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ABSTRACT

The Electronic Road Pricing (ERP) system was implemented by
the Land Transport Authority of Singapore to control traff ¢ by road
pricing since 1998. To better understand the traff ¢ condition and
improve the pricing scheme, the government initiated the next gen-
eration ERP (ERP 2) project, which aims to use the Global Navi-
gation Satellite System (GNSS) collecting positional data from ve-
hicles for analysis. However, most drivers fear of being monitored
once the government installs the devices in their vehicles to collect
GPS data. The existing data stream management systems (DSMS)
centralize both data management and privacy control at server site.
This framework assumes DSMS server is secure and trustable, and
protects providers’ data from illegal access by data users. In ERP
2, the DSMS server is maintained by the government, i.c., data
user. Thus, the existing framework is not adoptable. We propose
a novel framework in which privacy protection is pushed to data
provider site. By doing this, the system could be safer and more
eff cient. Our framework can be used for the situations such as
ERP 2, i.e., data providers would like to control their own privacy
policies and/or the workload of DSMS server needs to be reduced.

Categories and Subject Descriptors

C.2.4 [Computer-communication Networks]: Distributed Sys-
tems—Distributed applications; H.2.7 [Database Management]:
Database Administration—Security, integrity, and protection; K.4.1
[Computers and Society]: Public Policy Issues—privacy

Keywords

Road pricing; Decentralized framework; Privacy Preservation; Hip-
pocratic Data Stream Systems

1. INTRODUCTION
1.1 Context

The increase of number of vehicles causes many urban prob-
lems such as traff ¢ congestion in many cities. To relief congestion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

KDD’13, August 11-14, 2013, Chicago, Illinois, USA.

Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

1427

in busy roads in Singapore, the Land Transport Authority (LTA)
designed and implemented the Electronic Road Pricing (ERP) sys-
tems since 1998. The ERP is an electronic toll collection scheme
that charges drivers based on the usage of heavily traveled roads.
On most roads connecting the city center to suburban areas in Sin-
gapore, ERP gantries was set up to detect the vehicles passing
through them. Every vehicle in Singapore is equipped with an In-
vehicle Unit (IU) device, in which a CashCard with suff cient value
must be inserted when the vehicle passes through an ERP gantry in
chargeable peak hours. Then the sensor installed on the ERP gantry
will communicate with the IU device in the vehicle to deduct the
charge amount from the CashCard. Drivers without inserting Cash-
Card or inserting CashCard with insuff cient values when they pass
through ERP gantries in chargeable hours will be fned.

This ERP scheme to discourage the usage of busy roads has been
effectively carried out for more than 10 years to relief road conges-
tion in Singapore. However, two main drawbacks of the current
ERP systems make the government re-consider the scheme. First,
the existing ERP gantries charge all vehicles (of the same type)
the same amount, even though some vehicles only use the road for
a short distance. Second, the data collected by the current ERP
gantries are not suff cient for further analysis to help urban plan-
ning. Consequently, in 2011 the government initiated the next gen-
eration ERP (ERP 2) project, in which the Global Navigation Satel-
lite System (GNSS) will be used to replace gantries to track the us-
age of busy roads by each vehicle. Ideally, the GPS data collected
by the LTA through the GNSS can ref ect the exact usage of each
busy road by each vehicle. This will greatly help the government
design more reasonable pricing scheme and analyze behaviors of
drivers for further urban planning.

The ERP 2 system is still under development and testing by the
government-appointed companies. One obvious challenge for the
ERP 2 project is to collect and manage streaming data from around
one million vehicles in Singapore. On one hand, the storage and
processing of such big amount of streaming data requires imple-
mentation, adaption and testing of R&D works in streaming data
management and big data analytics; on the other hand, the govern-
ment needs to consider the reluctance from vehicle owners once
their location data are monitored. In the ERP 2 scheme, the loca-
tion data of a vehicle must be disclosed to the government when the
vehicle is on a busy road at chargeable time. However, the driver
should be able to control whether or not to disclose his/her data to
the government when the vehicle is not on a chargeable road or not
at a chargeable time. This requires the data stream management
system (DSMS) that manages vehicle data to be privacy preserva-
tion enabled.



1.2 Hippocratic Data Stream System

Agrawal et al. [1] proposed the concept of Hippocratic database
to manage data with concern of privacy protection. They discussed
ten principles for Hippocratic database systems. Later, Ali et al. [2]
extended these principles to data stream systems (DSMS). Among
these principles, limited disclosure and limited collection are at the
core of Hippocratic data stream system design'.

Limited disclosure allows or disallows disclosing streaming data
to different user queries, according to certain privacy policies speci-
fed by data providers. From the system’s view, it is actually access
control based on data provider specif ed policies. Limited collec-
tion protects providers’ data from being excessive collected by the
stream systems. It requires the data collected by a stream system to
be the minimum amount to serve queries.

Limited disclosure in DSMS has been extensively investigated
in research works. Basically, the existing approaches follow the
same paradigm as shown in Fig. 1. In this framework, a Policy
Manager module is added into a normal DSMS to make it a Hip-
pocratic DSMS. In particular, this module manages the access con-
trol policies specifed by the streaming data providers and/or the
system administrator. Also, for each incoming query, the Policy
Manager checks with the policies to allow, rewrite or disallow the
query. Then the authorized/rewritten queries are issued to the query
processor. Some detailed research work and implementations are
reviewed in Section 6.
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Figure 1: A general design of Hippocratic DSMS

Limited collection did not attract much research interest. In fact
in a streaming environment, data are not “collected” (pulled) from
data providers by the system. Instead, they are initiatively pushed
by the providers. Thus in the current framework, limited collection
actually cannot be achieved, as we discuss in detail below.

1.3 Motivation

As illustrated in Fig. 1, in the existing privacy protection frame-
work for Hippocratic DSMS, all privacy enforcement operations
take place at the DSMS server. Such a design suffers from the fol-
lowing drawbacks for the applications such as ERP 2.

Privacy Protection. In the current framework, DSMS server is
assumed to be secure, trustable and independent to both stream
providers and stream users. However, in ERP 2, the government
plays both server and user roles. Even if vehicle drivers specify
policies to control the access to their data, those policies need to be
enforced against all data at the server site. In other words, drivers
will only be told by the government that their data are used accord-
ing to their policies, but will not know whether the government
misuse the data as the government actually collects all data.

Performance. Since policy enforcement takes place at the server
site, the DSMS server for ERP 2 will not only manage data from
a large amount of vehicles, but also need to maintain and enforce
different policies on each data stream. This puts extra workload to
the server. Moreover, combining policy enforcement and analyti-

1The details of other principles can be found in Ali’s paper.
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cal query processing makes many multi-query optimization tech-
niques, e.g., query plan sharing [5], diff cult to be directly applied,
because queries may be frequently changed as policies updated.

Energy. Communication with server is energy costly for most sen-
sors and devices. Sending all data to DSMS server for policy en-
forcement will increase the energy cost in vehicles.

Because of these problems, the existing Hippocratic DSMS frame-
work and its implementations cannot be used for managing vehicle
data in ERP 2 systems.

1.4 Contribution

In this paper, we focus on a novel framework design for Hip-
pocratic DSMS, which is visioned in [1, 2]. Our framework is
applicable to the ERP 2 project and future projects that requires
citizens providing data to help urban planning by the Singapore
government. Different from the existing framework that centralizes
privacy policy management and enforcement at the DSMS server,
our framework leverages the resource at the data provider site for
privacy control. In particular, the DSMS server remains the func-
tionality of continuous and analytical query optimization and pro-
cessing and applies a part of access control to meet system-level
requirement, while data providers will f Iter their data tuples based
on their own privacy requirement and sends only the useful and
qualifed tuples to the server. In this framework, each user (e.g.,
vehicle) is free to control the disclosure of their data, meanwhile,
he/she also takes the responsibility for not disclosing data when
necessary (e.g., on a busy road at peak hours).

To tackle the most challenging problem in our framework, i.e.,
synchronizing server and client for policy enforcement result, we
design a bit-vector wrapping and routing technique. Bit-vector
is lightweight and eff cient in passing between data provider and
server. Furthermore it is very eff cient to check and update so that
policy enforcement result can be easily interpreted at a server site.

We demonstrate that our framework perfectly implements the
limited disclosure and limited collection principles, and is poten-
tially safer and more time and energy eff cient in query processing
than the existing framework. We also conduct comprehensive ex-
periments on our prototype to validate our framework in privacy
protection and performance.

1.5 Organization

The rest of the paper is organized as follows. We describe our
policy model and def ne the privacy considered in Section 2. Our
novel framework is introduced in Section 3, and the analysis of our
framework is discussed in Section 4. The experimental evaluation
is presented in Section 5. We revisit related work in Section 6.
Finally we conclude this paper in Section 7.

2. POLICY MODEL AND PRIVACY DEFI-
NITION
2.1 Policy Model

Our framework adapts the policy model used in Role-based Ac-
cess Control (RBAC). We follow the same idea to classify all po-
tential users into different roles, each of which may have a different
privilege to access streams.

DEFINITION 2.1. A privacy policy used in our framework is in

Sform of quintuplet:

<Role, Attr, Purpose, SysCond, ContCond >
where Role specifes a role name, Attr is a list of attributes of the
local stream and Purpose is the query purpose. These three felds
are compulsory for a policy. SysCond is the system condition of a



policy that involves the constraints on system parameters such as
time, number of tuples, etc., and ContCond is the content condition
involving constraints on the stream attributes. These two felds are
optional. The semantics of a policy in this form is that Role is
allowed to access Attr of the stream under Purpose, with conditions
of SysCond and ContCond.

We further constrain that given a user role and a query purpose,
for each attribute there is at most one policy qualifying the access to
this attribute. If we want to qualify a role and a purpose to access an
attribute under different system/content conditions, we can express
the conditions in conjunction or disjunction form in one policy.

For example, a vehicle driver can specify his/her policy as

<LTA, All, ERP, peak hours, in busy road>
meaning that the driver only allows LTA users to access his data
with ERP pricing purpose when the time is in peak hours and the
vehicle is in busy road. For other time and vehicle location, LTA
will not see his/her data. Drivers can also specify access policies
for other government agencies or application users who need to use
his/her data.

The compulsory felds of privacy policies are used for stream-
level and attribute-level control, and the optional f elds are used for
tuple-level control. We separate SysCond and ContCond for perfor-
mance concern. For the above policy, in peak hours (i.e., SysCond
is satisfed), each vehicle data tuple will be checked locally and
only those satisfying ContCond (i.e., location is in busy road) are
sent to the server. However, in off-peak hours (i.e., when SysCond
is not satisf'ed), no data will be sent, which means the ContCond
will not be evaluated at all.

2.2 Policy Def nition

Based on our policy model, we def ne the privacy we considered,
i.e., limited disclosure (LD) and limited collection (LC). We con-
sider the granularity of stream-level, attribute-level and tuple-level
for both LD and LC.

Stream-level LD states that a stream s can be disclosed to a
query g which is trying to access s if and only if there exists a
policy p such that ¢’s issuer, query attributes, and purpose satisfy
the role, the attributes, and the purpose of p and p’s system condi-
tion is evaluated as true (i.e., p is active under the current system
settings). Attribute-level LD is similar to Stream-level LD, except
that in attribute-level LD particular attributes will be verif ed, rather
than a stream. Tuple-level LD aims to control the access to each
tuple of a stream. As a result, in tuple-level LD we not only re-
quire the stream/attribute-level visibility, but also need to verify the
content condition in the relevant policy, to qualify a tuple. Tuple-
level LD states that a tuple ¢ of a stream s can be disclosed to a
query ¢ if and only if there exists a policy p such that g satisf es the
stream/attribute-level requirement by p and p’s system condition
and content condition (on #) are both evaluated as true.

Stream-level LC restricts which streams should be collected by
the system and which should not. A stream being collected does
not mean all the stream tuples are collected. Instead, it mean the
data from this stream will be collected, and thus this stream must
be considered for query processing. Whether all the tuples or some
tuples are collected is controlled by tuple-level LC. For a stream, if
there is no query issued on it, or there is no tuple or attribute from
it will be collected, we consider that this stream is not collected.
Attribute-level LC states that an attribute a of a stream s should be
collected if and only if there exists a query ¢ asking for a and a can
be disclosed to g. Similarly, tuple-level LC states that a tuple 7 of
a stream s should be collected if and only if there exists a query ¢
issued to s, and ¢ can be disclosed to g.
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THEOREM 2.1. The existing framework with privacy policies
enforced at the server site cannot satisfy the attribute-level limited
collection principle.

THEOREM 2.2. The existing framework with privacy policies
enforced at the server site cannot satisfy the tuple-level limited col-
lection principle.

In the existing framework, as long as an attribute a appears in
the content condition of a policy that qualifes a query g, a has
to be collected by the server for policy enforcement purpose, no
matter whether a is required by any query. Similarly, since policy
enforcement happens at the server site, all tuples will be sent to the
server for policy checking, before being decided whether should to
be disclosed to user queries.

3. OUR FRAMEWORK
3.1 Overview

Our proposed framework for privacy enforcement to achieve LD
and LC in Hippocratic DSMS is depicted in Fig. 2. We can see that
in our framework one important highlight is to let the data provider
control his/her policy. A data provider will evaluate his/her pri-
vacy policies against every data tuple, and only send a tuple to the
server when it is asked by some queries whose issuers are qualif ed
to view this tuple. On the other hand, the server is not aware of
any provider’s privacy policies, and thus, it does not need to spend
computational recourse in enforcing such privacy policies. We will
describe the framework in detail in the following sections.

Hippocratic DSMS

Query
Validator

Policy Table (admin)

Data Stream Provider

Data
Wrapper
Policy Table

Hello/Goodbye/Revoke:

Rewritten
Query

_ Raw
Data

Query
Processor

Figure 2: Our proposed framework

To shift privacy policy enforcement to data provider site, we
need to resolve a major challenge of synchronization between data
provider and server.

e A data provider needs to keep updated about the queries and
the corresponding users who are currently requesting their
tuples, in order to enforce relevant policies.

e A DSMS server needs to know the result of the policy en-
forcement at provider site for each incoming tuple, so that it
can determine which queries requesting this tuple are quali-
fed to receive it.

We resolve the synchronization problem by designing the Query
Update Protocol for provider-server communication and introduc-
ing bit-vector header to pass tuple-level policy enforcement result.

3.2 Query Update Protocol

The purpose of the Query Update Protocol (QUP for short) is to
make every stream provider aware of up-to-date queries and roles
who are using his/her streams. In privacy view, with QUP a data
provider is able to (1) check whether a tuple is needed by the server,
to meet the limited collection principle, and (2) know what queries
are qualifed for accessing a tuple, to meet the limited disclosure
principle.

The Query Update Protocol comprises two parts, handling query
registration and query revocation respectively. The protocol is il-
lustrated in Fig. 3.
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Figure 3: Query Update Protocol

When a new query is registered into the DSMS system, the Query
Validator (refer to Fig. 2) identifes the streams involved in the
query. Then it sends a hello message to every relevant stream
provider. A hello message is a quartet <QID, Role, Attr, Pur-
pose>, where QID is the identif er of the query, Role is the role of
the query issuer, At is a set of stream attributes to be accessed by
the query, and Purpose is the query purpose. After that, the Query
Validator waits for the response, i.e., a yes/no message from each
stream provider, to see whether the query satisf es the stream-level
and attribute-level privacy policy in each stream provider. Only if
the query passes the policies in all relevant stream providers, the
DSMS server will proceed with query processing. Otherwise, it
rejects the query. Then in the last step, the server will send a de-
cision message <QID, (accept/reject)> to the streams to inform
them whether the query QID is successfully registered with the
server. Once the query is accepted, each relevant stream provider
will update its record, as discussed later.

When an existing query is revoked, the Query Validator sends
a goodbye message to each relevant stream provider, with <QID,
Role, Attr>. Then each stream provider will update its record, and
acknowledge the server.

The responses from stream providers are compulsory for query
registration and revocation in QUP. Thus the timeout and re-sending
scheme will be applied for both hello and goodbye messages. The
detailed handlers for the hello message and goodbye message at the
stream provider site will be discussed in Section 3.5.

3.3 Bit-vector header

As illustrated in QUP in Fig. 3, stream-level and attribute-level
policy enforcement is on one-time basis. However, tuple-level pol-
icy enforcement is more complicated. Consider the example in Sec-
tion 1, i.e., a taxi driver does not want his/her data to be viewed by
anyone when he/she is not working. In this example, the driver can
simply decide whether or not to send a tuple to the DSMS server
based on the speed value. However, if the privacy policy is changed
such that the driver only restricts Role 2 (e.g., users of taxi booking
service) users from seeing his/her anchored record and allows Role
1 users (e.g., the traff ¢ authority) to see all his/her data, there will
be a problem. Since both Role 1 queries and Role 2 queries exist,
the driver has to send all data to the server. However, the server
is not aware of any data provider’s policy, thus it cannot decide
whether all queries on this taxi stream should get a result.

In fact, the stream provider must send a tuple to the server, as
long as there is a query requesting this tuple. Meanwhile, the
provider also needs to specify the details about what queries should
not access this tuple. Only by doing this, the provider’s privacy
policies are indeed enforced.

To facilitate tuple-level policy enforcement in our framework,
we design a bit-vector header to wrap each data tuple to be sent
to the server. In such a header, each bit corresponds to a role. In
the header of a tuple, a bit is set to 1 if the corresponding role with
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queries is qualif ed to view this tuple. Otherwise, the corresponding
bit is set to 0.

The bit-vector is attached to a tuple as an additional attribute. In
most practical RBAC schemes, the number of roles is quite lim-
ited, compared to the potentially large number of users. Thus the
length of a bit-vector header is short. Also the bit-vector itself is
lightweight. Furthermore, in many stream systems for complex
data with multiple attributes, e.g., [6], each tuple is transformed
as an object in the input buffer, and the size for each object is pre-
served. As a result, in most of such DSMS, our lightweight header
brings in little additional transmission overhead. The details of how
bit-vector is used are demonstrated later.

3.4 Design of Hippocratic DSMS

In this section, we discuss in detail how a Hippocratic DSMS
under our privacy enforcement framework is designed. There are
two main components in the DSMS server, Query Validator and
Query Processor, as shown in Fig. 2.

The Query Validator is used to validate a new query. The valida-
tion process has two parts. In the frst part, as described in Section
3.2, the Query Validator sends the query information to all relevant
stream providers, to see whether the query satisf es the stream-level
and attribute-level privacy policy of every stream it is trying to ac-
cess. While waiting for the response from stream providers, the
Query Validator proceeds with the second part of validation. In this
part, it checks with the policy table in the DSMS server. Especially
to be mentioned is the difference between policies in DSMS server
and policies in stream provider sites. The policies stored in each
stream provider site are privacy preserving policies. They are spec-
if ed by the corresponding stream provider. However, the policies
in the DSMS server are system-level access control policies. They
are specifed by the system administrator to control the access to
the system resources. Our design lets each stream provider control
and enforce his/her privacy policies, while the access control poli-
cies can only be enforced by the system. If the new query satisf es
both privacy policies and system policies, it will be registered into
the Query Processor. Otherwise, it will be rejected. If the system
policies managed by the DSMS server allow limited access (tuple-
level control) to some streams, the Query Validator will rewrite the
query by appending the additional constraints, and then register it
to the Query Processor. This step is the same as tuple-level access
control enforcement in other framework, e.g., [4].

51

Policy
Enforcement

—» Q1

—» Q2

Figure 4: Post-f Itering for policy enforcement

Any continuous query processor is adaptable as the Query Pro-
cessor in our framework. The highlight is that in our framework,
queries (or query plans) are not rewritten based on frequently up-
dated privacy policies. Thus, once a query is registered into the
Query Processor, it will not be updated until it is revoked. Un-
der this situation, the multiple queries can be optimized based on
common operators. In many existing centralized frameworks, us-
ing query rewriting to enforce tuple-level policies makes multiple
query optimization diff cult to be applied [4], because rewritten
queries are frequently updated as policies being updated. The only



way to share common operators in the existing framework is to sep-
arate policy enforcement from query operators. To do this, the frst
approach is to treat policy enforcement as post-f Itering, as illus-
trated in Fig. 4 where the gray area is the shared operators of the
three queries. In this approach, the normal query processor is used,
and before a tuple is returned to a particular query, policies will
be checked to validate the tuple. The problem of this approach is
that many useless intermediate results that satisfy the query but not
qualif ed by the policies will be produced. In the second approach,
policy enforcement is conducted during tuple routing in the query
plan [10]. The major drawback of this approach is repeated policy
enforcement. For the same example in Fig. 4, since the streams
s2 and s3 are commonly used by the three queries, at the very be-
ginning, policies for the three queries will be enforced, such that
as long as a tuple from s2 or s3 satisf es one of the queries, it will
be sent to the query plan. Later, after the shared operators are ex-
ecuted, the satisfed tuples will be routed to three directions. For
each direction, the privacy policies will be executed again w.r.t. the
corresponding query. The overhead of policy enforcement includes
the policy table scan, tuple checking and fltering. To enforce the
same policy several times may seriously affect the performance.

In our framework, there is no policy enforcement in the query
processor. All privacy policies are enforced at the stream provider
site, and the result in bit-vector will be sent with tuples and verif ed
by the Query Processor during tuple routing. The pseudo code of
tuple routing in query plan is presented in Algorithm 1.

Algorithm 1 Query processing

Input: a DAG query plan G, in which each directed edge from an
operator u to an operator v is marked with a bit-vector v.bv to
indicate the roles of queries requiring v; an input tuple ¢ with
bit-vector header z.bv

Output: a set of queries taking t as a result

1: initiate the result set S
u = the frst operator ¢ encounters in G
routing(u, t, S)

2:
3:
4: return S

Procedure 2 routing(operator u, tuple t, result S)
1: let bits := t.bv

2: for all tuple ¢’ such that ¢’ is also an input of u and will be
executed with ¢ by u do

3:  bits := AND(bits, t".bv)

4: t :=execute(u, t)

5: if bits is not all-0 bit vector && ¢ !=null then

6:  if u is the last operator for query QO then

7: S:=SU {0}

8: else

9: for all operator v such that (u, v) is a directed edge in G

do

10: let check_bv := AND(t.bv, v.bv)
11: if check bv is not all-0 bit vector then

12: route(v, t, S)

In Procedure 2, at the beginning, a new bit vector is produced
by anding the headers of all the input tuples to the operator node
u during one execution. This is only applicable to the operators
with multiple inputs, e.g., join. In line 4, the operator u executes
the tuple ¢, and produces a new tuple to replace 7. Then the new
tuple will be routed to the next level. Line 6-7 means the current
operator u is the last operator of a query Q. In this case, Q will be
one of satisf ed queries, if the tuple is not null (line 5). If u is not
the last operator, ¢ will be routed to all next-level operators which

1431

are used by queries satisfying the roles specif ed in #’s header (line
10-11). The generation of bit-vectors will be discussed later.

EXAMPLE 3.1. Fig. 5 illustrates the process of tuple routing
with bit-vector header. Suppose three queries, Q1, Q2 and Q3 are
issued by users from different roles R1, R2 and R3. Tuples t1 and t2
are sent by the providers of streams s2 and s3. Assume the stream
providers have enforced the privacy policies, and the header of t1
is 110, i.e., only Role 1 and Role 2 can access t1 and the header of
t2is 101, i.e., only Role I and Role 3 can access t2. After selection
and projection, the tuple headers will not change. When tl and t2
are joined and become one tuple t4, the header of t4 becomes the
AND of the headers of tl and t2, i.e., 100. It specifes that only
Role 1 can access both of the tuples, and thus the join result t4. In
the next round of routing, t4 is only sent to the operators related to
Role 1 queries. Q2 and Q3 will not receive result from tl and t2,
though these tuples satisfy their query constraints.

13 (111)

13 (111)

s1 3 (111)

15 (100)

i 15 (100)

1 (110)

join Q1

1 (110)
— (110
s2 ) 4 (100)

r > Q2

&3 20100

Q3

s4

Figure 5: Query Processor in our framework

Compared with the approach in the existing Hippocratic DSMS
framework, for each tuple routing, we do not need to enforce any
policy. Instead, we only need to check a bit-vector, to know whether
the tuple should be forwarded to a next-level operator.

3.5 Design of stream provider site

In our framework, privacy policy enforcement happens at the
stream data provider site. Thus the data provider site needs to main-
tain a local policy manager, which is in charge of adding, deleting
and updating its own privacy policies. Besides policy management,
another main component at the data provider site is the Data Wrap-
per. The Data Wrapper enforces privacy policies and then wraps
the data tuples with policy enforcement result, in bit-vectors.

3.5.1 Stream-level/attribute-level enforcement

Each provider site maintains a role-query list for every role of
user, which is used to enforce stream-level and attribute-level pri-
vacy policies. For a role R, if the corresponding role-query list is
empty, it means no query from R is qualif ed to access this stream.
Then the corresponding bit value for R is 0 for every tuple. Fur-
thermore, if all role-query lists are empty, the stream will not send
any tuple to the server.

For limiting server collection, stream provider site also main-
tains an attribute-query list for each attribute. For any attribute, if
its attribute-query list is empty, which means there is no query re-
questing this attribute, then the value of this attribute is hidden in
every tuple sent to the server.

Recall the Query Update Protocol (QUP). When a new query is
registered into the DSMS system, the server will send a hello mes-
sage <QID, Role, Attr, Purpose> to the relevant stream providers.
Once a stream provider receives such a message, it will verify with
the local policies whether Role is qualif ed to access A¢tr under Pur-
pose. In our policy model, as long as there is a policy specifying
Role, Attr and Purpose (possibly with other conditions), the query
QID is said to be qualif ed. If the query is not permitted by policies,



the provider will send a no message to the server. Otherwise, the
stream provider will send a yes message to the server. After that,
the provider will wait for the decision message from the server, to
see whether the query QID is accepted by the server. If the query
QID is accepted, i.e., satisfes the policies in all relevant streams,
every relevant stream provider will put the QID to the role-query
list for Role and to every attribute-query list for the attributes in
Attr. 1f any affected attribute-query list was empty before, that at-
tribute will not be hidden any more.

If an existing query is revoked, the DSMS server will send a
goodbye message <QID, Role, Attr> to the provider. In this case,
the provider will remove the corresponding QID from the role-
query list of Role and attribute-query list of attributes in Attr. Mean-
while, an empty checking operation is activated, to check whether
the affected role-query list and attribute-query lists are empty or
not. If the role-query list becomes empty, the corresponding bit
value in the following tuples is set to 0. If any attribute-query list
becomes empty, the corresponding attribute will be hidden in fu-
ture tuples. Then the provider acknowledges the server. Algorithm
3 illustrates the whole process.

Algorithm 3 Stream/attribute-level policy enforcement

Input: astream S, a hello/goodbye message m, a local policy table
T, the role-query lists for all roles RL, and the attribute-query
lists AL for all attributes of S

Output: a response message with updated RL and AL

1: if mis a hello message with < Q;, R;, Attr, Purpose > then

2:  if there exist a policy in T satisfying R;, Attr, Purpose
then

3: insert (Q; into RL.R;

4: for all attribute Ay, in Attr do

5: insert Q; into AL. Ay,

6: send a yes message to the server

7.  else

8: send a no message to the server

9: else if m is a goodbye message with < Q;, R;, Attr > then
10:  delete ); from RL.R;
11:  for all attribute Ay, in A#tr do
12: delete QQ; from AL. Ay
13:  send goodbye message to the server

A stream provider also records the hello messages of qualif ed
queries, which is useful for policy updating as described later.

EXAMPLE 3.2. Suppose there is a query QI from LTA query-
ing a vehicle data stream for ERP pricing purpose. QI requests
the location of the vehicle and also the vehicle ID and type. An-
other query Q2 from URA (Urban Redevelopment Authority) query-
ing the same stream but only need the location information. Sup-
pose the two queries are both qualifed to receive data from the
stream. When the server sends hello messages, the vehicle (i.e.,
data provider) stores Q1 and Q2 in the role-query lists for LTA
and URA respectively. Also, the vehicle stores Q1 and Q2 in the
attribute-query list for location, and stores only Q1 in the attribute-
query lists for ID and type. The vehicle sends all tuples to the
server by keeping the location, ID and type values and hiding other
attribute values. When Q1 is revoked, a goodbye message is sent
from the server. The vehicle removes Q1 from LTA's role-query list
and the attribute-query lists for location, ID and type. Now the
attribute-query lists for ID and type are empty. Then for all follow-
ing tuples sent to the server, ID and type values are also hidden.
When Q2 is revoked, all lists are empty, so no tuples will be sent to
the server.
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3.5.2  Tuple-level enforcement

Recall that in our policy model, each policy is specifed by the
role of user, the permitted attributes, the query purpose and optional
conditions. The frst three components are used for stream-level
and attribute-level privacy control, while the last component is used
for tuple-level privacy control.

If a query is qualif ed and there is no condition specif ed in the
policy qualifying this query, then all tuples should be sent to the
server to evaluate this query. In this case, there is no tuple-level
enforcement. On the other hand, the stream provider will enforce
tuple-level privacy control.

The operation to enforce tuple-level policies in our framework is
quite similar to that in the existing framework, i.e., for each tuple,
check whether the policy conditions are satisfed. If yes, the tuple
will be qualif ed; if no, the tuple will not be shown to the user. The
only difference in our framework is that the tuple-level enforcement
happens at the provider site, rather than the DSMS server site. Then
in the provider site, if a tuple satisf es the tuple-level condition for
a role, the corresponding bit value in the tuple’s header is set to
1 before the tuple is sent to the server. Otherwise, the bit value
for this role is set to 0. If all bit values in a tuple’s header are 0,
the tuple will not be sent. The pseudo-code for tuple-level policy
enforcement and tuple wrapping is shown in Algorithm 4.

Algorithm 4 Tuple-level policy enforcement

Input: a generated data tuple ¢, the role-query lists for all roles RL,
and the attribute-query lists for all attributes AL
Output: a wrapped tuple ¢’ for ¢, which is sent to the server
1: initiate a bit-vector bv
append bv to ¢, to make it ¢’
: for all role R; do
if RL.R; !=null then
bv.set(i)
if bv is not all-0 then
for all attribute A; do
if AL.A; == null then
hide the value of A; in ¢’
: send ¢’ to the server
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EXAMPLE 3.3. Continue with the example queries in Example
3.2. Suppose LTA and URA correspond to roles RI and R2. URA
can view all the data, but LTA is only permitted to view data when
the vehicle is on a busy road and at a peak hour. When the vehicle
sends a tuple in a busy road at a peak hour, the header of the tuple
is 11 (assuming there are only two roles). Later, when the vehicle
is not on the chargeable road, by enforcing the local policy, the
vehicle will send data with header of 01. By checking the header,
the server knows that the frst tuple can be routed to both QI and
Q2, while the second tuple should only be routed to Q2.

3.5.3 Update of policy

We discuss the actions taken when privacy policies are updated
at provider site. If a new privacy policy is added, there will be no
change for the existing status, because in our policy model, the ad-
dition of new policy will not affect the existing policies that qualify
streams and tuples. For future queries the new policy will be in use.

The deletion of an existing policy is more complicated. Once
a policy is removed, the provider site will check the record of all
hello messages for the qualif ed queries, which are sent from the
server, to see which queries are qualif ed by the policy to be deleted.
Then the policy is removed from the policy table, the relevant hello
messages are deleted, and the relevant queries in the query lists are
removed as well. Again, if there is no more queries in the query list



for a certain role, the bit value for that role in all further tuples is 0.
Furthermore, since those relevant queries are no longer qualifed,
the stream provider will send a revoke message to the server, with
all these queries. The server then revokes those queries.

4. ANALYSIS
4.1 Limited collection

THEOREM 4.1. For a data stream, all its attribute values to be
sent to the server will be used to process certain queries.

Based on the QUP protocol, when a query registers to the server,
the corresponding stream provider stores the query ID in the attribute-
query lists, for all relevant attributes. Before the provider sends a
tuple to the server, it will check with the attribute-query lists. All
attributes with empty list will be hidden. Then the attributes with
values must be the ones requested by some qualif ed queries. Thus
Theorem 4.1 holds.

THEOREM 4.2. For a data stream, all the tuples sent to the
server will be used to process certain queries.

Recall that a stream tuple is sent to the server if and only if there
exist some 1s in its header, which means there are queries qualif ed
to evaluate the tuple. If there is no query qualif ed for the stream,
or there are queries qualifed for the stream but none of them is
satisf ed by the SysCond or ContCond of the tuple, the tuple will
not be sent to the server. Thus Theorem 4.2 holds.

4.2 Limited Disclosure

THEOREM 4.3. For a data stream provider, each of his/her tu-
ples will only be received by the qualif ed user queries.

For each tuple, the provider will f gure out the users that can ac-
cess it, and attach the information as the header of the tuple. Tuple
routing in the server Query Processor strictly follows the header of
each tuple. Thus, each tuple only arrives at the qualif ed queries.

Since in our framework, the enforcement of LD is totally at the
stream provider site. The server is only aware of the enforcement
result. Event if the server is compromised, the attacker cannot view
or change the privacy policies specif ed by each stream provider.

4.3 Performance and Energy Consumption

In our framework, the query plan in the Query Processor is not
modif ed, compared to the normal (without privacy protection) stream
systems. Thus the complexity of continuous query processing is
unchanged. In our framework, the tuples that do not satisfy any
user roles will not be sent to the server. Then the server may pro-
cess fewer tuples than the server in the existing framework, and the
transmission energy cost is reduced. Furthermore, even for the tu-
ples sent to the server, our framework only checks the bit-vector,
which is more eff cient than policy enforcement over those tuples.

5. EXPERIMENTS
5.1 Experimental Settings

All algorithms in our experiments were implemented in Java.
We used a machine with 3.07GHz quad-core CPU (Intel Core i7)
and 8G RAM. We obtained a real-life taxi data set from a local
taxi company. The data set contains the status tuples streaming
from all taxis under the company. Each tuple contains the reporting
time, the taxi ID, the current location (in longitude-latitude pair),
the current speed and the availability.

All the continuous queries were semi-randomly designed. For
each testing purpose, we may control/vary the selectivity and the
complexity of queries. Within each selectivity and complexity scale,
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the detailed query predicate (selection and join condition) were ran-
domly designed. We focus on two core query operators, selection
and join. For another core operator, projection, it does not impact
the performance of tuple-level policy enforcement. Thus we do not
test it.

5.2 Implementation

We implement our prototype with multi-threading, which fully
utilizes the multi-core CPU resource in the test machine. In partic-
ular, in a query plan (with shared part and non-shared part), each
operator is ran by a separate thread. There are piped input/output
streams between each pair of adjacent operators.

With a preliminary experimental study, our multi-threading based
prototype much better utilizes the quad-core CPU resource, and 2-
4 times faster than the single-threading prototype. This paper does
not focus on the implementation and performance of continuous
query processing with multi-threading approach, though it can be a
promising direction for our future research. We only focus on ex-
amining the effectiveness and eff ciency of our decentralized policy
enforcement framework. Thus we implement both our framework
and the compared framework under the multi-threading architec-
ture, and do not compare with other single-threading systems for
query processing issues.

5.3 Privacy Preservation

Limited disclosure can hardly be tested in experiment. Normally,
unless the system is compromised, all limited disclosure policies
will be guaranteed in any Hippocratic DSMS. In this section, we
only focus on limited collection test.

The intuition behind limited collection is that a Hippocratic DSMS
should only collect as few as possible streaming tuples that are suf-
fcient to answer all queries. Thus in our test, we take the metric
of the ratio of the number of collected tuples over the number of
resulting tuples to measure the effectiveness of limited collection
control. The higher this ratio is, the more useless tuples collected.

We frst test the selection operation for both centralized frame-
work and our proposed decentralized framework. We use 1000 tu-
ples reported from working taxis, with speed value uniformly dis-
tributed. We set the selectivity of the selection to be 20% . The
evaluation result is reported in Fig. 6(a). We then vary the selectiv-
ity to be 50% and 80%, and get the results with similar shapes to
Fig. 6(a) with different scales.

30 12

—+—centralized framework —+—centralized framework
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—¢—our framework —¢—our framework

20 A

15 A

10

collected/required tuple ratio
collected/required tuple ratio

100 80 60 40 20 100 80 60 40 20
policy selectivity policy selectivity

(a) Selection with 0=20%

Figure 6: Privacy preservation test

(b) Join with win-size=50

The result proves that for the centralized framework, no mat-
ter the selection predicate leads a high selectivity or low, the ra-
tio between collected tuples and required tuples always increases
rapidly as the policy selectivity increases. That means if the selec-
tivity of a privacy policy is high, the system will actually collect a
large number of tuples that are not returned to the users. Obviously
data providers will feel uncomfortable to disclose too many query-
irrelevant data to the system. In our framework, since the policies
are enforced at the provider site, only satisf'ed tuples are sent to



the server. Then for a particular selection operation, this ratio is
constant® to the policy selectivity.

We also test the join operator. We adopt two taxi streams and
perform an equijoin between them. We vary the window size for
join among 50, 100 and 200 (number of tuples). We show the ex-
periment result for the window size of 50 in Fig. 6(b). Again, when
the window size is varied, the f gure shape does not change. We can
see the result for join is similar to the result for selection. The same
reason explains the result.

Note that the f gures above only show the result for a single role.
If there are multiple roles, each of which has its own policy with
selectivity of o;, in average case that the policies are independent
to each other, the overall selectivity is

1 'HieRoles(l'Ui)

As the number of roles increases, the overall selectivity is close
to 1. Moreover, in worst case, if two policies are predicated on
the same attribute with contradictory conditions, e.g., one is loca-
tion within a region R and the other one is location outside R, the
overall selectivity will be 1 (i.e., all tuples need to stream into the
system). For these cases, actually our framework also has to send
nearly all tuples to the server. However, the experimental result in
this section shows that our framework will minimize the number of
tuples required by the server.

5.4 Performance evaluation

5.4.1 Overhead of policy enforcement

In this section, we test the overhead introduced by policy en-
forcement in our proposed framework. Note that in our framework,
all privacy policies are enforced at the data provider sites and the
enforcement result will be passed to the query processor by bit-
vector. Furthermore, we do not introduce any new operator to the
query plan generated by the query processor. Thus, the overhead is
only caused by the bit-vector checking.

We evaluate the overhead brought by the bit-vector checking for
selection and join separately. In the frst test for selection, we make
use of 100,000 taxi tuples as an input stream® without delay be-
tween adjacent tuples. We set a dummy predicate for the selection
operator which flters nothing. The reason is that if a tuple is not
selected, it will be dropped immediately and its bit vector will not
be checked. To measure the overhead of policy enforcement, we
can only monitor those selected tuples. We made 10 runs of exper-
iments, to reduce occasionality. The result is shown in Fig. 8(a).
We can see that the overhead of policy enforcement in our frame-
work is around 10% of the query processing time. More exactly,
the average policy enforcement time is 6.2e-4 millisecond per in-
put tuple. This result is acceptable compared to the policy checking
overhead introduced by other framework [4].

700 12000

< 600 2 10000 -
E o= 8
® 200 2 8000 4 W
% 400 a
8 & 6000
2 300 2
o =3
5 w5 4000 -
S 200 | ——query processing without policy ° ——query processing without policy
% %
S 100 { —<query processing with policy 8 2000  —<query processing with policy
0 — 0

12 3 4 5 6 7 8 9 10
runs

(b) Join

12 3 4 5 6 7 8 9 10
runs

(a) Selection

Figure 8: Overhead on policy enforcement

2The slight difference is because the tuples used are different in every run.
3The processing time for a single tuple is too fast to measure.
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We further test the join operation, as shown in Fig. 8(b). We fx
the join window to be 50 tuples, and the statistics shows that each
incoming tuple in one stream produces 2.5 joined tuple on aver-
age as output. From the f gure we can see that the join operator is
much more costly than selection. The overhead introduced is 8.4e-
3 millisecond per input tuple, which is higher than the overhead for
selection. This is because every input tuple actually corresponds
multiple policy checkings.

5.4.2 Scalability of overhead

In this part, we test how the overhead increases as the number of
roles increases. We use the same data, query and policy settings
as that in the previous experiments, and we take the pure over-
head which is the running time difference between queries with and
without policy. We vary the number of roles from 10 to 100. The
result in Fig. 9 shows that the overhead scales well as the number
of roles increases. The overhead on policy checking in other frame-
works is also linear to the number of roles [10]. In fact, in practice
the number of stream users may be huge, but they are normally
classif ed into a limited number of roles.
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2500
2000
1500
1000

o //*/”M
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10 20 30 40 50 60 70 80 90 100
Number of roles

Figure 9: Scalability of overhead as number of roles increases

——selection —>join

cost of processing (ms)

5.4.3  Performance comparison

In this section, we compare the overall performance at the server
site between our framework and the centralized framework. We use
the same taxi streaming data with 100,000 tuples as input of each
stream. We randomly compose fve query plans, with selectivity
of 50% for each selection and window size of 50 for each join.
We consider 10 roles of users/queries and each tuple-level policy is
randomly specif ed with the average selectivity of 80% (low), 50%
(medium) and 20% (high). In the centralized framework, we as-
sume the queries share the same plan and then the relevant policy
is enforce before each tuple is returned to the user. For our frame-
work, we consider three cases. In worst case, we assume different
policies have contradictory condition. That means all input tuples
are sent to the server. In average case, we assume different policy
conditions are independent to each other. Then the overall selec-
tivity of policies is as specifed in Section 5.3. In the best case,
we assume the conditions are totally overlap with each other. Then
the number of tuples sent to the server is proportional to the selec-
tivity of each policy. Fig. 7 shows the result. Note that the x-axis
streamNO-selectionNo-joinNo indicates the property of each query
plan, i.e., the number of input streams, the number of selections and
the number of joins.

From the fgure we can see that the performance of the cen-
tralized framework does not change much as the policy selectivity
varies. It is easy to understand, because no matter what kind of
selectivity, the centralized framework will do the evaluation over
every tuple. The performance of our framework tightly depends on
the policy selectivity. When the policy selectivity is rather low, i.e.,
80%, our framework does not outperform the centralized frame-
work for the worst case and average case. But the difference is not
signif cant. However, as the policy selectivity goes strict, the ben-
ef't of our framework becomes obvious, as shown in Fig. 7(b) and
7(c). In practice, actually policy selectivity is normally high.
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Figure 7: Performance comparison

5.5 Energy Consumption

Last, we evaluate the energy consumption at a stream data provider
site. We simulate a data provider using a HTC smart phone with
Android OS. The smart phone continuously sends 1 million tuples
to a server, at a frequency of 200 tuples per second, via a Wif
connection. For the existing centralized framework, each tuple is
directly sent out, while in our framework, each tuple is evaluated
against the local policies before being sent. We vary the policy se-
lectivity as 50% and 20%, and measure the battery consumption
under each framework (battery is fully charged before each run).
The result is shown in Fig. 10. We can see that under our frame-
work, the data provider consumes less energy when the policy se-
lectivity is higher. This is because the transmission cost is far more
expensive than the cost for local policy enforcement. Although the
battery is also consumed by other applications in the phone, for
the same time period, the energy consumption difference between
different frameworks is suff cient to validate our analysis.
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Figure 10: Energy consumption test

6. RELATED WORK

Limiting data disclosure is essential to a Hippocratic DSMS.
Normally, the data stream providers (owners) specify access con-
trol policies for the system to comply, so that their data will only
be disclosed to authorized users. Thus enforcing access control in
Hippocratic DSMS attracting most research interest.

All the related works are based on the same centralized frame-
work, in which both query processing and privacy protection take
place at the DSMS server site. Lindner and Meier [7] design a f1-
tering operator and apply it to the query processing results to f lter
the output based on relevant privacy policies. Nehme et al. [10]
embed security policies into data stream, by security punctuations
(SPs). Their query processor analyzes the SPs in each data stream,
and enforces the policies during query processing. However, they
may redundantly enforce a same policy multiple times. This frame-
work is further improved by supporting dynamic access authoriza-
tion of query issuers [8][9]. Carminati et al. [4] propose another
framework to enforce access control policies for stream query pro-
cessing. They model continuous queries as graph of algebraic op-
erators, and focus on query rewriting to incorporate policies into
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query graphs. Finally, the rewritten query graph can be translated
into different query languages according to different stream query
processors [3]. As discussed earlier, this attempt makes multiple
query optimization hard to apply.

7. CONCLUSION

In this paper, we point out that the existing framework for Hip-
pocratic DSMS cannot fully support limited collection, and suf-
fers from security and performance problems for limited disclosure.
Thus they cannot be used in ERP 2 systems initiated by Singapore
government. Motivated by this, we propose a novel decentralized
framework, which enforces privacy policies at the data provider
site and leaves the server only responsible for query processing.
We conduct experiments to validate our framework in privacy pre-
serving, performance and energy consumption.

In future work, we will collaborate with the government-appointed
testing companies to integrate our prototype with ERP 2 system
prototype and evaluate the performance. We will also try to inte-
grate the data stream applications from other government agencies
into our platform.
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