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ABSTRACT
The Moneyball revolution coincided with a shift in the way
professional sporting organizations handle and utilize data in
terms of decision making processes. Due to the demand for
better sports analytics and the improvement in sensor tech-
nology, there has been a plethora of ball and player tracking
information generated within professional sports for analyt-
ical purposes. However, due to the continuous nature of the
data and the lack of associated high-level labels to describe
it - this rich set of information has had very limited use espe-
cially in the analysis of a team’s tactics and strategy. In this
paper, we give an overview of the types of analysis currently
performed mostly with hand-labeled event data and high-
light the problems associated with the influx of spatiotem-
poral data. By way of example, we present an approach
which uses an entire season of ball tracking data from the
English Premier League (2010-2011 season) to reinforce the
common held belief that teams should aim to “win home
games and draw away ones”. We do this by: i) forming a
representation of team behavior by chunking the incoming
spatiotemporal signal into a series of quantized bins, and ii)
generate an expectation model of team behavior based on
a code-book of past performances. We show that home ad-
vantage in soccer is partly due to the conservative strategy
of the away team. We also show that our approach can flag
anomalous team behavior which has many potential appli-
cations.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.2.6 [Learning]: General

Keywords
Sports Analytics, Spatiotemporal Data, Representation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

Canada USA
9(3) Shots (on Goal) 12(4)
13 Fouls 11
3 Corner Kicks 8
1 O↵sides 4
38% Time of Possession 62%
3 Yellow Cards 1
0 Red Cards 0
4 Saves 3

8. REFERENCES
[1] S. Ali and M. Shah. Floor Fields for Tracking in High

Density Crowd Scenes. In ECCV, 2008.

[2] N. Allen, J. Templon, P. McNally, L. Birnbaum, and
K. Hammond. StatsMonkey: A Data-Driven Sports
Narrative Writer. In AAAI Fall Symposium Series,
2010.

[3] BBC-Sports. Footballers may trial wearing microchips
to monitor health.
www.bbc.co.uk/sport/0/football/21460038, 14 Feb
2013.

[4] M. Beetz, N. von Hoyningen-Huene, B. Kirchlechner,
S. Gedikli, F. Siles, M. Durus, and M. Lames.
ASPOGAMO: Automated Sports Game Analysis
Models. International Journal of Computer Science in
Sport, 8(1), 2009.

[5] P. Carr, Y. Sheikh, and I. Matthews. Monocular
Object Detection using 3D Geometric Primitives.
2012.

[6] K. Goldsberry. CourtVision: New Visual and Spatial
Analytics for the NBA. In MIT Sloan Sports Analytics
Conference, 2012.

[7] A. Gupta, P. Srinivasan, J. Shi, and L. Davis.
Understanding Videos, Constructing Plots: Learning a
Visually Grounded Storyline Model from Annotated
Videos. In CVPR, 2009.

[8] Hawk-Eye. www.hawkeyeinnovations.co.uk.

[9] D. Henschen. IBM Serves New Tennis Analytics At
Wimbledon. www.informationweek.com/software/
business-intelligence/

ibm-serves-new-tennis-analytics-at-wimbl/

240002528, 23 June 2012.

[10] A. Hervieu and P. Bouthemy. Understanding sports
video using players trajectories. In J. Zhang, L. Shao,
L. Zhang, and G. Jones, editors, Intelligent Video
Event Analysis and Understanding. Springer Berlin /
Heidelberg, 2010.

[11] S. Intille and A. Bobick. A Framework for Recognizing
Multi-Agent Action from Visual Evidence. In AAAI,
1999.

[12] K. Kim, M. Grundmann, A. Shamir, I. Matthews,
J. Hodgins, and I. Essa. Motion Fields to Predict Play
Evolution in Dynamic Sports Scenes. In CVPR, 2010.

[13] M. Lewis. Moneyball: The Art of Winning an Unfair
Game. Norton, 2003.

[14] R. Li and R. Chellappa. Group Motion Segmentation
Using a Spatio-Temporal Driving Force Model. In
CVPR, 2010.

[15] R. Li, R. Chellappa, and S. Zhou. Learning
Multi-Modal Densities on Discriminative Temporal
Interaction Manifold for Group Activity Recognition.

In CVPR, 2009.

[16] W. Lu, J. Ting, K. Murphy, and J. Little. Identifying
Players in Broadcast Sports Videos using Conditional
Random Fields. In CVPR, 2011.

[17] P. Lucey, A. Bialkowski, P. Carr, E. Foote, and
I. Matthews. Characterizing Multi-Agent Team
Behavior from Partial Team Tracings: Evidence from
the English Premier League. In AAAI, 2012.

[18] L. Madden. NFL to Follow Army’s Lead on Helmet
Sensors in Attempt to Prevent Head Injury.
www.forbes.com/sites/lancemadden/2012/07/16/

nfl-to-follow-armys-lead-on-helmet-sensors-in/

-attempt-to-prevent-head-injury/
”

16 July 2012.

[19] R. Masheswaran, Y. Chang, A. Henehan, and
S. Danesis. Destructing the Rebound with Optical
Tracking Data. In MIT Sloan Sports Analytics
Conference, 2012.

[20] V. Morariu and L. Davis. Multi-Agent Event
Recognition in Structured Scenarios. In CVPR, 2011.

[21] T. Moskowitz and L. Wertheim. Scorecasting: The
Hidden Influences Behind How Sports Are Played and
Games Are Won. Crown Publishing Group, 2011.

[22] NBA Shot Charts. www.nba.com/hotspots.

[23] D. Oliver. Basketball on Paper: Rules and Tools for
Performance Analysis. Brassey’s, Incorporated, 2004.

[24] D. Oliver. Guide to the Total Quarterback Rating.
espn.go.com/nfl/story/_/id/6833215/

explaining-statistics-total-quarterback-rating,
4 August 2011.

[25] Opta Sports. www.optasports.com.

[26] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool.
You’ll Never Walk Alone: Modeling Social Behavior
for Multi-Target Tracking. In CVPR, 2009.

[27] M. Perse, M. Kristan, S. Kovacic, and J. Pers. A
Trajectory-Based Analysis of Coordinated Team
Activity in Basketball Game. Computer Vision and
Image Understanding, 2008.

[28] Prozone. www.prozonesports.com.

[29] B. Siddiquie, Y. Yacoob, and L. Davis. Recognizing
Plays in American Football Videos. Technical report,
University of Maryland, 2009.

[30] SportsVision. www.sportsvision.com.

[31] STATS SportsVU. www.sportvu.com.

[32] Statsheet. www.statsheet.com.

[33] D. Stracuzzi, A. Fern, K. Ali, R. Hess, J. Pinto, N. Li,
T. Konik, and D. Shapiro. An Application of Transfer
to American Football: From Observation of Raw
Video to Control in a Simulated Environment. AI
Magazine, 32(2), 2011.

[34] X. Wei, P. Lucey, S. Morgan, and S. Sridharan.
Sweet-Spot: Using Spatiotemporal Data to Discover
and Predict Shots in Tennis. In MIT Sloan Sports
Analytics Conference, 2013.

[35] C. Xu, Y. Zhang, G. Zhu, Y. Rui, H. Lu, and
Q. Huang. Using Webcast Text for Semantic Event
Detection in Broadcast. T. Multimedia, 10(7), 2008.

[36] Zonalmarking. www.zonalmarking.net.

(a) (b)

Figure 1: (a) An example of standard soccer statis-
tics based on hand-labeled event data which describe
what happened. (b) Spatiotemporal data has the po-
tential to describe the where and how, but as it is
a continuous signal which is not associated with a
fixed event, using this data for analysis is difficult.

1. INTRODUCTION
In his 2003 book Moneyball [14], Michael Lewis docu-

mented how Oakland A’s General Manager Billy Beane was
able to effectively use metrics derived from hand-crafted
statistics to exploit the inefficiencies in the value of indi-
vidual baseball players. Around the same time, Basketball
on Paper [24] was published which outlined methods for
valuing player performance in basketball which is a far more
challenging problem because it is a continuous team sport.
Due to the popularity and effectiveness of the tools that em-
anated from these works, there has been enormous interest
in the field of sports analytics over the last 10 years with
many organizations (e.g. professional teams, media groups)
housing their own analytics department. However, nearly all
of the analytical works have dealt solely with hand-labeled
event data which describes what happened (e.g. basketball
- rebounds, points scored, assists, football - yards per carry,
tackles, sacks, soccer - passes, shots, tackles (see Figure 1(a))).
Once the data is in this form, most approaches just relate
to parsing in the relevant data from a database, then ap-
plying sport-based rules and standard statistical methods,
including regression and optimization.

As most sporting environments tend to be dynamic with
multiple players continuously moving and competing against
each other, simple event statistics do not capture the com-
plex aspects of the game. To gain an advantage over the
rest of the field, sporting organizations have recently looked
to employ commercial tracking technologies which can lo-
cate the position of the ball and players at each time instant
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in professional leagues [29, 32, 9, 26]1 - to determine where
and how events happen. Even though there is potentially
an enormous amount of hidden team behavioral information
to mine from such sources, due to the sheer volume as well
as the noisy and variable length of the data, methods which
can adequately represent team behaviors are yet to be devel-
oped. The value of this data is limited as little analysis can
be conducted. What compounds the difficulty of this task
is the low-scoring and/or continuous nature of many team
sports (e.g. soccer, hockey, basketball) which makes it very
hard to associate segments of play with high-level behaviors
(e.g. tactics, strategy, style, system, formations). Without
these labels, which essentially give the game context, infer-
ring team strategy or behavior is impossible as there are no
factors to condition against (see Figure 1(b)).

Due to these complexities, there has been no effective
method of utilizing spatiotemporal data in continuous sports.
Having suitable methods which can first develop suitable
representations from imperfect (e.g. noisy or impartial) data,
and then learn team behaviors in an unsupervised or semi-
supervised manner, as well as recognize and predict future
behaviors would greatly enhance decision making in all ar-
eas of the sporting landscape (e.g. coaching, broadcasting,
fantasy-games, video games, betting etc.). We call this the
emerging field of Sports Spatiotemporal Analytics - and we
show an example of this new area of analytics by compar-
ing the strategies of home and away teams in the English
Premier League by using ball tracking data.

2. RELATED WORK
The use of automatic sports analysis systems have re-

cently graduated from the virtual to the real-world. This
is due in part to the popularity of live-sport, the amount
of live-sport being broadcasted, the proliferation of mobile
devices, the rise of second-screen viewing, the amount of
data/statistics being generated for sports, and demand for
in-depth reporting and analysis of sport. Systems which use
match statistics to automatically generate narratives have
already been deployed [33, 2]. Although impressive, these
solutions just give a low-level description of match statistics
and notable individual performances without giving any tac-
tical analysis about factors which contributed to the result.
In tennis, IBM has created Slamtracker [10] which can pro-
vide player analysis by finding patterns that characterize
the best chance a player has to beat another player from an
enormous amount of event labeled data - although no spa-
tiotemporal data (i.e. player or ball tracking information)
has been used in their analysis yet.

Spatiotemporal data has been used extensively in the vi-
sualization of sports action. Examples include vision-based
systems which track baseball pitches for Major League Base-
ball [31], and ball and players in basketball and soccer [32,
29]. Hawk-Eye deploy vision-based systems which track the
ball in tennis and cricket, and is often used to aid in the
officiating of these matches in addition to providing visu-

1As nearly all professional leagues currently forbid the use of
wearable sensors on players, unobtrusive data capture meth-
ods such as vision-based systems or armies of human annota-
tors are used to provide player and ball tracking information.
However, this restriction may change soon as monitoring the
health and well-being of players has attracted significant in-
terest lately, especially for concussions in American Foot-
ball [19], as well as heart issues in soccer [3].

alizations for the television broadcasters [9]. Partial data
sources normally generated by human annotators such as
shot-charts in basketball and ice-hockey are often used for
analysis [23], as well as passing and shot charts in soccer
[26]. Recently, ESPN developed a new quarterback rating
in American Football called“TotalQBR”[25] which attempts
to assign credit or blame to the quarterback depending on
a host of factors such as pass or catch quality, importance
in the match, pass thrown under pressure or not. As these
factors are quite subjective, annotators who are reliable in
labeling such variables are used. In terms of strategic anal-
ysis, zonalmarking.net [37] attempts to describe a soccer
match from a tactical and formation point of view. Whilst
interesting, this approach is still qualitative and is based
solely on the opinion of the analyst.

As the problem of fully automatic multi-agent tracking
from vision-based systems is still an open one, most aca-
demic research has centered on the tracking problem [1, 27,
17, 5]. The lack of fully automated tracking approaches has
limited team behavioral research to works on limited size
datasets. The first work which looked at using spatiotem-
poral data for team behavior analysis was conducted over 10
years ago by Intille and Bobick [12]. In this seminal work,
the authors used a probabilistic model to recognize a single
football play from hand annotated player trajectories. Since
then, multiple approaches have centered on recognizing foot-
ball plays [16, 30, 15, 34], but only on a very small number of
plays (i.e. 50-100). For soccer, Kim et al. [13] used the global
motion of all players in a soccer match to predict where the
play will evolve in the short-term. Beetz et al. [4] proposed
a system which aims to track player and ball positions via
a vision system for the use of automatic analysis of soccer
matches. In basketball, Perse et al. [28] used trajectories of
player movement to recognize three type of team offensive
patterns. Morariu and Davis [21] integrated interval-based
temporal reasoning with probabilistic logical inference to
recognize events in one-on-one basketball. Hervieu et al. [11]
also used player trajectories to recognize low-level team ac-
tivities using a hierarchical parallel semi-Markov model. In
addition to these works, plenty of work has centered on an-
alyzing broadcast footage of sports for action, activity and
highlight detection [36, 8]2. Even though notable, the lack
of tracking data to adequately train models has limited the
usefulness of the above research.

It is clear from the overview given above, that there ex-
ists a major disparity in resources between industry and
academia to deal with this problem domain. Sporting orga-
nizations that receive large volumes of spatiotemporal data
from third-party vendors but often the people within these
organizations lack the computational skills or resources to
make use of it. Contrastingly, due to the proprietary nature
of commercial tracking systems, and the cost and method of
generating the tracking data, research groups who have the
necessary skills can not access these large data repositories.
Recently however, due to the potential payoff, some industry
groups are investing in analytical people with these skill sets,
or have teamed up with research groups to help facilitate a
solution. The release of STATS Sports VU data [32] to some
research groups has enabled interesting analysis of shots and
rebounding in the NBA[7, 20]. In tennis, Wei et al. [35]

2These works only capture a portion of the field, making
group analysis very difficult as all active players are rarely
present in the all frames.
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N Team
Home Away

W D L P GF SF GA SA W D L P GF SF GA SA
1 Man Utd 18 1 0 55 49 347 12 191 5 10 4 25 29 272 25 271
2 Chelsea 14 3 2 45 39 379 13 233 7 5 7 26 30 367 20 208
3 Man City 13 4 2 43 34 306 12 216 8 4 7 28 26 240 21 298
4 Arsenal 11 4 4 37 33 350 15 154 8 7 4 31 39 305 28 251
5 Tottenham 9 9 1 36 30 383 19 228 7 5 7 26 25 274 27 339
6 Liverpool 12 4 3 40 37 319 14 220 5 3 11 18 22 266 30 270
7 Everton 9 7 3 34 31 321 23 227 4 8 7 20 20 259 22 279
8 Fulham 8 7 4 31 30 307 23 262 3 9 7 18 19 245 20 271
9 Aston Villa 8 7 4 31 26 273 19 263 4 5 10 17 22 233 40 340
10 Sunderland 7 5 7 26 25 287 27 243 5 6 8 21 20 246 29 311
11 West Brom 8 6 5 30 30 329 30 237 4 5 10 17 26 273 41 297
12 Newcastle 6 8 5 26 41 300 27 250 5 5 9 20 15 209 30 256
13 Stoke City 10 4 5 34 31 298 18 256 3 3 13 12 15 186 30 294
14 Bolton 10 5 4 35 34 311 24 256 2 5 12 11 18 261 32 346
15 Blackburn 7 7 5 28 22 254 16 259 4 3 12 15 24 200 43 360
16 Wigan 5 8 6 23 22 290 34 227 4 7 8 19 18 221 27 284
17 Wolves 8 4 7 28 30 256 30 266 3 3 13 12 16 205 36 306
18 Birmingham 6 8 5 26 19 231 22 324 2 7 10 13 18 174 36 362
19 Blackpool 5 5 9 20 30 296 37 297 5 4 10 19 25 240 41 441
20 West Ham 5 5 9 20 24 325 31 317 2 7 10 13 19 250 39 378

SUM 179 111 90 648 617 6162 446 4926 90 111 179 381 446 4926 617 6162
AVG(per game) 0.47 0.29 0.24 1.71 1.62 16.2 1.17 13.0 0.24 0.29 0.47 1.00 1.17 13.0 1.62 16.2

Table 1: Table showing the statistics for the home and away performances for each team in the 2010 EPL
season: (left columns) home matches (right columns) away columns (Key: W = wins, D = draws, L = losses,
P = points (3 for a win, 1 for a draw, 0 for a loss), GF = goals for, SF = shots for, GA = goals against,
SA = shots against).

used ball and player tracking information to predict shots
using data from the 2012 Australian Open. For soccer, re-
searchers have characterized team behaviors in the English
Premier League using ball-motion information across an en-
tire season using OPTA data [18]. In this paper, we extend
this method to explain that the home advantage in soccer
is due to the conservative strategy that away teams use (or
more aggressive approach of the home team) which rein-
forces the commonly held belief that teams aim to win their
home games and draw their away ones.

3. CASE STUDY:
HOME ADVANTAGE IN SOCCER

3.1 “Win at Home and Draw Away”
In a recent book by Moskowitz and Wertheim [22], they

highlight that the home advantage exists in all professional
sports (i.e. teams win more at home than away). The au-
thors hypothesized that referees play a significant role by
giving home teams favorable calls at critical moments. They
then quantitatively showed this in baseball through the use
of pitch tracking data. For soccer, hand-labeled event statis-
tics such as the amount of injury time, number of yellow
cards and number of penalties awarded to reinforce their
hypothesis. As soccer is a very tactical game, we hypothe-
size that the strategy of the home and away teams also plays
a role in explaining the home advantage.

A great case study of home advantage is the 2010-2011
English Premier League soccer season. In that season, the
home team earned an average 1.71 points out of a total 3
points per match. This is in stark contrast with the away
team, which earned only 1.00 points per game: a rather
large discrepancy, especially considering that teams play ev-
ery other team both at home and away so that any talent
disparities apply to both home and away averages. In terms
of shooting and passing proficiency, there was no signifi-

cant difference between teams at home and away (10.01%
vs 9.05% for shooting and 73.46% vs 72.99% for passing -
see the bottom row in Table 1).

However, there is a large difference between the amount of
shots (16.2 vs 13.0) and goals scored (1.62 vs 1.17) at home
and away. An illuminating example is the league champions
for that season, Manchester United (see top row in Table 1).
At home, they were unbeaten (winning 18 and drawing 1),
but away from home they only won 5 games, drew 10 and
lost 4. The telling statistic is that at home they scored 49
goals from 347 shots, compared to only 29 goals from 272
shots away from home. Comparatively, the opposition at
home games only scored a paltry 12 goals from 191 shots
while at away games they scored 25 goals from 271 shots.
In soccer, there is the commonly held belief that team should
aim to win their home games and draw their away ones. If
you skim down Table 1, you will find that: i) all teams won
more home games (except for Blackpool who won the same
amount), ii) all teams score more goals at home (except Ar-
senal and Blackburn), iii) all teams had more shots at home
compared to away, and iv) all teams gained more points at
home. These event statistics tell us what has occurred, in
the rest of the paper we use spatiotemporal data to help
explain where and why this occurred. Before we detail the
method, we first describe the data.

3.2 Ball Tracking and Event Data
Due to the difficulty associated with accurately tracking

players and the ball, data containing this information is still
scarce. Most of the data collected is via an army of human
annotators who label all actions that occur around the ball
- which they call ball actions. The F24 soccer data feed col-
lected for the English Premier League (EPL) by Opta [26]
is a good example of this. The F24 data is a time coded
feed that lists all player action events within the game with
a player, team, event type, minute and second for each ac-
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Figure 2: An example of IBM Slamtracker (IBM Slam-
Tracker 2012), highlighting the plans Rafael Nadal needs
to execute to win his second round match at the 2012 Aus-
tralian Open. These set of plans can be seen as the tactics
that he should employ.

their overall goal (i.e., did they win the match or not?), we
can find the plans or a sequence of plans which correlate
with a player winning and losing. These sequence of plans
or tactics will vary according to the opposition’s learnt suc-
cessful and unsuccessful plans.

For team sports, such as American Football and Basket-
ball, a similar approach can be taken as the match is seg-
mented into distinct plan segments. However, due to the dif-
ficulty with tracking all the players and ball in a confined
space, work in this space has been limited to small datasets
and only focus on single plan recognition (Intille and Bo-
bick 2001; ?; ?). Conversely, for team sports such as soccer,
an abundant of spatio-temporal tracing data is available but
as it is low-scoring and continuous it is extremely difficult
because the game is not segmented into “discretized” plays
(i.e. plans). Consequently, such analysis is still conducted
by humans which means that it is subjective, unrepeatable,
and often unreliable as there are no quantitative means of
verifying such analysis (?; ?). This is despite the use of
new statistics including spatial location of events being gen-
erated by humans (?) and player tracking information (?;
?) being generated.

In this paper, we propose a method to overcome this is-
sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over

Figure 3: Figure 2.

the period of the observations). Banjeer
Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-
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sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over
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Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-
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Problem Formulation
In this paper, we are looking to automatically answering the
following tactical questions for soccer:

1. What type of playing style can we expect from a team?

2. Are there any areas of the field which they tend to utilize
more than others?

3. In scoring situations where are their strengths and weak-
nesses?

We define a team as a set of agents having a shared ob-
jective and a shared mental state (?). As we are dealing with
soccer, each agent is permanently fixed to one team. Unless
an agent has been dismissed from the match, each team al-
ways has the same number of agents (11). We refer to team
behaviors, B, as short, observable segments of coordinated
movement and action executed by a team (e.g. pass from
agent A to agent B). These behaviors are observed from par-
tial spatio-temporal tracings, which in this case refers to ball
movement infer from hand-annotated ball-action data (see
next subsection).

A plan can be defined as an ordered sequence of team
behaviors describing a recipe used by a team to achieve
a goal (?). A team performing a group of these plans to
achieve a major goal (e.g. winning a match), can be said
to be employing tactics. However, as soccer is low-scoring,
continuous and complex due to the various multi-agent in-
teractions, labeling and segmenting the game into a series
of plans is extremely difficult. Hence recognizing team tac-
tics using the MAPR framework we described previously is
impossible without these labelled plans.

To overcome this issue, we quantize a match into equal
temporal chunks which we use to describe team behavior.
As these segments do not describe a method of achieving a
specific goal, we do not call them plans, but play-segments.
We use these play-segments to form a library or playbook of
play-segments, P = {p1, p2, p3, . . . , pm}, where m is the
number of unique play-segments within the playbook. Using
this playbook we can:

• Characterize team tactics as a function of the playbook
size.

• Show that teams have unique playing styles, despite hav-
ing partial team tracings. We show this by framing the
problem as a team identification task.

• Automatically analyze an unseen match in terms of tac-
tics.

• Show the utilization of this approach on an iPad, which
shows it’s viability to be used for amateur level use.

The rest of the paper describes the method of doing this, in
addition to experiments which show the suitability of these
tasks we mentioned. We first describe our dataset.

Partial Team Tracing from Ball Action Data
t10, t11, t12, t13, t14, t15, t16

There has been an explosion in the interest in live-sport
which has created a demand for real-time statistics and vi-
sualizations. Due to the difficulty associated with tracking
players and the ball, data containing this information is still
scarce. Most of the data collected is via an army of human
annotators who label all actions that occur around the ball -
which they call ball actions. The F24 soccer data feed col-
lected for the English Premier League (EPL) by Opta (?)
is a good example of this. The F24 data is a time coded
feed that lists all player action events within the game with
a player, team, event type, minute and second for each ac-
tion. Each event has a series of qualifiers describing it. Ev-
ery event collected by Opta for a given match is listed within
this feed. The type of events listed are: goals, shots, passes
(with start/end point), tackles, clearances, cards, free kicks,
corners, offsides, substitutions and stoppages. An example
of the data feed is given in Figure 5(a). This type of data
is currently used for the real-time online visualizations of
events, as well as post-analysis for prominent television and
newspaper entities (e.g. ESPN, The Guardian). Even though
this data has been widely used, there are no systems which
use this data or data like this for automatic tactical analysis.

For our work we used the 2010-2011 EPL season F24
Opta feed, which consists of 380 games and more than
760,000 events. Each team plays 38 games each, which
corresponds with each team playing each other team twice
(once home and once away). The team names and ranking
for the 2010-2011 EPL data is given in Table 1.

To analyze the tactics of a team, we require to know where
the ball is and who has possession of it at every time step (i.e.
every second). To do this, we infer the ball location from
the data feed. The method of doing this is best described in
Figure 5(b).

Measuring Team Tactics via Entropy Maps
Play-Segment Representation
Given the partial spatio-temporal tracings of the team (i.e.
ball movement), we chunk this signal up into discrete seg-
ments - called play-segments. We represent these play-
segments as an occupancy map which describes which areas
of the field the ball was during that play-segment.
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Figure 2: (From the XML feed, we can infer the
ball position and possession at every time step (solid
lines and dots are annotated, dotted lines are in-
ferred).

tion. Each event has a series of qualifiers describing it. This
type of data is currently used for the real-time online visual-
izations of events, as well as post-analysis for prominent tele-
vision and newspaper entities (e.g. ESPN, The Guardian).
Even though this data has been widely used, there are no
systems which use this data or data like this for automatic
tactical analysis.

For this work we used the 2010-2011 EPL season F24 Opta
feed, which consists of 380 games and more than 760,000
events. Each team plays 38 games each, which corresponds
with each team playing each other team twice (once home
and once away). The team names and ranking for the 2010-
2011 EPL data is given in Table 1. In our approach, to
analyze the tactics of a team we are required to know the
position of the ball and which team has possession of it at
every time step (i.e. every second). To do this, we infer the
ball location from the data feed. We describe our method
via Figure 2. At t0 the ball is passed to the location at t1.
The next action labeled is at t4 where a player takes on an
opposition player. As nothing occurred between the time t1
and t4, we infer the ball was dribbled in a straight line and
at a uniform velocity between these two locations. We do
the same thing between t5 and t6, before the ball is passed
from the location at t6 to t7. Using the same procedure, we
can estimate the ball position and team possession for the
remaining times - as the stoppages are tagged in the data
feed. It is worth noting here that all data is normalized onto
a field of size 100 × 100, with all positions given for teams
attacking left to right.

4. OCCUPANCY MAPS
Given we have ball tracking and team possession infor-

mation, we can partition the ball tracking data into pos-
session strings (i.e. continuous movement of the ball for
a single team without turnover or stoppage), where OA =
{oA

0 , . . . ,o
A
I−1} and OB = {oB

0 , . . . ,o
B
J−1} refer to the pos-

session strings associated with each team and I−1 and J−1
are the number of possessions. We then quantize the field
into D bins where D = l × w equal size areas and vectorize
the field via the columns. As the possession strings vary in
length, we apply a sliding window of length T to quantize or

Figure 2: An example of IBM Slamtracker (IBM Slam-
Tracker 2012), highlighting the plans Rafael Nadal needs
to execute to win his second round match at the 2012 Aus-
tralian Open. These set of plans can be seen as the tactics
that he should employ.

their overall goal (i.e., did they win the match or not?), we
can find the plans or a sequence of plans which correlate
with a player winning and losing. These sequence of plans
or tactics will vary according to the opposition’s learnt suc-
cessful and unsuccessful plans.

For team sports, such as American Football and Basket-
ball, a similar approach can be taken as the match is seg-
mented into distinct plan segments. However, due to the dif-
ficulty with tracking all the players and ball in a confined
space, work in this space has been limited to small datasets
and only focus on single plan recognition (Intille and Bo-
bick 2001; ?; ?). Conversely, for team sports such as soccer,
an abundant of spatio-temporal tracing data is available but
as it is low-scoring and continuous it is extremely difficult
because the game is not segmented into “discretized” plays
(i.e. plans). Consequently, such analysis is still conducted
by humans which means that it is subjective, unrepeatable,
and often unreliable as there are no quantitative means of
verifying such analysis (?; ?). This is despite the use of
new statistics including spatial location of events being gen-
erated by humans (?) and player tracking information (?;
?) being generated.

In this paper, we propose a method to overcome this is-
sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over
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cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
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cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over

Figure 3: Figure 2.

the period of the observations). Banjeer
Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-

Figure 2: An example of IBM Slamtracker (IBM Slam-
Tracker 2012), highlighting the plans Rafael Nadal needs
to execute to win his second round match at the 2012 Aus-
tralian Open. These set of plans can be seen as the tactics
that he should employ.

their overall goal (i.e., did they win the match or not?), we
can find the plans or a sequence of plans which correlate
with a player winning and losing. These sequence of plans
or tactics will vary according to the opposition’s learnt suc-
cessful and unsuccessful plans.

For team sports, such as American Football and Basket-
ball, a similar approach can be taken as the match is seg-
mented into distinct plan segments. However, due to the dif-
ficulty with tracking all the players and ball in a confined
space, work in this space has been limited to small datasets
and only focus on single plan recognition (Intille and Bo-
bick 2001; ?; ?). Conversely, for team sports such as soccer,
an abundant of spatio-temporal tracing data is available but
as it is low-scoring and continuous it is extremely difficult
because the game is not segmented into “discretized” plays
(i.e. plans). Consequently, such analysis is still conducted
by humans which means that it is subjective, unrepeatable,
and often unreliable as there are no quantitative means of
verifying such analysis (?; ?). This is despite the use of
new statistics including spatial location of events being gen-
erated by humans (?) and player tracking information (?;
?) being generated.

In this paper, we propose a method to overcome this is-
sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over

Figure 3: Figure 2.

the period of the observations). Banjeer
Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-

Figure 2: An example of IBM Slamtracker (IBM Slam-
Tracker 2012), highlighting the plans Rafael Nadal needs
to execute to win his second round match at the 2012 Aus-
tralian Open. These set of plans can be seen as the tactics
that he should employ.

their overall goal (i.e., did they win the match or not?), we
can find the plans or a sequence of plans which correlate
with a player winning and losing. These sequence of plans
or tactics will vary according to the opposition’s learnt suc-
cessful and unsuccessful plans.

For team sports, such as American Football and Basket-
ball, a similar approach can be taken as the match is seg-
mented into distinct plan segments. However, due to the dif-
ficulty with tracking all the players and ball in a confined
space, work in this space has been limited to small datasets
and only focus on single plan recognition (Intille and Bo-
bick 2001; ?; ?). Conversely, for team sports such as soccer,
an abundant of spatio-temporal tracing data is available but
as it is low-scoring and continuous it is extremely difficult
because the game is not segmented into “discretized” plays
(i.e. plans). Consequently, such analysis is still conducted
by humans which means that it is subjective, unrepeatable,
and often unreliable as there are no quantitative means of
verifying such analysis (?; ?). This is despite the use of
new statistics including spatial location of events being gen-
erated by humans (?) and player tracking information (?;
?) being generated.

In this paper, we propose a method to overcome this is-
sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over

Figure 3: Figure 2.

the period of the observations). Banjeer
Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-

Figure 2: An example of IBM Slamtracker (IBM Slam-
Tracker 2012), highlighting the plans Rafael Nadal needs
to execute to win his second round match at the 2012 Aus-
tralian Open. These set of plans can be seen as the tactics
that he should employ.

their overall goal (i.e., did they win the match or not?), we
can find the plans or a sequence of plans which correlate
with a player winning and losing. These sequence of plans
or tactics will vary according to the opposition’s learnt suc-
cessful and unsuccessful plans.

For team sports, such as American Football and Basket-
ball, a similar approach can be taken as the match is seg-
mented into distinct plan segments. However, due to the dif-
ficulty with tracking all the players and ball in a confined
space, work in this space has been limited to small datasets
and only focus on single plan recognition (Intille and Bo-
bick 2001; ?; ?). Conversely, for team sports such as soccer,
an abundant of spatio-temporal tracing data is available but
as it is low-scoring and continuous it is extremely difficult
because the game is not segmented into “discretized” plays
(i.e. plans). Consequently, such analysis is still conducted
by humans which means that it is subjective, unrepeatable,
and often unreliable as there are no quantitative means of
verifying such analysis (?; ?). This is despite the use of
new statistics including spatial location of events being gen-
erated by humans (?) and player tracking information (?;
?) being generated.

In this paper, we propose a method to overcome this is-
sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over

Figure 3: Figure 2.

the period of the observations). Banjeer
Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-

Figure 2: An example of IBM Slamtracker (IBM Slam-
Tracker 2012), highlighting the plans Rafael Nadal needs
to execute to win his second round match at the 2012 Aus-
tralian Open. These set of plans can be seen as the tactics
that he should employ.

their overall goal (i.e., did they win the match or not?), we
can find the plans or a sequence of plans which correlate
with a player winning and losing. These sequence of plans
or tactics will vary according to the opposition’s learnt suc-
cessful and unsuccessful plans.

For team sports, such as American Football and Basket-
ball, a similar approach can be taken as the match is seg-
mented into distinct plan segments. However, due to the dif-
ficulty with tracking all the players and ball in a confined
space, work in this space has been limited to small datasets
and only focus on single plan recognition (Intille and Bo-
bick 2001; ?; ?). Conversely, for team sports such as soccer,
an abundant of spatio-temporal tracing data is available but
as it is low-scoring and continuous it is extremely difficult
because the game is not segmented into “discretized” plays
(i.e. plans). Consequently, such analysis is still conducted
by humans which means that it is subjective, unrepeatable,
and often unreliable as there are no quantitative means of
verifying such analysis (?; ?). This is despite the use of
new statistics including spatial location of events being gen-
erated by humans (?) and player tracking information (?;
?) being generated.

In this paper, we propose a method to overcome this is-
sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over

Figure 3: Figure 2.

the period of the observations). Banjeer
Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-

Figure 2: An example of IBM Slamtracker (IBM Slam-
Tracker 2012), highlighting the plans Rafael Nadal needs
to execute to win his second round match at the 2012 Aus-
tralian Open. These set of plans can be seen as the tactics
that he should employ.

their overall goal (i.e., did they win the match or not?), we
can find the plans or a sequence of plans which correlate
with a player winning and losing. These sequence of plans
or tactics will vary according to the opposition’s learnt suc-
cessful and unsuccessful plans.

For team sports, such as American Football and Basket-
ball, a similar approach can be taken as the match is seg-
mented into distinct plan segments. However, due to the dif-
ficulty with tracking all the players and ball in a confined
space, work in this space has been limited to small datasets
and only focus on single plan recognition (Intille and Bo-
bick 2001; ?; ?). Conversely, for team sports such as soccer,
an abundant of spatio-temporal tracing data is available but
as it is low-scoring and continuous it is extremely difficult
because the game is not segmented into “discretized” plays
(i.e. plans). Consequently, such analysis is still conducted
by humans which means that it is subjective, unrepeatable,
and often unreliable as there are no quantitative means of
verifying such analysis (?; ?). This is despite the use of
new statistics including spatial location of events being gen-
erated by humans (?) and player tracking information (?;
?) being generated.

In this paper, we propose a method to overcome this is-
sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over

Figure 3: Figure 2.

the period of the observations). Banjeer
Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-

Figure 2: An example of IBM Slamtracker (IBM Slam-
Tracker 2012), highlighting the plans Rafael Nadal needs
to execute to win his second round match at the 2012 Aus-
tralian Open. These set of plans can be seen as the tactics
that he should employ.

their overall goal (i.e., did they win the match or not?), we
can find the plans or a sequence of plans which correlate
with a player winning and losing. These sequence of plans
or tactics will vary according to the opposition’s learnt suc-
cessful and unsuccessful plans.

For team sports, such as American Football and Basket-
ball, a similar approach can be taken as the match is seg-
mented into distinct plan segments. However, due to the dif-
ficulty with tracking all the players and ball in a confined
space, work in this space has been limited to small datasets
and only focus on single plan recognition (Intille and Bo-
bick 2001; ?; ?). Conversely, for team sports such as soccer,
an abundant of spatio-temporal tracing data is available but
as it is low-scoring and continuous it is extremely difficult
because the game is not segmented into “discretized” plays
(i.e. plans). Consequently, such analysis is still conducted
by humans which means that it is subjective, unrepeatable,
and often unreliable as there are no quantitative means of
verifying such analysis (?; ?). This is despite the use of
new statistics including spatial location of events being gen-
erated by humans (?) and player tracking information (?;
?) being generated.

In this paper, we propose a method to overcome this is-
sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over

Figure 3: Figure 2.

the period of the observations). Banjeer
Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-

Figure 2: An example of IBM Slamtracker (IBM Slam-
Tracker 2012), highlighting the plans Rafael Nadal needs
to execute to win his second round match at the 2012 Aus-
tralian Open. These set of plans can be seen as the tactics
that he should employ.

their overall goal (i.e., did they win the match or not?), we
can find the plans or a sequence of plans which correlate
with a player winning and losing. These sequence of plans
or tactics will vary according to the opposition’s learnt suc-
cessful and unsuccessful plans.

For team sports, such as American Football and Basket-
ball, a similar approach can be taken as the match is seg-
mented into distinct plan segments. However, due to the dif-
ficulty with tracking all the players and ball in a confined
space, work in this space has been limited to small datasets
and only focus on single plan recognition (Intille and Bo-
bick 2001; ?; ?). Conversely, for team sports such as soccer,
an abundant of spatio-temporal tracing data is available but
as it is low-scoring and continuous it is extremely difficult
because the game is not segmented into “discretized” plays
(i.e. plans). Consequently, such analysis is still conducted
by humans which means that it is subjective, unrepeatable,
and often unreliable as there are no quantitative means of
verifying such analysis (?; ?). This is despite the use of
new statistics including spatial location of events being gen-
erated by humans (?) and player tracking information (?;
?) being generated.

In this paper, we propose a method to overcome this is-
sue by representing team behavior as a spatio-temporal oc-
cupancy map based on ball movement over fixed windows
of time, which we call play-segments. By analyzing a match
as as a playbook of play-segments, we can characterize the
behavior of each team which allows for tactical analysis of
a team’s performance. We show the efficacy and usability of
our method on the 2010-2011 English Premier League soc-
cer data.

Related Work
With the obvious applications to sport and military domains,
research interest into MAPR has grown quite substantially
recently. The significance of considering group actions in or-
der to isolate team plans, rather than a sequential process of
recognizing plans of individual agents. Outside of the sport
realm, most of this work has focussed on dynamic teams
(i.e. where individual agents can leave and join teams over

Figure 3: Figure 2.

the period of the observations). Banjeer
Multi-agent plan recognition explores an explanation of

the observed team trace, i.e., activity sequences of a set
of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans.
It has important applications in analyzing data from auto-
mated monitoring, surveillance and intelligence analysis in
general. It is also a difficult task since an observed team trace
is often composed of many possible team plans in the library,
and team-mates may dynamically change in the observing
process.

There have been many techniques designed to automat-
ically recognize team plans given an observed team trace
as input. Avrahami-Zilberbrand and Kaminkaa presented a
Dynamic Hierarchical Group Model (DHGM), which indi-
cated the connection between agents, to track the dynam-
ically changed structures of groups of agents, Sukthankar
and Sycara proposed another recognizing algorithm that en-
coded the dynamic team membership to prune the size of the
plan library. Banerjee et al. proposed to formalize MAPR
with a new model, revealing the distinction between the
hardness of single and multi-agent plan recognition, and
solve MAPR problems in the model using a first-cut ap-
proach, provided that a fully observed team trace and a li-
brary of full team plans were given as input (?).

English Premier League Ball Action Data
Problem Formulation

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
We refer to team behaviors, B, as short, observable seg-

ments of coordinated movement and action executed by a
team (e.g. pass from agent A to agent B) . A plan can be de-
fined as an ordered sequence of team behaviors describing
a recipe used by a team to achieve a goal (?). A team per-
forming a group of these plans to achieve a major goal (e.g.
winning a match), can be said to be employing tactics.

Ideally, we would like to recognize team tactics for soc-
cer. However, as soccer is low-scoring, continuous and com-

Figure 3: Figure 3.

Problem Formulation
In this paper, we are looking to automatically answering the
following tactical questions for soccer:

1. What type of playing style can we expect from a team?

2. Are there any areas of the field which they tend to utilize
more than others?

3. In scoring situations where are their strengths and weak-
nesses?

We define a team as a set of agents having a shared ob-
jective and a shared mental state (?). As we are dealing with
soccer, each agent is permanently fixed to one team. Unless
an agent has been dismissed from the match, each team al-
ways has the same number of agents (11). We refer to team
behaviors, B, as short, observable segments of coordinated
movement and action executed by a team (e.g. pass from
agent A to agent B). These behaviors are observed from par-
tial spatio-temporal tracings, which in this case refers to ball
movement infer from hand-annotated ball-action data (see
next subsection).

A plan can be defined as an ordered sequence of team
behaviors describing a recipe used by a team to achieve
a goal (?). A team performing a group of these plans to
achieve a major goal (e.g. winning a match), can be said
to be employing tactics. However, as soccer is low-scoring,
continuous and complex due to the various multi-agent in-
teractions, labeling and segmenting the game into a series
of plans is extremely difficult. Hence recognizing team tac-
tics using the MAPR framework we described previously is
impossible without these labelled plans.

To overcome this issue, we quantize a match into equal
temporal chunks which we use to describe team behavior.
As these segments do not describe a method of achieving a
specific goal, we do not call them plans, but play-segments.
We use these play-segments to form a library or playbook of
play-segments, P = {p1, p2, p3, . . . , pm}, where m is the
number of unique play-segments within the playbook. Using
this playbook we can:

• Characterize team tactics as a function of the playbook
size.

• Show that teams have unique playing styles, despite hav-
ing partial team tracings. We show this by framing the
problem as a team identification task.

• Automatically analyze an unseen match in terms of tac-
tics.

• Show the utilization of this approach on an iPad, which
shows it’s viability to be used for amateur level use.

The rest of the paper describes the method of doing this, in
addition to experiments which show the suitability of these
tasks we mentioned. We first describe our dataset.

Partial Team Tracing from Ball Action Data
t10, t11, t12, t13, t14, t15, t16

There has been an explosion in the interest in live-sport
which has created a demand for real-time statistics and vi-
sualizations. Due to the difficulty associated with tracking
players and the ball, data containing this information is still
scarce. Most of the data collected is via an army of human
annotators who label all actions that occur around the ball -
which they call ball actions. The F24 soccer data feed col-
lected for the English Premier League (EPL) by Opta (?)
is a good example of this. The F24 data is a time coded
feed that lists all player action events within the game with
a player, team, event type, minute and second for each ac-
tion. Each event has a series of qualifiers describing it. Ev-
ery event collected by Opta for a given match is listed within
this feed. The type of events listed are: goals, shots, passes
(with start/end point), tackles, clearances, cards, free kicks,
corners, offsides, substitutions and stoppages. An example
of the data feed is given in Figure 5(a). This type of data
is currently used for the real-time online visualizations of
events, as well as post-analysis for prominent television and
newspaper entities (e.g. ESPN, The Guardian). Even though
this data has been widely used, there are no systems which
use this data or data like this for automatic tactical analysis.

For our work we used the 2010-2011 EPL season F24
Opta feed, which consists of 380 games and more than
760,000 events. Each team plays 38 games each, which
corresponds with each team playing each other team twice
(once home and once away). The team names and ranking
for the 2010-2011 EPL data is given in Table 1.

To analyze the tactics of a team, we require to know where
the ball is and who has possession of it at every time step (i.e.
every second). To do this, we infer the ball location from
the data feed. The method of doing this is best described in
Figure 5(b).

Measuring Team Tactics via Entropy Maps
Play-Segment Representation
Given the partial spatio-temporal tracings of the team (i.e.
ball movement), we chunk this signal up into discrete seg-
ments - called play-segments. We represent these play-
segments as an occupancy map which describes which areas
of the field the ball was during that play-segment.
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Table 2: Table showing the identification rate by breaking
the plans into different time series and the field into differ-
ent quantization areas. The results are the trace of the team
recognition.

can look at the short-term behavior of a team from a partic-
ular region. By not chunking into play segments, this local
behavior maybe lost as we will see in the next subsection.
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the plans into different time series and the field into differ-
ent quantization areas. The results are the trace of the team
recognition.

each time step is then used to populate each entry.
A description of this process is given in Figure 4. Given

the possession string a = {a0, . . . , a13} shown, we first
break the field up into a grid of 4 × 5 and then vectorize it
to give quantized ball positions. At each time step, the quan-
tized ball position is used to populate a. Using T = 10, we
then chunk a into N = (14−10+1)/10 = 5 play-segments
resulting in five play-segments {p0, . . . ,p4} shown. Using
this process, we can get play-segments from all the posses-
sion strings to represent a team’s behavior. We do this as we
can look at the short-term behavior of a team from a partic-
ular region. By not chunking into play segments, this local
behavior maybe lost as we will see in the next subsection.
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a team over a match. Given that a team’s possession string is
of length T1, the resulting number of play-segments for each
possession is therefore: N = (T1−T )+1

T . If the possession
string is smaller in duration than T , we discard it. To repre-
sent each play-segment p = {p0, . . . , pT−1}, the quantized
ball position at each time step is then used to populate each
entry.

A description of this process is given in Figure 4. Given
the possession string a = {a0, . . . , a13} shown, we first
break the field up into a grid of 4 × 5 and then vectorize it
to give quantized ball positions. At each time step, the quan-
tized ball position is used to populate a. Using T = 10, we
then chunk a into N = (14−10+1)/10 = 5 play-segments
resulting in five play-segments {s0, . . . , s4} shown. Using
this process, we can get play-segments from all the posses-
sion strings to represent a team’s behavior. We used this ap-
proach as it allows us to analyze the short-term behavior of
a team over a particular region, which maybe lost otherwise.
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Entropy Maps
The information content of a random discrete variable, X
with a probability distribution p(x)was defined by Shannon
(?)

can be
The information content, namely (Shannons) entropy of

a discrete random variable X that has a probabilitydistribu-
tionpX =(p1,...,pn)isthendefinedas:

In [85], Shannon uses probability theory to model infor-
mation sources, i.e., the data produced by a source is treated
as a random variable. The information content, namely
(Shannons) entropy of a discrete random variable X that has
a probabilitydistributionpX =(p1,...,pn)isthendefinedas:

where 0 log = 0 and the base of the logarithm determines
the unit, e.g. if base 2 the measure is in bits, if its the natural
number e then its in nats, etc. The term log 1/pi indicates
the amount of uncertainty associated with the corresponding
outcome. It can also be viewed as the amount of information
gained by observing that outcome. Thus, entropy is merely
a statistical average of uncertainty or information.
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a team over a match. Given that a team’s possession string is
of length T1, the resulting number of play-segments for each
possession is therefore: N = (T1−T )+1

T . If the possession
string is smaller in duration than T , we discard it. To repre-
sent each play-segment p = {p0, . . . , pT−1}, the quantized
ball position at each time step is then used to populate each
entry.

A description of this process is given in Figure 4. Given
the possession string a = {a0, . . . , a13} shown, we first
break the field up into a grid of 4 × 5 and then vectorize it
to give quantized ball positions. At each time step, the quan-
tized ball position is used to populate a. Using T = 10, we
then chunk a into N = (14−10+1)/10 = 5 play-segments
resulting in five play-segments {s0, . . . , s4} shown. Using
this process, we can get play-segments from all the posses-
sion strings to represent a team’s behavior. We used this ap-
proach as it allows us to analyze the short-term behavior of
a team over a particular region, which maybe lost otherwise.
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Figure 3: Given a possession string, we break it up
into N equal chunks and use the quantized ball po-
sition values as our play-segment representation, s.

chunk each possession string, o, into a set of play-segments
S = {s0, . . . , sN−1} of equal length, where N is the total
number of play-segments for a possession, and M is the to-
tal number of play-segments for a team over a match. Given
that a team’s possession string is of length T1, the result-
ing number of play-segments for each possession is therefore:
N = (T1−T )+1. If the possession string is smaller in dura-
tion than T , we discard it. To represent each play-segment
s = {s0, . . . , sT−1}, the quantized ball position is tabulated
at each time step. An example of the description is given in
Figure 3.

From our set of play-segments for a given team, SA or SB ,
we can build a distribution to characterize the expected be-
havior in each location. We do this as follows: Given the
observations of a team, we determine the subset of play-
segments Sd, which originated in quantized area d. From
the play-segment vectors within Sd, we keep a count of the
locations of where the ball travels or occupies during these
play-segments. As this representation will yield a very high-
dimensional feature vector (D2), we would prefer the dimen-
sionality to be D for visualization purposes. To achieve this,
we can use either the mean, median, mode, total count or
even an entropy measure to describe each p(Sd), which will
yield an occupancy or team behavioral map. Vectorizing the
occupancy map, gives us our D-dimensional spatiotemporal
feature vector x. The mean occupancy maps using entropy
to describe each area is shown in Figure 4 and can give a
indication of redundant patterns. As can be seen the top
teams have higher entropy over most of the field compared
to the lower teams - this gives an indication that these teams
utilize more options (i.e. less predictable) which is intuitive
as these teams normally have more skilled players. As the
frequency counts incorporate temporal information (more
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Figure 4: The mean entropy maps for each of the twenty English Premier League teams characterizing their
ball movement patterns. The maps have been normalized for teams attacking from left to right. The bright
red refers to high entropy scores (i.e. high variability) and the blue areas refer to low entropy scores (i.e very
predictable behavior).

counts, means the ball is moving quicker), we used the to-
tal count of entires as the entropy measure normalizes this
information.

5. STRATEGY ANALYSIS

5.1 Discriminating Team Behavior
Evaluating team strategy is a very difficult task. The ma-

jor hurdle to overcome is the absence of strategy labels. But
given we know the team identity, and assuming that teams
exhibit similar behaviors over time, we can treat the task as
an identification problem. We can do this by answering using
only ball movement information, can we accurately identify
the most likely team?

We model team behavior using a codebook of past per-
formances. If a team’s behavior is consistent, then previous
matches will be a good predictor of future performances.
For the experiments, we used 380 games of the season and
used a leave-one-match-out cross validation strategy to max-
imize training and testing data. Before we investigate the
difference between home and away performances, we first
need to obtain the best possible representation. To evalu-
ate this, we wanted to see how effective event-labeled data
was in discriminating between different teams, and if having

0
10
20
30
40
50

Statistics Occ Maps Combined

% Teams Correctly Identified

Figure 5: The identification rate for correctly iden-
tifying home performances using event-labeled data
(i.e. no location information), occupancy maps (i.e.
no event information, just location), and a combina-
tion of the two.

knowledge of where teams operate could boost the discrim-
inating power.

To conduct the experiments, we compared our occupancy
representation, to twenty-three match statistics currently
used in analysis (e.g. passes, shots, tackles, fouls, aerials,
possession, time- in-play etc.). We also combined the two
inputs by concatenating the feature vectors. For classifica-
tion, we used a k-Nearest Neighbor approach (with k = 30)
and all experiments were conducted using D = 10 × 8
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Figure 6: Confusion matrices of the team identifica-
tion experiments using the combined representation.

spatial areas (heuristically, we found those values of k and
D gave the best performance). To reduce the dimensionality
but maintain class separability for the spatiotemporal rep-
resentation and the combined representation, we used linear
discriminant analysis (LDA). We used the number of teams
as classes (C = 20), which resulted in a C − 1 = 19 dimen-
sional input feature, y = WTx, where W can be found via
solving

arg max
W

Tr(
WΣbW

WΣwW
) (1)

where Σb and Σw are the between-scatter and within-scatter
matrices respectively. To test the various representations,
only identity experiments on home performances were tested
(home and away comparisons are be done next). Results for
these experiments are shown in Figure 5. From this fig-
ure, it can be seen using spatiotemporal data greatly im-
proves the discriminability between different teams (19.26%
vs 38.79%), and fusing the two together boosts performances
again (46.70%). This result makes sense as the location of
where teams play in addition to what they do should charac-
terize their behavior. The confusion matrix of the combined
representation shows that teams who play a similar style of-
ten get confused with each other (e.g. the top 5 teams and
teams 13-15) and from viewing the entropy maps in Figure 4,
we can see that these teams look similar.

5.2 Comparing Home vs Away Behavior
If a team plays in the same manner at home as they do

away, the home model should be able to yield similar perfor-
mance in identifying away matches as they do to the home
matches. To test this theory, we used our home models to
identify away performances and our away models to identify
home performances. From the results (see Table 2), we can
see that there is a drop in the hit-rate of the occupancy map
representation – 8.69% for the home model tested on the
away matches and 6.07% on the reverse case. Even though
not excessive, this drop in performance suggests there is a
change in the spatial behavior between home and away per-
formances.

To explore this aspect further, we visualized the difference
in occupancy between the home and away performances. To

Exp Event-Labeled Occupancy Maps
H v H 19.26 38.79
H v A 16.09 30.08

A v A 13.98 36.41
A v H 16.36 30.34

Table 2: The hit rate accuracy of experiments which
tested home (H) and away (A) models against home
and away matches (e.g. HvH refers to home model
tested on home matches and HvA refers to the home
model being tested on away matches).

do this, we simply subtracted the home occupancy maps
from the away maps and divided by the away occupancy.
The difference maps for all twenty teams is given in Figure 7
and it makes for compelling viewing. To make it easier to
quantify the difference in occupancy, we calculated the dif-
ference with respect to certain areas of the field. Specifically
we calculated the difference: for the whole field (W), the at-
tacking half (H), and the attacking-third (T) - these values
are listed below each difference map. As can be seen from
the difference maps, spatially, nearly all the teams (18 out
of 20) had more possession in the attacking half and prob-
ably more telling is that 19 out of the 20 teams had more
possession in the attacking third. Seeing that the shoot-
ing proficiency is essentially the same (10% vs 9%), we can
point to the observation that the more possession in the at-
tacking third leads to more chances, which in-turn leads to
more goals. A potential statistic to back this observation
up is that Chelsea - who were the only team to have less
occupancy in the attacking third - had the smallest discrep-
ancy between home and away shots (only 12, the next was
Arsenal with 45).

With the absence of labels to compare against it is im-
possible to say whether this was actually this case as other
factors may have contributed to the home advantage (i.e.
referee’s [22], shooting chance quality, game context (i.e.
winning, losing, red-cards, key injury, derby matches etc.).
However, through the use of spatiotemporal data, we can
provide evidence of behavioral differences which can aid in
the analysis of performance and decision making. This ap-
proach can also be used to flag and predict individual team
performances, and in the next section we show methods in
which these can be applied.

6. PRE/POST GAME ANALYSIS
Given a coach or analyst is preparing for an upcoming

match, having a measure of how variable a team’s perfor-
mance is would be quite beneficial. For example, the coach
or analyst may have viewed a previous match and formed a
qualitative model based on their expert observation. How-
ever, this model is only formed by a single observation and
may be subject to over-fitting. Having an measure which
could indicate how variable a team’s performance is would
be quite useful. Given they have a feature representation of
each of the previous performances of a team, our approach
could be a method of determining the performance variance.
To do this, the distance in feature space between each of the
past performances, y, and the mean, ŷ, can be calculated
where the mean is

ŷ =
1

M

M∑
i=1

yi (2)
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Figure 7: The normalized difference maps between home and away performances for all the 20 EPL teams. In
all maps, teams are attacking from left-to-right and a positive value refers to a team having more occupancy
in home games, while a negative value refers to more occupancy in away games. Percentages underneath
each team give a value on this difference (Key: W is whole field, H refers to forward half and T refers to the
attacking third.)
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Figure 8: Variance in distortion for (a) home and
(b) away performances.

and where M is the number of previous performances. A
distance measure such as the L2 norm could be used given
that the input space has been scaled appropriately (as is the
case in our work), which generates the distance measure via

distm = ‖ym − ŷ‖2 (3)

where m refers to the game of interest. Returning to our

home and away performance example, we can show the vari-
ation in performance for each team in the EPL by finding the
variance in distortion (Figure 9). As can be seen in this fig-
ure, each team’s home performance has quite a low variance
which gives an indication that when team’s play at home
they do not vary their approach too much. Conversely, it
seems that the away behavior is quite random so forecasting
away performance may be unreliable.

In terms of post-match analysis, a similar approach could
be used to see if a team’s performance was within the expec-
tation range (i.e. ±σ). A good example was Fulham’s away
performance against Manchester United. In this match, they
lost 2-0 and conceded both goals in the first half (12th and
32nd minute). As can be seen by comparing both occu-
pancy maps, in their match against Manchester United they
occupied a lot more possession in the middle of the field
then normal. This highlights the importance of context, as
after scoring two early goals Manchester United sat back
and allowed Fulham to have the majority of possession in
non-threatening regions (52% of overall possession) [6]. To
counter this, we would have to normalize for match con-
text (i.e. score, strength of opposition etc.). However, this
is a major problem as we would limit the amount of data we
would have to train our model. Future work will be focussed
on clustering styles unsupervised to maximize the amount
of context dependent data.
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Figure 9: Example of the distortion for each away
performance of Fulham in the 2010-2011 season. In
match 16 they played Manchester United, and the
performance on the day was far different from their
other away performances (they lost 2-0 on this oc-
casion).

7. SUMMARY AND FUTURE WORK
Most sports analytics approaches still only use event-labeled

statistics to drive analysis and decision-making despite the
influx of ball and player tracking data becoming available.
The reason why this new and rich source of information is
being neglected stems for the fact that it is continuous and
is extremely difficult to segment into categories which would
enable high-level analysis (e.g. team strategy labels). The
emerging field of sports spatiotemporal analytics attempts
to use spatiotemporal data such as ball and player track-
ing data to drive automatic team behavior/strategy analysis
which would be extremely useful in all facets of the sports
industry (e.g. coaching, broadcasting, fantasy-games, video
games, betting etc.). In this paper, we gave an overview
of the types of sports analytics work being done both in
industry as well as academia. Additionally, we gave a case-
study which investigated possible reasons for why the home
advantage exists in continuous sports like soccer. Using spa-
tiotemporal data, we were able to show that teams at home
play have more possession in the attacking third. Coupled
with the fact that the shooting and passing proficiencies are
not significantly different, this observation can partially ex-
plain why home teams have more shots and score more, and
in-turn win more at home compared to away matches. Using
our feature representation, we also showed examples where
pre and post game analysis can be performed. Specifically,
we were able to show the variation in home and away perfor-
mances for each team, as well as the ability to flag anomalous
performances.

Our work also highlighted the importance of match con-
text and the limiting factor it could have on training ex-
amples. In our future work, we will look at unsupervised
methods which cluster playing similar playing styles which
can enrich our training data set, without effecting its dis-
criminating power. Additionally, we are looking to extend
this approach to focus on using player tracking information
to discover team formations and plays. Predicting team in-
teractions and subsequent performances and outcomes, es-
pecially when they have not played each other is another
area focus of our research. As reliable high-level labels are
almost impossible to obtain, predicting match outcomes as
our evaluation tool seems to be the best indicator of im-
proved team modeling.

(a) (b)

Figure 10: Occupancy maps of the: (top) mean away
performance for Fulham, and (bottom) their perfor-
mance against Manchester United - in this match
they lost 2-0 and conceded early in the match.
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