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ABSTRACT

The voluminous malware variants that appear in the Internet have
posed severe threats to its security. In this work, we explore tech-
nigues that can automatically classify malware variants into their

corresponding families. We present a generic framework that ex-
tracts structural information from malware programs as attributed
function call graphs, in which rich malware features are encoded
as attributes at the function level. Our framework further learns

discriminant malware distance metrics that evaluate the similarity
between the attributed function call graphs of two malware pro-

grams. To combine various types of malware attributes, our method
adaptively learns the confidence level associated with the classifi-
cation capability of each attribute type and then adopts an ense
ble of classifiers for automated malware classification. We evaluate
our approach with a number of Windows-based malware instances
belonging to 11 families, and experimental results show that our

automated malware classification method is able to achieve high
classification accuracy.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence ]: Learning; D.4.6 Dperating Sys-
tem]: Security and Protection

Keywords

Malware, distance learning, metric learning, structure, graph match-
ing, optimization, function call graph

INTRODUCTION

Malware are responsible for a large number of malicious activi-
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Microsoft Security Intelligence report [15]. For the instances be-
longing to the same malware family, we can study their common
characteristics and develop defensive methods accordingly, much
alike developing vaccines against a specific flu famdyg( swine

flu). Accurate prediction of the evolution trend of a malware family
also enables us to deploy effective mitigation methods in advance
and thus alleviate the damage caused by this malware family.

A question that naturally follows ishow should we classify a
large number of malware instances into their corresponding fam-
ilies? Anti-Virus (AV) companies commonly rely on signatures,
such as strings and regular expressions, to determine malware fam
ilies, but it is well known that signature-based methods are error-
prone and can be easily evaded by intelligent malware programs.
On the other hand, manually reverse-engineering every malware
variant to figure out its lineage requires advanced skills and is often
a time-consuming, sometimes even tedious, process.

Therefore, there is an urgent need of developing methods that
can automatically classify malware instances into their correspond-
ing families accurately. To achieve automated malware classifica-
tion, we need to extract useful information — featuresin par-
lance of machine learning — from labeled samples for which we
know their families, and build a model that predicts which family
a newly observed malware instance belongs to based on the feature
values it carries. Although it sounds a standard supervised learn-
ing procedure, we are faced with a fundamental challenge when
constructing malware features: the rich structural information con-
tained in malware programs, such as their function call graphs and
basic block graphs, is not amenable to traditional supervised learn-
ing techniques, which usually operate on numerical vectorial rep-
resentations of data objects.

Against this backdrop, the goal of this work is to develop a

ties in the cyber space, such as spamming, identity theft, and DDoSframework that automatically classifies malware instances accord-
(Distributed Denial of Service) attacks. Behind the sheer number ing to their inherent rich structural information. This framework
of malware instances, however, lies the fact that a large number of extracts the function call graph from each malware program, and
them came from the same origins. More than 75 percent of mal- collects various types of fine-grained features at the function level,
ware detected belong to as few as 25 families, based on the 2006such as what system calls are made and how many 1/O read and
write operations have been made in each function. For each type
of features, our framework evaluates the similarity of two mal-
ware programs by iteratively applying the following two basic tech-
niques: (1)discriminant distance metric learningvhich projects

the original feature space into a new one such that malware in-
stances belonging to the same family are closely clustered while
clusters formed by different malware families are separated with
(c) 2013 Association for Computing Machinery. ACM acknowledges that this con- large margins; (2pairwise graph matchingvhich aims to find the
tribution was authored or co-authored by an employee, contractor or affiliate of the right pairwise function-level matching between the function call
Upited States govgrnment. A; such, the United S_tate_s Government retains a nonexclu—(‘:]rapl,]S of two malware instances in order to measure their structural
fswe, royalty-free right to publish or reproduce this article, or to allow others to do so, similarity. The similarity score estimated between two malware in-
‘or Government purposes only. .

KDD'13, August 11-14, 2013, Chicago, lllinois, USA. stances for each type of features reflects the likelihood that they
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.
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(1) We present a generic framework that extracts structural infor-

mation from a malware program and represents it as an attributedFigure 1: Overview of our automated malware classificatiamte-

function call graph, where fine-grained malware features are en- work (solid lines are used for the training process, and dashed line

coded as attributes associated with each function node in the graphfor the process of classifying a new malware variant)

(2) We formulate the processes of discriminant distance metric learn-

ing and pairwise graph matching as two optimization problems, aforementioned types of static featureuctural information is

and develop novel eigen-based methods to solve théh Our more difficult to obfuscateand can thus be used as robust features

framework adaptively learns the confidence levels associated with for classifying malware instances.

different types of evidences provided to the ensemble of classi- Such structural information, however, poses significant technical

fiers by assigning increasingly higher penalty to those training sam- challenges, as it is not amenable to standard supervised learning

ples misclassified previously4) With extensive experiments, we  methods, which usually operate on numerical vectorial representa-

demonstrate that our proposed method is able to classify malwaretions of data objects. In order to apply automated malware classifi-

instances into their corresponding families with high accuracy. cation on structural information inherent in malware programs, it is
The remainder of this paper is organized as follows. Section 2 necessary to solve the following problents) How to extract and

states the problem to be addressed in this work, and Section 3 de+epresent structural information from malware prograif®™ow

scribes the overview of our methodology. Section 4 discusses howto effectively compute the distance between two malware instances

to extract features based on function call graphs. We further presentgiven their structural information?3) How to build an automated

our method for malware distance learning in Section 5 and how to malware classifier based on distance measures among malware pro-

use an ensemble of classifiers for automated malware classificationgrams? Our work offers a framework that tackles these three prob-

in Section 6. Section 7 shows experimental results. We present re-lems in aprincipledway, as illustrated in the following sections.

lated work in Section 8 and draw concluding remarks in Section 9.

3. OVERVIEW OF METHODOLOGY

2. PROBLEM STATEMENT The overview of our automated malware classification frame-
In this work, we are interested in the problem of classifying mal- work is depicted in Figure 1. The training phase includes the fol-
ware instances into their corresponding families automatically. Let lowing four key steps.
Y be the set of different malware families. To start with, we have a  Step 1: FCG-driven feature extraction. To extract structural
labeled dataset with; elementsL = {(z1,y1), (22, y2), .., (Zn,, Yn, ) } information from a malware program, we first disassemble the mal-
wherez; is a malware instance and € Y is the family that mal- ware program, and build its function call graph. The function call
ware x; belongs to, forl < i < n;. The labeled dataset can graph is further used to drive the process of feature extraction: for
include those samples manually labeled by malware experts whoevery node (i.e., a function) in the graph, we extract various types
reverse-engineered the malware programs, or be obtained throughof attribute, including what library APIs are made and how many
consensus by major AV software. Our goal is to develop a model or 1/O read and write operations have been made in this function. In-
classifier that can accurately predicts the family of an unseen mal- formation regarding each type of features is represented as a vector
ware samplef : X — Y, whereX denotes the set of all possible  of numerical values. For example, for library API attribute, each el-

unseen malware samples. Itis noted here the clasgifier aim to ement in the vector provides the number of times a corresponding
build only consider known malware families, and we are thus not APl has been called in this function. After Step 1, each labeled mal-
interested in identifying new malware families. ware program is abstracted into an attributed function call graph,
In order to build a classifieff, we first need to extract useful  where each function node contains a number of feature vectors.
information from each labeled malware instance Feature ex- Step 2: Discriminant malware distance learning. The next
traction from malware programs can be done through eitagic step concerns how to compute the distance between two malware

analysisor dynamic analysis Static analysis refers to studying distances represented as their attributed function call graphs. For
a malware’s code statically without actually executing it, and by each type of attribute, we project the original feature space onto a
contrast, dynamic analysis runs the malware program (usually in new one such that malware instances belonging to the same fam-
a virtual controlled environment) and understands its run-time be- ily are closely clustered while clusters formed by different mal-
havior. Although dynamic analysis has the advantage of revealing ware families are separated with large margins. Moreover, we per-
the true behavior of often obfuscated malware programs, it requiresform pairwise graph matching, which aims to find the right pair-

a virtual execution environment, which makes it more demanding wise function-level matching between the attributed function call
than static analysis. Hence, this study focuses on features extractedyraphs of two malware instances for the purpose of measuring their
from only static analysis. structural similarity.

Static malware features considered in the literature include byte  Step 3: Training individual classifiers. For each type of fea-
sequence n-gram [21, 11, 18], disassembly code [2], and PE headetures, once we have computed the similarity between any two la-
fields [23, 19]. These features, however, do not embody the rich beled malware instances, we train an individual classifier for it.
structural information inherent in malware programs. The function Our framework is open to any classifier that, in order to classify
call graph obtained from disassembly analysis, for instance, rep-a new sample, requires only information of a setaothor in-
resents the calling relationships among functions, and thus reflectsstanceswhich are usually the subset of labeled samples in the orig-
the overall structure of the malware program. Compared with the inal dataset. Such classifiers include the kNN classifier, for which
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the anchor instance set includes theosest instances from the test ggﬁiéir 1 N i
instance, and the SVM classifier, whose support vector contains all Memory: [-], ~| Memory: [,
the anchor instances. 10: -], 10:1--1],
Step 4: Building ensemble of weighted classifiersFor each E‘:gg;;}; ] E'Z‘Sé;;ls [.]
type of features we have considered, the similarity measure be- N \[Opoode: [,
tween two malware instances reflects the likelihood that they be- | APIL-1,

. . . Memory: [-++],
long to the same family. Given a new malware variant, for each 10: [,
type of features, we form itevidenceas the distance it is from E:ggi:s[;-eg;[ :
each of its anchor instances as well as the label information of each —
anchor instance. Thgpeof an evidence is defined to be the type of B ey, 2021, pop2:u21]
attribute from which it is formed. For different types afttribute, :‘ge:'[";a:[“l
we can have different confidence levels about their evidences, be- Flag: [3,3,3,3,3,3,0,0,0,0]
cause some attribute types are more indicative of a malware’s lin- Register: [1.1.0.0.0.0,1.1.1.1,1.1.11.11:3.3

eage than the others. To learn the confidence level associated with

a type of evidence, we use an Adaboost-like approach, which gives Figure 2: lllustration of an attributed FCG

an increasingly higher penalty to training samples that are wrongly Table 1:Notations used in the paper
classified. We henceforth build a classifier that predicts the family
of a new malware instance by combining different types of evi- notation description
dences according to their corresponding confidence levels. ny number of labeled malware
.. Ne number of malware families
The output of the training phase of our automated malware clas- Cy set of instances belonging to malware fth family
sification framework is an ensemble of classifiers. Given a new Gi(Vi, &) attributed FCG of malware
unknown malware sample, we first construct its function call graph Fim Ie_gﬂ:f% \gzcg)r of attributgy at nodem in malware's at-
H . S rioute
from the disassembly code, and for each function node in it, we e, pairwise malware distance betwegn and g, w.r.t attribute
extract different types of attribute. Next, for each type of attribute, ' typeq
we form its evidence that describes the distance between the new S malware within-class distance (scalar) w.r.t attributestyp
sample and the anchor instances as well as how each anchor inf 5 ma'v"“":}’f‘ Eff}vgfe”'?'asjs distance (scalar) w.r.t attribytedy
stance is labeled. We then feed the evidence to the corresponding A €R ; painwise malware FCG function matching
. . .. . ‘ matrix betweerg; andg;
individual classifier. By combining all the evidences, the ensemble A is 1 if function m in malwareg, matches functiom in G,
. ops . . . mn v '
of weighted classifiers makes the final decision on which malware and is0 otherwise
family it should be classified into. WA R4a*4 distance metric learning matrix for attribute type
U, e R4* within-class operator
_ U, € R¥*9 petween-class operator
4' FCG DRIVEN FEATURE EXTRACTION Dim,jn node distance between functien in G; and functionn in
Structural information inherent in a malware program can be rep- g .
resented at two different resolutionfunctionsand basic blocks Dim jnsim! jn’ ?dge,?';‘agme between node pafm:, m’) in G; and
. . . . M i
The function call g_raph of a program, which is a dlrt_ected graph_, » = V| x |V total number of pairwise function matching
represents the calling relationships among the functions. A basic betweerg; andg;
block in a program is a piece of code with a single entry point and M € RPXP: pairwise graph matching matrix betwegn and
a single exit point, and the transitions among basic blocks form the a €' RP: graph matching vector betweeh andd,
control flow graph of the program. In this work, we use fur_mtlon a, = 1if nodemin G; is matched with nodes in G;; =
call graph (FCG for short) to drive the process of extracting impor- 0 otherwise, wheren = ((t — 1)/|V;| + 1),n =
tant features from malware programs. ” m‘;snl((xt(; é)’ Vi Il):r 1'| N o labeled wirt
A . . S y 4ig = 11T malwaree Is correctly labeled w.r.t.
The FCG captures the calling relatlonshlp of aprogram, a_nd each attribute typey: O otherwise.
vertex in it represents a local function. For each local function, we a € RP*1_ confidence level for attribute type

first translate it into an intermediate language and then extract six

types of attributes from it. They includepcode (the frequency

of appearances for each opcodal (the number of times each 4. 15y eax, [edx]

library API function is called)reror y (the number of memory 5: call ds: SwitchDesktop

reading and writing operations made in this functiar((the num- sub_42765E endp;

ber of I/O reading and writing operationdJegi st er (the num- = " - " T oo T

ber of reading and writing operations on each register) ”ray -~ ..

(the number of changes on each flag). For each attribute type, weﬁ:r! Euie ; /?glcodﬁj [gﬂ}/;Z,thnz:tl, i?l I 1, cnp:1, jnz:1]
H H : : riobute 2: : Ss:owmtc SKtop:

represent it as a feature vector asspmated with the Iocal fu_nctlon. Attribute 3 Memory: [MemoryR 3,  MemoryW 1]

The output of the step of FCG-driven feature extraction iatan Attribute 4: 10 [IOR 0, 1ON 0]

tributed FCG which contains an FCG with vertices each carrying a ?};rizbutTg 56 FII 'a;g: O[C;;:l 26 Ag: 16] OF: 2, PR 2, SF 2,

number of feature vectors, as ﬂlustratedm Figure 2..An example.of Atribute 6. Register: [EAXR 0, EAXW 2. EBXR 0, EBXW 1,

extracting features over FCG is shown in the following, where this gcxr 0, Ecxw 0, EDXR 1, EDXW O,

attributed FCG abstracts our knowledge about a malware program.ESIR 1, ESIW 0, EDIR 0, EDW O,
ESPR 1, ESPW 1, EBPR 0, EBPW 0].

A function in mal ware: ) . ..
..................................... In the next section, we shall discuss how to evaluate the similar-

i_”bﬁs\zlfgf Ffegicé‘lﬁ?” ity of two malware programs based on their attributed FCGs. As
2. cnp ebx, 12h a number of notations will be used in the next few sections, we
3: jnz loc_17871211 summarize all these notations in Table 1 for clarity.
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famiy 1, andg;. LettingV;" be themth function node in malwarg;, the
f d _ family 2_geg pairwise graph distance problem breaks down into the following
@ famiy 1 @ two subproblems{1) How to compute the optimal pairwise node
by e famiy2 family 3 match matrixA” e RIVi*Vil for malwareG; andG;, and(2)
fami,y@ How to compute the optimal pairwise node distance betwégn
andV}.
(1) Before learning (2) After learning For problem (1), we learn the pairwise malware graph match-
ing matrix A%, whereA” , = 1 denote noden in malwareg;
Figure 3: Demonstration of malware distance metric learning  matches node, in malwareG;, and A%, = 0 otherwise. We call

5. DISTANCE METRIC LEARNING problem (1) thegraph matchA-learning problem * For problem

e } (2), supposing thaF? , the feature vector of type at nodem in
Automated malware classification requires methods to evaluate malwarei’s attributed FCG, is d,-dimension vector (note thal,

the distances among malware instances. Having extracted an atvaries with the feature typg), our goal is to learn distance metric
tributed FCG graph for each malware program, we next look for W7 € ®%*? whered is the dimension of the new subspace after
the appropriate distance metric to compute the distance betweenprojection,w.r.t. each attribute type ¢,2:

two malware programs based on attributed FCG graphs.

5.1 Maximum margin principle

Our search for malware distance metric is guided byrtiaei- For example, ifW = I, distance metrid is Euclidean distance.
mum margin principlei.e., the malware in the same family should ~Actually, the learned distance metiic = WW", X € R %
be closely clustered while clusters formed by different malware IS @ Symmetric semi-definite positive matrix, and now mebiés
families should have large margins to separate them. See Fig. 3Mahalanobis distance. Note he¥¥ is required to be orthonormal,
for a motivating example. Before distance metric learning, mal- -6, W* W = L We call problem (2) thedistance metricw-

ware from the same class may have a large distance than thoséeaoming prokﬁlem Tﬁ‘)‘f _pro(cj:e(;s_stis done for eacr(wj attribute type h
: ; : : nce we have obtained distance meM& and pairwise grap
from different classes based on the naive Euclidean distance (e.g., atching matrixA., we define the pairwise malware distande,

di st (a, b) >dist(a,f) inFig. 3(1)). After learning the ap- ¢4 attrinute t for simplicity, we ignore superscrigthere) as:
propriate distance metric, which projects data points in the original ype; ( picly, d P At ) as:

c

Dim,jn = \/(]:im - ]:j )TWWT(}—im - ]:jn) (4)

feature space into a different space, th.e !ntra—class distange is de- Do — 4/ Emn D2, Aln N S nn.m/n’ Aifin“ii/n/Dfm,jmm/,jn/
creased while the inter-class distance is increased. Following the Gi = TVilTV;] ERIER
same example, we hawh st (a, f)>>di st (a, b), as shown (5)

in Fig. 3(2). . . s

Mgre (fo)rmally, letG; be the attributed function call graph of ~ Wheré Din jn is the node distance between nodein G and
malwarei wherel < i < n;, andE, be the feature vector of type ~ noden in G’ as defined in Eq. (4)A;).,, represents unary assign-
q whereq € T. Let DY ; represent the pairwise distance between ment flode matchfor matching of noden in G* with node in
malwareG; andG; computed according to attribute tyge Then, G’; and the second term inside the square root represents pairwise
thewithin-class distanc&y,, which is the sum of squared distances assignmentddge matc)) where both noder € V* matches with
among all pairs of malware belonging to the same family according 5, ¢ V7, and also noden’ € V! matches withw’ € V9. That is,

to feature typey, is given by: not only the substitution of nodes but also the edge structure play a
_ 4 2 role in the computation of distance between the attributed FCGs of
St = Z Z Z (D)™ @) two malware programs (more details will be introduced in §6.4).

k 1€CK JECK A key observation is that the distance between two attributed

FCGs contributed by edges mirrors the number of edge deletion/insertion
operations, and thus if the graph matching is given, this portion of
distance is fixed (see §6.4 for more details ). Defifeas follows:

Similarly, the between-class distancg, which is the sum of
squared distances among all pairs of malware belonging to different
families according to attribute typg is given by:

> mnmin Adn A, D2

Sg = Z Z Z Z (Dg,j)27 2 Ji,j = ‘gz(réj/ im,jn;im/’ ,jn’ . ©)

k Li#kieC) jEC;

. . . o . Then we have:
Thus following the maximum margin principle, we need to maxi-

mize the between-class distance while minimizing the within-class Dl,= > > DI . +Ji;
distance for attribute type i.e., meV; neV;
min(Sq _ SQ) (3) Eme\)i Zne\;j A:rjln(]:‘bm - ]:jn)TWWT(]:im - jn)
w b/ = A + i
il Vi
Note we use a trace difference criterion in Eq. (3). As is known in @)

the machine learning community, it has some advantages over opti-

s Then substituting Eq. (7) into Egs. (1, 2), we have:
mizing the trace quotient criterion (i.enax &), such as convex-

— T o
ity formulation, ease for manipulation, etc. To minimize Eqg. (3), Sw =TH(W Uy W) + Z Z Z Jig»
we need to compute pairwise malware distad[l;?t; for attribute k 1€Ck1€Ck ®)
type ¢, which will be shown next. Sy =T(WITU,W)+> "> >~ N~ Jij

k 1l#kieCy jE€C;

5.2 Malware pairwise distance computation .
We use one-to-one match, for two malwafe = (V;,&;) and

Given G;(Vi, &) and G;(V;, &;), the attributed FCGs of two 5 = (V},&;), they may have different number of function nodes,
malware samplesandj, their distanceD;; can be computed through  e.g.,|Vi[ > V|, (|Vi| = |V;]) virtual nodes (with null evidence

the graph distance betwe&nandg;. To simplify computation, we values) are added to make a alignment.
assume there exists one-to-one match between function no@es in  2For clarity, we ignore the superscriphere.
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where

Uy =)
k

- ]:jn)(]:im
Vil V]

— Fin)"

Y Yy Al

1€Cy JECL, MEV; n€V;

)

Aiern (]:im - ]:jn)(]:im
VillV;l

—Fin)"

U 3530 3D 3 3D

LI#ki€Cy jEC; MmEV; n€EV;

Substituting Egs. (1, 2, 7) into the optimization goal in Eq. (3),
we have:

wWTw =1

min TT(WTU,W - WTU,W) + \¢B, s.t. )

for each attribute type, where

B:ZZ ZJM—ZZ Z ZJ»L’]‘:COTLSIZ

k i€Cy jEC k Ll#kieCy j€C;

and )\, is the coefficient for the cost contributed B associated
with edge cost. As once the graph matchigs fixed, B is a con-
stant and we thus need to solve the following optimization problem
in each iteration:

n‘a}‘i]nTr(WTU,wW -WI'U,W), st. WI'W=I (10
Note in the above formulation, we need to solve: (1) distance met-
ric W for each attribute type, (2) graph matching\ during com-
putation ofU,, andUj, for pairwise malware distance.

Next, we present a learning framework to solve the above prob-
lem of Eq. (10). The key idea is to apply the expectation max-
imization algorithm [5], to iteratively update parametd\¥ and
A. More specifically, we repeatedly perform the following two
steps: (1) estimate pairwise malware matching marjxgiven the
current distance metri®V (85.3); (2) predict the optimal distance
metric W, given the current pairwise malware matching matix

(85.4). These two steps are iterated for several iterations. To sum-

marize, the whole algorithm is illustrated in Alg. 1.

5.3 we-learning algorithm
In Eqg. (10), given the current graph matchidg the optimal
solutionW can be obtained according to the following theorem:

THEOREM 1. [Ky Fan [26]] Let # € R¢*? be a symmetric
matrix with eigenvaluea; < A2 < --- < A4 and the correspond-

ing eigenvectordJ = [uy, uz, - - -, ugj, then
k
in TIW HW) =Y . 11
whin T ) ; (11)
Moreover, the optimaW™ = [u1, us, - - -, ux] subject to orthon-

normal transformation.

To apply Ky Fan’s theorem here, we first ltt = (U, — Uy).
We can thus obtain the optimal solutidN with d smallest eigen-
vectors ofH.

5.4 Pairwise graph matchinga-learning algo-
rithm

We now discuss how to match nodes in the attributed FCGs of
two malware programs. Note that the unary distafte, ;. is
determined with Eq. (4), which represents the node distance; for
pairwise distance);,,, jn;im’,jn’, it AN be determined in four dif-
ferent cases, which are illustrated in Fig. 4, according to the graph
structure ofG; andg;.

(1) There exist both an edge from nogdegto m’ in G; and also an
edge fromn to n’ in G; (Fig. 4(a)). It means the edgs,,., € &;
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Algorithm 1 distance metric learning algorithm
Input: (1) Attributed FCGs of labeled malware programs; (2) T: Maximum number
of iterations
Output: The learned distance metAd/ ¢ for each attribute typg
Procedure:
1: Initialization: distance metrifV < = Ligs iterationt = 1
2:fort=1,2,---,T do

3:  for each pairwise malwareg(, G;)do

4. Update graph matchingd. using Eqg. (17) given current distance meti"
5: Compute pairwise distantﬂf)j of Eq. (7)

6: endfor

7:  for each attribute typg do

8: Compute within-class and between-class distafiégsand U in Eq. (9)
9. endfor

10:  Update distance metriév with Eq. (11)

110 t=t+1

12: end for

of

cases for

Figure 4: Four

Dirmjn;im’ ,gn’-

pairwise distance computation

is substituted with edge,,,,, € &;. Since both pairwise nodes
(m,m’) and(n, n') have been matched in the unary node matching
process, no edit cost is needed for transforming one edge o
another inG;, i.e., D;, jnsim jns = 0;

(2) Only edge(m,m’) exists, or only edgén, n’) edge exists
(Fig. 4(b) or 4(c)). It means one edge insertion/deletion operation

is needed. We assume all the edge insertion/deletion operation has

the same cost, and thus assign,, j»:im’,jn’ = CONSt.
(3) Neither edge(m,m’) nor edge(n,n’) exist in G; or G;
(Fig. 4(d)). No edge edit operation is needed to transform edge
(m,m’) to (n,n'), and thusD;,, jn.im/ jns = 0.
In order to perform pairwise graph matching to obtaih, we
first establish the following lemma:

LEMMA 1. Letp = [Vi|x|Vi|,a € RP,r = (m—1)x|V;|+n,
ands = (m’—1)x|V;|+n’2 Finding A* to minimize the distance
betweerg; andg;, i.e.,

in D
as shown in Eq. (5), is equivalent to solving:

min f(a) = aTMa st a; ={1,0}, (12)

where M € RP*P encodes the distance metric computed from

Dim,jn @nd D;py jnsim’ jn’. That is to say, diagonals of matrix

Mo is computed from Eg. (4), and off-diagonals of

matrix M, s = W wheres # r is computed accord-
illeg

ing to the four cases discussed before.

PROOF First note that finding the solution t@in:; D; ; is
equivalent to solving:

im,jn

VillVvjl

: 2
min DL
1For computational cost consideration, we need not actually add
virtual node in the computation of Eqgs.(12,17). After we get
(min |Vi|, [V;]) pairwise one-to-one match, we just match the un-
matched(||V;| — [V;||) nodes to virtual nodes with null values.
2Here we use “row-first" order to assign the order.

(13)




Supposinga,, = A%, anda, = A;{,n/, we now establish the
relationship between Eq. (13) and Eq. (12). Clearly,

aTMa = Z ar./\/(mas = Z ang- + Z Z aT'MT'SaS

T 8,8#T (14)
= Z arMpr + Z Z arMrsas.
T T s,8#ET
In Eq. (5), for the node distance,
Zmn Dim,jnAgLn (15)

= Z arM'r;r'
r

[VillV;l
for the edge distance,

Zmn,m’n’ A#L”A;Jz’n/ D
1€:11&5]

o,
im,jn;im’ jn
R = E ar'asM'ms (16)
8

By making a sum over of Eqg. (15) and Eqg. (16) on both sides,
we have LHS = RHS, where LHS gives Eq. (13) and RHS gives
Eq. (12). This completes the proof[]

Optimal solution: Eq. (12) is a discrete optimization problem,

vectors as in most previous works. We further feed the similarity
measures to the standard support vector machine (SVM) or the k-
nearest neighbor classifier (KNN) for classification. Once we train a
classifier with respect to each attribute type, we further use the Ad-
aboost algorithm [6] to learn the confidence level associated with
each classifier. Taking the SVM classifier as an example, suppose
that we have obtained classification results using SVM for differ-
ent attribute types on the training dataset. We therZset= 1 if

the SVM classifier for feature typgcorrectly labeled malwarg;,
otherwiseZ;, = 0. Our goal is to learn the confidence levg] for

each attribute type, such that the classification error is minimized
on the training malware samples. A similar approach is adopted for
the kNN classifier.

Classification stage.Having obtained the confidence leve) as-
sociated with the classifier for each feature type&ve can use the
ensemble of classifiers to classify new malware samples. Given a
new malware instance, we first extract its attributed RCGNext,

for each individual classifier corresponding an attribute typee

form the evidence for this malware instance, including a set of an-
chor instances and their labels (i.e., the family each anchor instance
belongs to), as well as the distance that the new malware sample is

which is NP-hard and thus hard to handle. We relax the constraint from each anchor instance. For instance, if the SVM classifier is

a; € {1,0} toaTa = 1, and have:

st. bT’b=1. 17)

min f(b) = bT Mb

Clearly, according to Theorem 1 (Ky Fan [26]), we obtain the op-
timal solution ofb is given by the smallest eigenvector.bf. We
useb to obtain the pairwise graph matchidgas follows.

Computation of pairwise graph matching A: Before com-
puting pairwise graph matching matrix® for pairwise malware
G; andg;, firstly we setA” = 0. After obtainingb, we select
the one with the largest value in it, i.e., fitd= argmax, by,
and set the pairwise matching matik%,, = 1, wherem =
(t—=1)/|Vi| +1),n = mod ((t—1),|V;]) + 1. Then all node
pairs that involven or n will no longer be considered. Again, in the
remaining pairwise node, we select tle= arg max, b¢, where
t £ tm = ((t' = 1)/|V;|+1),n' = mod ((¢' —1), V) +
1,m" # m,n #n', and setA!’, , = 1. This process is iterated
until no node can be selected frdm If there are still unmatched
nodes, they are matched witrtual nodewith null evidence val-
ues. Finally, the updated solutich is used for malware distance
computation.

6. ENSEMBLE OF CLASSIFIERS

With learned distance metri&v? for each attribute type, we

used, the anchor instances are exactly those in the classifier’s sup-
port vector, and for the KNN classifier, tlheclosest instances from

the new malware sample are the anchor instances. Based on the
evidence provided for each attribute type as well as the confidence
level associated with each type of evidence, the ensemble of clas-
sifiers makes a decision on which family the new malware sam-
ple belongs to, where it always chooses the malware family that
collects the highest total confidence weight from all the individual
classifiers.

7. EXPERIMENTS

In this section, we first introduce the malware dataset used in our
experiments, and then show the performance of our method.

Malware dataset We use a malware dataset from Offensive
Computing [17], which contains 526,179 unique malware variants
collected in the wild. Using the VirusTotal website [24], we find
that the average detection rate for 43 Anti-Virus software (such as
NOD32, Symantec, McAfee, etc) #).5%. The malware dataset
contains both packed and unpacked instances, and in our evalua-
tion, we only use unpacked ones, and disasemble them with IDA
pro [8].

Automated malware classification requires labeled malware in-
stances for which we know their families. As reverse engineering

next discuss how to combine results from classifiers developed for €ach malware variant to obtain its family information, is a daunting
different attribute types. To this end, we use the Adaboost al- tasl_<, we use majority agreement results from the five _weII-reputated
gorithm [6], which was proposed by Freund and Schapire, and Anti-Virus Software, McAfee, NOD32, Kaspersky, Microsoft, and
can be used in conjunction with many other learning algorithms Symantec. If more than three of them classify a malware into
to further improve the classification performance. The key idea of the same family, we label this malware as a variant belonging to
Adaboost is that the classifiers are repeatedly improved by giving this family. Through this way, we obtain 11 families of malware:
higher weights to those instances misclassified previously. Bagl e(Ba) ,Bi frose(Bi),Ldpi nch(Ld),Swi zzor (Sw),
Training stage. Given the distance calculated between the attributedZ00t (Zb) , Koobf ace(Ko),Lmi r (Lm , Root (Rb) ,Sdbot (Sd) ,
FCGs of two malware programs, we use the standard support vec-Yundo(Vu) ,Zl ob(Zl') . Allthese malware target th& ndows

tor machine (SVM) or the k-nearest neighbor classifier (kNN) for System, and they belong to different categories, including worms,
classification. For SVM, we use the Gaussian kernel, where: backdoor trojans, multi-component malware, etc. These malware

have diverse functionalities, such as stealing user data, connection
k(Gi,G) = e tgj 7 (18) to remote IP addresses, festaplishment of IRC communications, etc.
Number of local functions in FCGs In Fig.( 5), we show the
where~ is a tunable parameter, ands the average distance of mean and standard deviation of the number of local functions in
the k-nearest neighbors for each malware, which plays the role of the FCGs for each malware family. We note that the number of
normalization. Note that the classifier built herein deals with pair- local functions for the_mi r family varies more significantly than
wise distances as the input for classification, rather than feature other families. Clearly, simple statistical test using the number of

D2
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# of function

# of functions in FCG

Table 3: Average F-1 measure in terms of percentage across all families.
For SVM, we show the results when = 0.3, v = 0.7, and also the
average whewn is chosen fron{0.1,0.3, - - -, 1.9]; for kNN, we show the
results wherk = 6, 10, and also the average whieiis chosen from [2, 4,

..., 16].

2000 S ~inFcG
Ba B Ko Ll\[jlallw;/rgreRé]ateS;or?W Ve classifier] v/k| op-n | mem-n| reg-n | io-n flag-n | api-n | ES-dis
SVM 0.3 | 86.06 | 84.20 86.14 | 85.07 | 68.59 | 82.99 | 93.88
Figure 5:Mean number of functions per sample (one standard deviation). _KkNN 6 | 4889 ] 67.82 | 56.52 | 54.53 [ 85.33 | 66.71 | 91.23
SVM 0.7 | 88.61 | 87.49 87.76 | 87.63 | 72.25 | 82.65| 98.73
Table 2:Different scenarios used in our experiments kNN 10 | 62.33] 66.30 [ 87.79] 58.26 | 66.11 | 68.90 [ 95.31
SVM avg | 84.54 | 84.51 83.57 | 85.52 | 68.39 | 84.72 | 93.44
Scenario  op-n mem-n reg-n io-n flag-n api-n  ES-ndis KNN avg| 5428 | 6577 | 69.04] 5525] 7352 | 66.39 | 90.54
Attribute Opcode  Memory Register  1/O Flag API Ensemble
Distance No No No No No No No . . .
learning Table 4:Analysis of performance improvement. Values are shown in per-
Scenario  opd mem-d regd od flagd apid ESdis centage whery = 0.7 for SVM and whenk = 10 for KNN.
Attribute Opcode  Memory  Register /O Flag API Ensemble
Distance Yes Yes Yes Yes Yes Yes Yes Scenario [ op-n | mem-n] reg-n [ io-n flag-n | api-n | ES-ndis
learning SVM 88.61 | 87.49 87.76 | 87.63 | 72.25 | 82.65 | 90.86
kNN 62.33 | 66.30 87.79 | 58.26 | 66.11 | 68.90 | 89.32
. . —_ . e - Scenario | op-d | mem-d | reg-d | io-d flag-d | api-d | ES-dis
function nodes is not sufficient for identifying all malwaesfilies. _ SUM 9735 o480 9891 9704 9739 | 9505 98.73
Next, we show the performance of our proposed method, which —xNN 6324 | 67.05 | 89.15 | 63.05| 87.03 | 91.02 | 95.31

exploits the structural information in these malware instances for
automated malware classification.

7.1 Evaluation of our proposed method
Five-fold cross validation: In the experiments, we use 80% of

attribute types, as well as those scenarios when the ensézahte
ing is used to combine individual classifiers without distance met-
ric learning. We make two important observations from the re-

the malware samples from each family to train our model, and the sults. First, even for the individual classifier trained for a single
remaining ones are used for testing the effectiveness of our ap-attribution type, distance metric learning significantly improves the
proach. This process is iterated for five times, and we report the classification performance, except a few cases (e.g., when kNN is

averages as the classification performance.

Performance evaluation: The performance of a classifier can
be quantified wittprecision recall, andF;. Let the number of true
positives, false positives, true negatives, and false negativeg,be
nfp, Nen andnyg,, respectively, w.r.t, a classifier. The precision
metric is defined to b%, and the recall metric |§”p’f£—fw
The F; measure is the harmonic mean of precision and recall, i.e.,
R = % An ideal classifier should havE, metric

tp TN fpTNfn
close to 1, implying that both precision and recall are close to 1.

Parameter settings: For the kNN classifier, we choosé be-
tween 6 and 10 in our experiments. For malware similarity compu-
tation of Eq. (18), we choose between 0.3 and 0.7 in one set of
experiments, andis computed using the three nearest neighbors.

7.1.1 Performance comparison

used and the attribute type is opcode, memory, or register). This
suggests that distance metric learning indeed helps separate mal-
ware instances belonging to different families, which eventually
improves classification performance. Second, although the ensem-
ble of classifiers does not provide significant performance improve-
ment over the best classifier trained for a single attribute type, it
does have the capability of approaching the performance of the best
individual classifier trained for a single attribute. This is impor-
tant, because from Figure 6 we observe that no individual classifier
trained for a single attribute type is able to provide the best classi-
fication performance for different malware families on a consistent
basis. Hence, ensemble learning has the advantages of finding the
best-performed individual classifier, and even provides slight per-
formance improvement over it.

As the key components of our proposed method consists of dis- 7-1.2  Effects of parametefsand

tance metric learning and ensemble of weighted classifiers, we com-

In the following, we discuss how different parameter setting of

pare the performances of the methods in different scenarios as shown and k affects the performance of the SVM and kNN classifiers,

in Table 2. It is noted that our method corresponds toEBedis

respectively. In a new set of experiments, we choose the parameter

scenario. The distinction among these different scenarios is helpful v from [0.1,0.3,0.5,0.7, - - -, 1.5, 1.7, 1.9] in the gaussian kernel

for us to understand the origin of performance improvement.
Overall improvement: We show the I measure for each fam-
ily of malware in Figs. (6a, 6b) & = 6 and10, respectively, using
the kNN classifier, and in Figs. (6d, 6e) at= 0.3 and0.7, re-
spectively, for the SVM classifier. In Table 3, we show the average
performance improvement across all malware families. Clearly, for
both classifiers, thé&; measure is significantly improved using our
method (i.e.,ES- di s). For instance, considering both the aver-

used for the SVM classifier, aridfrom [2, 4, 6,8, 10,12, 14, 16]

for the kNN classifier. The Fmeasures are shown in Fig. 6, where
both distance metric learning and ensemble learning are performed
in all these experiments. Clearly, irrespectivey@ndk chosen for

the SVM and kNN classifier, respectively, our proposed method
improves the classification performance over the individual classi-
fier trained for each feature type. Moreover, we observe that there
is no apparent trend of change of classification performance when

age cases, our method improves over the best individual method bywe increase parameter (or k) for the SVM (or kNN) classifier.

9.3% for the SVM classifier, and by 23.2% for the kNN classifier.
Breakdown of performance improvement: In order to show

Actually, for the individual classifier trained for a single attribute
type, we find that for some attribute types (e.g., opcode features for

how the performance improvement of our proposed method at- KNN and flag feature for SVM), changing the parameter of the clas-
tributes to the two steps involved, distance metric learning and en- sifier leads to unstable classification performance. This may be due
semble learning, we present in Table 4 the average F-1 measureso the majority agreement kNN used in our approach, where for
for scenarios when distance learning is performed on individual some malware samples, its k nearest neighbors may vary greatly.
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Figure 6: (a-f) Performance comparison under different scenaBBsndi s means using a single feature type without distance metric learning (i.e., op-n,
mem-n, etc), an&ES- di s means using ensembles of feature types with distance metric learning. We consider both the kNN and SVM classifiers. For the
former, in (a-b), we vary: between 6 and 10, and for the latter, in (d-e), we chepbetween 0.3 and 0.7. (e-f) Effects of classification parameters on kNN

and SVM classifiers.

Ba Bi Ko Ld Lm Rd Sd Sw Vu Zb 2
Ba 082 0 004 © 0 0 0 014 © 0 0
Bi 0 09 0 0 0 002 0 0.02 O 0 0
Ko 0 0.02 098 0 0 0 0 0 0 0 0
Ld 0 0 004 09 006 O 0 0 0 0 0
Lm 0 0 0 01074 016 0 0 0 0 0
Rd 0 0 0 0 0O 082 018 0 0 0 0
Sd 0 0 0 0 0 012 088 0 0 0 0
Sw 0 0 0 0 0 0 0 096 0 0.02 0.02
Vu 0 0 0 0 0 0 0 0 1 0 0
Zb 0 0 0 0.02 004 O 0 0 0 09 0.04
4l 0 0 002 0 006 O 0 002 0 0 09

Figure 7:Confusion matrix for the SVM classifier with = 0.1

For SVM classifier, it is known that it can be influenced a lot by
different kernel parameters.

7.1.3 Cross family analysis

We show in Fig. 7 the confusion matrix, which depicts how mal-
ware instances belonging to each family are classified — or mis-
classified — into different families. A confusion matrix is a tabular
layout in which each column corresponds to a predicted class while
each row represents a real class of instances.(7,h¢ element of
a confusion matrix shows the percentage of instances from class
are labeled as clags Hence, the diagonals of the confusion matrix
(i.e., the(i,4) elements) provide the percentages of correctly la-

beled instances, whereas the off-diagonals indicate the percentages

of incorrectly labeled ones.

Itis known that the source code of Sdbot was published in the In-
ternet, and the development of Rbot was influenced by it [22]. This
is verified in our results, as shown in Fig. 7, whég¥ of Rbot
instances are labeled &slbot and12% of Sdbot instances are
labeled a&bot . Moreover, for themi r family, the number of lo-
cal function nodes in its attributed FCGs is highly divergent across

In practice, a newly captured executable program may not belong
to the malware families which are already known to us. It can come
from an unknown malware family, or even be a legitimate program.
Our proposed framework can be easily extended to deal with both
scenarios with little extra computation cost. In the following we
show how to use the standard kNN classifier for classifying an un-
known malware variant or a legimate program. As discussed above,
once we learn the distance metric, for each malware family, we ob-
tain the shortest distance between any two labeled instances in this
family. Given a new sample;, if itis classified as familyA by our
method, we further check its distance from its nearest neigpbpor
in this family. If the distancel(x:,y:) > (1 + €)0a, wheref 4 is
the smallest distance between any two labeled samples in family
ande is a tunable parameter, then we flag the new sample as one
not belonging to any known malware family. The smaller parame-
tere is, a sample that does not belong to any known family will be
detected as such with a higher probability, but a sample that indeed
belongs to any known family is also more likely to be misclassified.

We further perform two sets of experiments. In the first one,
we choose 30 samples from thlepi gon family, and the second
one has 15 benign executable prograrasgs set to be 0 and the
classification accuracy (shown as percentages) is as follows:

Test sampleg
Accuracy

Hupigon
86.67

Benign
93.33

Clearly, our scheme can detect samples that do not belongtaerkn
families with high accuracy.

8. RELATED WORK
Since the seminal works done by Schuétzal. [21] and Kolter

different instances, as seen from Fig. 5, which adversely affects theet al. [11], machine learning has been used in a number of efforts

computation of intra-family malware distances. This explains its
poor classification performance relative to the other families.

7.1.4 Classifying samples not in known families
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to automatically distinguish malware from benign executable pro-
grams (e.g., [18, 20]). In contrast to these earlier works on malware
detection, our study focuses on malware classification, which aims
to distinguish instances belonging to different malware families.
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Acknowledgment The authors acknowledge and appreciate the support
provided for this work by the Los Alamos National Laboratory Directed
Research and Development Program (LDRD project 20120443ER).

1365





