neural network, where 

  
 ,   

 ,   , and    denotes the POI features, road network features, 

location, and the AQI label of grid k;   is the grid to be inferred; 

   is a distance function between features (e.g., we use the 

Pearson correlation in the experiments) and    calculates the geo-

distance between the center of two grids, e.g.,  

                   
    

  ,                      (9) 

                   
    

  ,                     (10) 

                       .                         (11) 

Input generation: In this phase, we randomly choose   grids with 

labels,                           , to pair with the grid to 

be inferred (we found  =3 achieves the best inference accuracy in 

the experiments). The input of the ANN is then calculated 

according to Equation 9 to 11. To learn the impact of different 

scales of distance between grids, we perform this pairwise process 

  times to formulate a collection of inputs. The labeled grids 

involved in each round of input formulation should have at least   

different grids from existing ones, formally defined as:   
              ,                       , e.g.,  =2 and  =3 

means at least one out of the three grids is different from those 

used previously. Another reason for doing so is to vary the input. 

As the POI and road network features extracted from a grid are 

static, the input (    ,    ,     ) do not change over    if we 

always select the same three grids. Accordingly, the three inputs 

will be neglected by the ANN model in the training process.  

 
Figure 13. Structure of spatial classifier 

Artificial neural network: Though many ANNs can be applied to 

our framework, we choose the widely-used Back-propagation (BP) 

neural network with one hidden layer in the experiments for its 

simplicity and generality. We set a linear function for the neurons 

(each of which accepts all the features) in the input layer and a 

sigmoid function      for those in the hidden and output layers, 

formally defined as follows: 

    (∑     (∑       (∑          )     )     ),  (12) 

where    is a feature of input;    ,    , and     are the biases 

associated with the neuron in different layers;    ,     , and    

denote the weight associated with the input of different layers. 

In the inference process, we also pair a grid to be inferred with a 

certain sets of   labeled grids, generating a prediction of AQI 

label for each set. The frequency of each inferred label is then 

used as the probability score of the label, and the most frequent 

label will be selected as the final prediction result. The prediction 

of the SC can actually be regarded as a non-linear interpolation 

over geo-spaces, considering the road network and POIs of these 
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locations. This classifier is effective as road network and POI data 

are good supplementary of traffic data. 

5. EXPERIMENTS 

5.1 Datasets 
In the evaluation we use the following five real datasets detailed 

in Table 4, where the first four sources are available in Beijing 

and Shanghai.  

1) Meteorological data: We collect fine-grained meteorological 

data, consisting of weather, temperature, humidity, barometer 

pressure, wind strength, from a public website every hour.  

2) Air quality records: We collect both real valued and labeled 

AQI of four kinds of air pollutants, consisting of SO2, NO2, PM2.5, 

and PM10, reported by ground-based air quality monitor stations in 

the four cities every hour. As a station may not have reports 

sometimes, we present the hours of effective records in Table 4. 

3) POIs: We employ a POI database from Bing Maps to extract    

for each city. The data of the first and third quarters of 2012 are 

used to identify the number of POIs changed in the five categories 

defined in Section 3.4.2. Figure 14 shows the POI distributions of 

Beijing and Shanghai. 

 
Figure 14. Number of POIs in different categories 

4) Road networks: The road network data is also from Bing Maps. 

5) Taxi trajectories: We use a GPS trajectory dataset generated by 

over 32,000 taxicabs in Beijing from August 21 to Nov. 30, 2012 

to calculate    and   . GPS-equipped taxis can be regarded as 

mobile sensors probing the travel speed on roads, and the data 

also tell the pick-up and drop-off points of each trip. The total 

distance of the dataset is over 495 million kilometers, and the 

number of points reaches 1.45 billion. We found over 32 million 

occupied trips. As taxis generate about 20 percent of traffic flow 

on road surfaces of Beijing [14], the dataset is big enough to 

represent the traffic patterns there. Of course, the features can be 

extracted from other data sources or a combination of multiple 

datasets, like mobile phone signal. 

Table 4. Details of the datasets 

Data sources Beijing Shanghai 

POIs 2012 Q1 271,634 321,529 

2012 Q3 272,109 317,829 

Roads 

#.Segments 162,246 171,191 

Highways 1,497km 1,963km 

Roads 18,525km 25,530km 

#. Intersections 49,981 

 

70,293 

AQIs 
#. Stations 22 10 

Hours 23,300 8,588 

Time spans 8/24/2012-3/8/2013 1/19/2013-3/8/2013 

Urban Sizes (grids) 50 50km (2500) 50 50km (2500) 

5.2 Baselines and Ground Truth 
We compare our method (U-Air) with five baselines:   

1) Linear interpolation (Linear): This is a distance-weighted 

interpolation algorithm using the AQI values reported by existing 

monitor stations, as shown in Equation 11,  

       ∑
       

 

   

∑
 

   
 

 ,                     (13)  

where     denotes the geo-distance between the location   and the 

 -th monitor station. 

2) Another interpolation method is based on a Gaussian 

distribution (Gaussian)         , where   is the average 

distance between any two existing air quality monitor stations in a 

city. Formally defined as  

       ∑               ,                  (14) 

     
 

 √  
  

  

  .                             (15)  

We use continuous values in the interpolation and then discretize 

the aggregated result into AQI labels for evaluation. 

3) Classical Dispersion Model (Classical): This is a simple (also 

well-known) mathematical model that is typically applied to point 

source emitters, simulating them as point or line emission source 

propagating as a Gaussian plume. We use a widely-used tool 

CALPUFF [10] with default values for the parameters (as these 

parameters, e.g., vehicle emission rates, are difficult to obtain). 

4) Decision tree (DT): We choose this baseline to answer people’s 

question why not just use a simple supervised learning model. In 

this baseline, we feed all the features equally into a decision tree.  

5) CRF-ALL and ANN-ALL: Instead of dividing the features into 

two sets, the two baselines feed all features equally into the SC 

and TC respectively. We choose them as baselines to justify the 

features are used effectively in our approach. 

Ground Truth: We deliberately remove a station from a grid and 

infer its air quality with the AQIs from other stations. The actual 

AQI reported by the station is then used as the ground truth to 

measure the inference. Each grid with a station is tested in this 

way every hour. For example, Beijing has 22 stations, generating 

528 (22 24) test instances per day and 3,696 instances per week. 

In addition, we separate the training data from the test data by 

time, guaranteeing they have no overlap. Moreover, we apply the 

model trained in Beijing to the other cities, further verifying its 

effectiveness and adaptability to different cities. 

5.3 Results 
Evaluation on Features: We first justify the effectiveness of the 

features, using the data shown in Table 5, where a DT model is 

employed to study the performance of individual features and 

their combinations. Clearly, adding one feature set into the model 

brings a significant improvement on both precision and recall.  

Table 5. Results related to features 

 PM10 NO2 

Features Precision Recall Precision Recall 

   0.572 0.514 0.477 0.454 

   0.341 0.36 0.371 0.35 

   0.327 0.364 0.411 0.483 

  +   0.441 0.443 0.307 0.354 

  +   0.664 0.675 0.634 0.635 

  +  +  +   0.731 0.734 0.701 0.691 

  +  +  +  +   0.773 0.754 0.723 0.704 

Overall Results: Figure 15 shows the performance of U-Air and 

the five aforementioned baselines, where U-Air outperforms other 

methods in terms of the mean precision and mean recall over time 

of day. The results demonstrate the advantage of our method over 

linear and Gaussian interpolations, and classical air pollutant 

dispersion models (though the latter may have a better 

performance with all the parameters accurately obtained, getting 

such parameters could be even difficult than building the model). 
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Additionally, simply using some supervised machine learning 

models (like DT and CRF) or ANN is less effective than the co-

training-based approach.  

 
Figure 15. Overall results of different methods for PM10 and NO2 

Results of Co-Training: Figure 16 further reveals the co-training 

progress of our approach, where we add an instance into the 

training data if SC or TC predicts it as a class with a probability 

score over 0.85 (i.e., very confidently inferred). The unlabeled 

data gradually improves the inference performance, justifying the 

ability of the co-training framework in dealing with data sparsity.  

  
Figure 16. Learning progress of Co-training 

Table 6 shows the confusion matrix of U-Air in inferring PM10 in 
Beijing (we do not show other pollutants given the limited spaces).  

Table 6. Confusion matrix of U-Air on PM10 

Ground 

Truth 

Predictions  
G M S U 

G 3789 402 102 0 0.883  

R
ec

a
ll

 

M 602 3614 204 0 0.818  
S 41 200 532 50 0.646  
U 0 22 70 219 0.704  

 0.855  0.853  0.586  0.814  0.828 
Precision 

Results of SC: To further study the ability of our approach in 

differentiating between more AQI labels, we solely test the spatial 

classifier (no traffic-related features needed). Note that this is the 

result of SC rather than co-training. We use a half of the data for 

training and the rest for testing, ensuring both parts of data have a 

relatively balanced distribution over different AQI labels. 

Unbalanced data will result in impractically high accuracy in the 

test. We also apply the spatial classifier (trained based on Beijing 

data) to Shanghai data. As depicted in Figure 17 A), our SC has 

almost the same performance as that of Beijing, justifying its 

ability adapting to different urban environments. As shown in 

Figure 17 B), pairing a location with three stations in the SC 

generates a better result than using other number of stations (e.g., 

2 or 4). 

Table 7 Confusion matrix of the Spatial Classifier 

Ground 

Truth 

Predictions  

G M U-S U V-U&H 

G 656 141 3 0 0 0.820 

R
ec

a
ll

 

 

M 81 594 114 11 0 0.743 

U-S 1 90 278 183 23 0.483 

U 0 0 41 488 43 0.853 

V-U & H 0 0 0 2 190 0.989 

 0.889

99 

0.720 0.638 0.713 0.742 
0.751 

Precision 

Results of TC: Figure 18 presents the performance of our TC 

respectively using temporally-related features and all features to 

infer PM10 in Beijing, showing two discoveries. First, feeding all 

features into the TC does not help, in most cases, becoming even 

worse than only using temporal features. Second, the 

performances of two times slots (around 8am and 6pm) are higher 

than others. The two time slots actually correspond to the morning 

and evening rush hours of Beijing, in which traffic flows would be 

the major cause of air pollutants. Another reason is we also have 

enough number of taxi trajectories representing the traffic flow in 

the two slots (i.e., people travel a lot by taxis).  

 
Figure 17. Study on the spatial classifier 

     
Figure 18. Study on TC using Beijing data (PM10) 

Efficiency: Table 8 presents the online efficiency of our approach, 

which was tested on a 64-bit server with a Quad-Core 2.67G CPU 

and 16GB RAM. On average, we can infer the air quality of a grid 
in 131ms, generating the AQIs for entire Beijing in 5 minutes. 

Table 8. Efficiency study 

Procedures Time(ms) Procedures Time(ms) 

Feature 
extraction 

(per grid) 

   &    53.2 Inference 

(per grid) 

SC 21.5 

   28.8 TC 13.1 

   14.4 Total 131 

Visualization: We infer the AQI of each location in the urban 

areas of Beijing and Shanghai by using our approach, coming up 

with two visualizations shown in Figure 19 A) and B), where 

green and red grids respectively denote the top 100 locations that 

could have the best and worst AQIs in the two cities during the 

corresponding periods. The visualization can benefit air pollution 
analytics by identifying the locations always having a bad AQI. 

 
Figure 19. Top 100 locations with the best and worst AQIs 

6. RELATED WORK 

6.1 Classical Bottom-up Emission Models  
There are two major ways calculating the air quality of a location 

using the emission observed at ground surfaces, called “bottom-up” 

methods. One is interpolation using the reports from nearby air 
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quality monitor stations. The method is usually employed by 

public websites releasing AQIs. As air quality varies in locations 

non-linearly, the inference accuracy is quite low (see Figure 15). 

The other is classical dispersion models, such as Gaussian Plume 

models, Operational Street Canyon models, and Computational 

Fluid Dynamics. These models are in most cases a function of 

meteorology, street geometry, receptor locations, traffic volumes, 

and emission factors (e.g., g/km per single vehicle), based on a 

number of empirical assumptions and parameters that might not 

be applicable to all urban environments [9]. For example, 

Gaussian Plume model requires vehicle emission rates (e.g., g/km 

per hour) as input and assumes that the concentration is dispersed 

in the vertical and horizontal directions in a Gaussian manner. 

Some models may even require the height, length, and orientation 

of a street canyon, the gaps between buildings, as well as the 

roughness coefficient of the urban surface. As these parameters 

are difficult to obtain precisely, the results generated by such 

kinds of models may not be very accurate either. Compared with 

these models, our approach does not need empirical assumptions 

and parameters. Therefore, it is easy to conduct and applicable to 

different city environments. 

6.2 Satellite Remote Sensing 
Satellite remote sensing of surface air quality has been studied 

intensively in past decades [7], which can be regarded as top-

down methods. For example, [1] compared PM2.5 inferred from 

the moderate resolution imaging spectroradiameter (MODIS) with 

surface PM2.5 measurements in Canada and the United States. 

Likewise, [6] estimated surface NO2 concentrations by applying 

local scaling factors from a global three-dimensional model to 

tropospheric NO2 columns retrieved from the Ozone Monitoring 

Instrument onboard the Aura satellite. However, this category of 

methods is extremely influenced by clouds and would be sensitive 

to other factors, such as humidity, temperature, and location [1]. 

In addition, the results inferred from Satellite images only reflect 

the air quality of atmosphere rather than the ground air quality 
that people care more about.  

6.3 Crowd Sensing  
Crowdsourcing or participatory sensing [2][3] may be a potential 

solution solving this problem in the future, if every person can 

carry a gas-sensor-equipped smart phone to probe the air quality 

around them. While this approach is feasible for some gasses like 

CO2, it is not practical for other air pollutants like PM2.5 and NO2 

so far as the devices for sensing such kinds of air pollutants are 

not easily portable (refer to Figure 1). In addition, the devices 

need a long period of sensing time (e.g., 1 hour) before generating 

accurate results. 

6.4 Urban Computing 
A series of research on urban computing has been done recently, 

using big data to tackle the big challenges in big cities.  For 

instance, Jing et al. inferred the functional regions in a city using 

human mobility data and POIs [11]. Zheng et al. detected the 

underlying problems in a city’s transportation network using taxi 

trajectories [14]. Zhang et al. sense the urban refueling behavior 

based on GPS-equipped vehicles [15]. The research reported in 

this paper is also a step towards urban computing. 

7. CONCLUSION 
In this paper, from the perspective of big data, we infer the fine-

granularity air quality in a city based on the AQIs reported by a 

few air quality monitor stations and four datasets (meteorological 

data, taxi trajectories, road networks, and POIs) observed in the 

city. We identify five sets of features (  ,   ,   ,   , and   ) 

based on the datasets and propose a co-training-based semi-

supervised learning approach consisting of a spatial classifier and 

a temporal classifier. We first evaluated our co-training-based 

approach using the data obtained in Beijing, resulting in an overall 

(Precision=0.828, Recall=0.826) for PM10 and (Precision=0.808, 

Recall=0.798) for NO2. The results outperform that of linear 

interpolation, a classical dispersion model, and some well-known 

supervised learning models like Decision Tree and CRF. Solely 

applying all features to the SC or TC is worse than our co-

training-based approach. We applied the SC learnt from Beijing 

data to Shanghai, obtaining a result as good as that generated in 

Beijing (about 0.76). These results demonstrate our approach is 

applicable to different city environments and seasons.  

The key experiences we learned from the research lies in three 

aspects. First, features should be selected carefully from the data 

and used properly in the inference models. Second, the design of 

SC and TC is helpful as they respectively model the temporal 

dependency of air quality in a location and the spatial correlation 

between locations. Third, the co-training-based framework does a 

good job of addressing the data sparsity problem by leveraging the 

unlabeled data and the mutual reinforcement relationship between 

the two feature sets (e.g., POIs and road networks are good 

complementary of traffic-related features). In the future, we would 

like to apply our approach to more cities and study the root causes 

of air pollution.  
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