
Discriminant Malware Distance Learning on Structural
Information for Automated Malware Classification

Deguang Kong∗

Dept. of Computer Science and Engineering
University of Texas at Arlington

doogkong@gmail.com

Guanhua Yan
Information Sciences Group (CCS-3)

Los Alamos National Laboratory†

ghyan@lanl.gov

ABSTRACT
The voluminous malware variants that appear in the Internet have
posed severe threats to its security. In this work, we explore tech-
niques that can automatically classify malware variants into their
corresponding families. We present a generic framework that ex-
tracts structural information from malware programs as attributed
function call graphs, in which rich malware features are encoded
as attributes at the function level. Our framework further learns
discriminant malware distance metrics that evaluate the similarity
between the attributed function call graphs of two malware pro-
grams. To combine various types of malware attributes, our method
adaptively learns the confidence level associated with the classifi-
cation capability of each attribute type and then adopts an ensem-
ble of classifiers for automated malware classification. We evaluate
our approach with a number of Windows-based malware instances
belonging to 11 families, and experimental results show that our
automated malware classification method is able to achieve high
classification accuracy.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; D.4.6 [Operating Sys-
tem]: Security and Protection

Keywords
Malware, distance learning, metric learning, structure, graph match-
ing, optimization, function call graph

1. INTRODUCTION
Malware are responsible for a large number of malicious activi-

ties in the cyber space, such as spamming, identity theft, and DDoS
(Distributed Denial of Service) attacks. Behind the sheer number
of malware instances, however, lies the fact that a large number of
them came from the same origins. More than 75 percent of mal-
ware detected belong to as few as 25 families, based on the 2006
∗This work is done when Deguang Kong was working at Los Alamos Na-
tional Laboratory.
†Los Alamos National Laboratory Publication No. LA-UR 12-26699

(c) 2013 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the United States Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

Microsoft Security Intelligence report [15]. For the instances be-
longing to the same malware family, we can study their common
characteristics and develop defensive methods accordingly, much
alike developing vaccines against a specific flu family (e.g., swine
flu). Accurate prediction of the evolution trend of a malware family
also enables us to deploy effective mitigation methods in advance
and thus alleviate the damage caused by this malware family.

A question that naturally follows is:how should we classify a
large number of malware instances into their corresponding fam-
ilies? Anti-Virus (AV) companies commonly rely on signatures,
such as strings and regular expressions, to determine malware fam-
ilies, but it is well known that signature-based methods are error-
prone and can be easily evaded by intelligent malware programs.
On the other hand, manually reverse-engineering every malware
variant to figure out its lineage requires advanced skills and is often
a time-consuming, sometimes even tedious, process.

Therefore, there is an urgent need of developing methods that
can automatically classify malware instances into their correspond-
ing families accurately. To achieve automated malware classifica-
tion, we need to extract useful information – orfeaturesin par-
lance of machine learning – from labeled samples for which we
know their families, and build a model that predicts which family
a newly observed malware instance belongs to based on the feature
values it carries. Although it sounds a standard supervised learn-
ing procedure, we are faced with a fundamental challenge when
constructing malware features: the rich structural information con-
tained in malware programs, such as their function call graphs and
basic block graphs, is not amenable to traditional supervised learn-
ing techniques, which usually operate on numerical vectorial rep-
resentations of data objects.

Against this backdrop, the goal of this work is to develop a
framework that automatically classifies malware instances accord-
ing to their inherent rich structural information. This framework
extracts the function call graph from each malware program, and
collects various types of fine-grained features at the function level,
such as what system calls are made and how many I/O read and
write operations have been made in each function. For each type
of features, our framework evaluates the similarity of two mal-
ware programs by iteratively applying the following two basic tech-
niques: (1)discriminant distance metric learning, which projects
the original feature space into a new one such that malware in-
stances belonging to the same family are closely clustered while
clusters formed by different malware families are separated with
large margins; (2)pairwise graph matching, which aims to find the
right pairwise function-level matching between the function call
graphs of two malware instances in order to measure their structural
similarity. The similarity score estimated between two malware in-
stances for each type of features reflects the likelihood that they

1357

should be classified into the same malware family – if observed
feature values of that type are used as ourevidence. We further
learn ourconfidencelevel in each type of evidence and henceforth
build a classifier that predicts the family of a new malware instance
by combining different types of evidences with their corresponding
confidence levels.

In a nutshell, our key contributions are summarized as follows.
(1) We present a generic framework that extracts structural infor-
mation from a malware program and represents it as an attributed
function call graph, where fine-grained malware features are en-
coded as attributes associated with each function node in the graph.
(2) We formulate the processes of discriminant distance metric learn-
ing and pairwise graph matching as two optimization problems,
and develop novel eigen-based methods to solve them.(3) Our
framework adaptively learns the confidence levels associated with
different types of evidences provided to the ensemble of classi-
fiers by assigning increasingly higher penalty to those training sam-
ples misclassified previously.(4) With extensive experiments, we
demonstrate that our proposed method is able to classify malware
instances into their corresponding families with high accuracy.

The remainder of this paper is organized as follows. Section 2
states the problem to be addressed in this work, and Section 3 de-
scribes the overview of our methodology. Section 4 discusses how
to extract features based on function call graphs. We further present
our method for malware distance learning in Section 5 and how to
use an ensemble of classifiers for automated malware classification
in Section 6. Section 7 shows experimental results. We present re-
lated work in Section 8 and draw concluding remarks in Section 9.

2. PROBLEM STATEMENT
In this work, we are interested in the problem of classifying mal-

ware instances into their corresponding families automatically. Let
Y be the set of different malware families. To start with, we have a
labeled dataset withnl elements,L = {(x1, y1), (x2, y2), ..., (xnl

, ynl
)}

wherexi is a malware instance andyi ∈ Y is the family that mal-
warexi belongs to, for1 ≤ i ≤ nl. The labeled dataset can
include those samples manually labeled by malware experts who
reverse-engineered the malware programs, or be obtained through
consensus by major AV software. Our goal is to develop a model or
classifier that can accurately predicts the family of an unseen mal-
ware samplef : X → Y , whereX denotes the set of all possible
unseen malware samples. It is noted here the classifierf we aim to
build only consider known malware families, and we are thus not
interested in identifying new malware families.

In order to build a classifierf , we first need to extract useful
information from each labeled malware instancexi. Feature ex-
traction from malware programs can be done through eitherstatic
analysisor dynamic analysis. Static analysis refers to studying
a malware’s code statically without actually executing it, and by
contrast, dynamic analysis runs the malware program (usually in
a virtual controlled environment) and understands its run-time be-
havior. Although dynamic analysis has the advantage of revealing
the true behavior of often obfuscated malware programs, it requires
a virtual execution environment, which makes it more demanding
than static analysis. Hence, this study focuses on features extracted
from only static analysis.

Static malware features considered in the literature include byte
sequence n-gram [21, 11, 18], disassembly code [2], and PE header
fields [23, 19]. These features, however, do not embody the rich
structural information inherent in malware programs. The function
call graph obtained from disassembly analysis, for instance, rep-
resents the calling relationships among functions, and thus reflects
the overall structure of the malware program. Compared with the

A malware

variant

FCG-driven

feature

extraction

Ensemble of

weighted

classifiers

Malware

classification

result

Exploit code

instances
Exploit code

instances

Labeled

malware

samples

distance learning

distance learning

distance learning

opcode

memory

distance learning
register

distance learning

distance learning

IO

flag

API

...

classifier

classifier

classifier

classifier

classifier

classifier

Figure 1: Overview of our automated malware classification frame-
work (solid lines are used for the training process, and dashed line
for the process of classifying a new malware variant)

aforementioned types of static features,structural information is
more difficult to obfuscate, and can thus be used as robust features
for classifying malware instances.

Such structural information, however, poses significant technical
challenges, as it is not amenable to standard supervised learning
methods, which usually operate on numerical vectorial representa-
tions of data objects. In order to apply automated malware classifi-
cation on structural information inherent in malware programs, it is
necessary to solve the following problems:(1) How to extract and
represent structural information from malware programs?(2) How
to effectively compute the distance between two malware instances
given their structural information?(3) How to build an automated
malware classifier based on distance measures among malware pro-
grams? Our work offers a framework that tackles these three prob-
lems in aprincipledway, as illustrated in the following sections.

3. OVERVIEW OF METHODOLOGY
The overview of our automated malware classification frame-

work is depicted in Figure 1. The training phase includes the fol-
lowing four key steps.

Step 1: FCG-driven feature extraction. To extract structural
information from a malware program, we first disassemble the mal-
ware program, and build its function call graph. The function call
graph is further used to drive the process of feature extraction: for
every node (i.e., a function) in the graph, we extract various types
of attribute, including what library APIs are made and how many
I/O read and write operations have been made in this function. In-
formation regarding each type of features is represented as a vector
of numerical values. For example, for library API attribute, each el-
ement in the vector provides the number of times a corresponding
API has been called in this function. After Step 1, each labeled mal-
ware program is abstracted into an attributed function call graph,
where each function node contains a number of feature vectors.

Step 2: Discriminant malware distance learning. The next
step concerns how to compute the distance between two malware
distances represented as their attributed function call graphs. For
each type of attribute, we project the original feature space onto a
new one such that malware instances belonging to the same fam-
ily are closely clustered while clusters formed by different mal-
ware families are separated with large margins. Moreover, we per-
form pairwise graph matching, which aims to find the right pair-
wise function-level matching between the attributed function call
graphs of two malware instances for the purpose of measuring their
structural similarity.

Step 3: Training individual classifiers. For each type of fea-
tures, once we have computed the similarity between any two la-
beled malware instances, we train an individual classifier for it.
Our framework is open to any classifier that, in order to classify
a new sample, requires only information of a set ofanchor in-
stances, which are usually the subset of labeled samples in the orig-
inal dataset. Such classifiers include the kNN classifier, for which

1358

the anchor instance set includes thek closest instances from the test
instance, and the SVM classifier, whose support vector contains all
the anchor instances.

Step 4: Building ensemble of weighted classifiers.For each
type of features we have considered, the similarity measure be-
tween two malware instances reflects the likelihood that they be-
long to the same family. Given a new malware variant, for each
type of features, we form itsevidenceas the distance it is from
each of its anchor instances as well as the label information of each
anchor instance. Thetypeof an evidence is defined to be the type of
attribute from which it is formed. For different types ofattribute,
we can have different confidence levels about their evidences, be-
cause some attribute types are more indicative of a malware’s lin-
eage than the others. To learn the confidence level associated with
a type of evidence, we use an Adaboost-like approach, which gives
an increasingly higher penalty to training samples that are wrongly
classified. We henceforth build a classifier that predicts the family
of a new malware instance by combining different types of evi-
dences according to their corresponding confidence levels.

The output of the training phase of our automated malware clas-
sification framework is an ensemble of classifiers. Given a new
unknown malware sample, we first construct its function call graph
from the disassembly code, and for each function node in it, we
extract different types of attribute. Next, for each type of attribute,
we form its evidence that describes the distance between the new
sample and the anchor instances as well as how each anchor in-
stance is labeled. We then feed the evidence to the corresponding
individual classifier. By combining all the evidences, the ensemble
of weighted classifiers makes the final decision on which malware
family it should be classified into.

4. FCG-DRIVEN FEATURE EXTRACTION
Structural information inherent in a malware program can be rep-

resented at two different resolutions:functionsandbasic blocks.
The function call graph of a program, which is a directed graph,
represents the calling relationships among the functions. A basic
block in a program is a piece of code with a single entry point and
a single exit point, and the transitions among basic blocks form the
control flow graph of the program. In this work, we use function
call graph (FCG for short) to drive the process of extracting impor-
tant features from malware programs.

The FCG captures the calling relationship of a program, and each
vertex in it represents a local function. For each local function, we
first translate it into an intermediate language and then extract six
types of attributes from it. They includeopcode (the frequency
of appearances for each opcode),API (the number of times each
library API function is called),memory (the number of memory
reading and writing operations made in this function),IO (the num-
ber of I/O reading and writing operations),Register (the num-
ber of reading and writing operations on each register), andFlag
(the number of changes on each flag). For each attribute type, we
represent it as a feature vector associated with the local function.

The output of the step of FCG-driven feature extraction is anat-
tributed FCG, which contains an FCG with vertices each carrying a
number of feature vectors, as illustrated in Figure 2. An example of
extracting features over FCG is shown in the following, where this
attributed FCG abstracts our knowledge about a malware program.

A function in malware:

sub_42765E proc near;
1: mov ebx,[esi+4h]
2: cmp ebx, 12h
3: jnz loc_17871211

start

sub40c245

sub40c22c

sub40c278

Opcode: [pusha:1, call:6, add:1, mov: 2, lea:1, pop:2,sub:1]

API: [GetProcAddress:1, VirtualAlloc:1]

Memory: [1,4]

IO: [2,0]

Flag: [3,3,3,3,3,3,0,0,0,0]

Register: [1,1,0,0,0,0,1,1,1,1,1,1,11,11,3,3]

Opcode: [],

API:[],

Memory: [],

IO: [],

Flag:[],

Register: [...]

Opcode: [],

API:[],

Memory: [],

IO: [],

Flag:[],

Register: [...]

Opcode: [],

API:[],

Memory: [],

IO: [],

Flag:[],

Register: [...]

Figure 2: Illustration of an attributed FCG

Table 1:Notations used in the paper

notation description
nl number of labeled malware
nc number of malware families
Ck set of instances belonging to malware thekth family

Gi(Vi, Ei) attributed FCG of malwarei
Fq

im
feature vector of attributeq at nodem in malwarei’s at-
tributed FCG

Dq
i,j

pairwise malware distance betweenGi andGj w.r.t attribute
typeq

Sq
w malware within-class distance (scalar) w.r.t attribute typeq

Sq

b
malware between-class distance (scalar) w.r.t attribute typeq

A
ij ∈ <|Vi|×|Vj |, pairwise malware FCG function matching

matrix betweenGi andGj

A
ij
mn is 1 if functionm in malwareGi matches functionn in Gj ,

and is0 otherwise
W

q <dq×d, distance metric learning matrix for attribute typeq
Uw ∈ <d×d within-class operator
Ub ∈ <d×d between-class operator

Dim,jn node distance between functionm in Gi and functionn in
Gj

Dim,jn;im′,jn′ edge distance between node pairs(m,m′) in Gi and
(n, n′) in Gj

p = |Vi| × |Vj|: total number of pairwise function matching
betweenGi andGj

M ∈ <p×p: pairwise graph matching matrix betweenGi and
Gj

a ∈ <p : graph matching vector betweenGi andGj

at = 1 if node min Gi is matched with noden in Gj ; =
0 otherwise, wherem = ((t − 1)/|Vj | + 1), n =
mod ((t − 1), |Vj|) + 1.

Z ∈ <nl×Q, Ziq = 1 if malwarei is correctly labeled w.r.t.
attribute typeq; 0 otherwise.

α ∈ <Q×1, confidence level for attribute typeq

4: mov eax, [edx]
5: call ds:SwitchDesktop
sub_42765E endp;

extraction of features:

Attribute 1: Opcode: [mov:2, and:1, call: 1, cmp:1, jnz:1]
Attribute 2: API: [ds:SwitchDesktop:1]
Attribute 3: Memory: [MemoryR: 3, MemoryW: 1]
Attribute 4: IO: [IOR: 0, IOW: 0]
Attribute 5: Flag: [CF: 2, AF: 1, OF: 2, PF: 2, SF: 2,
ZF: 2, TF: 0, IF: 0, RF: 0, DF: 0]
Attribute 6: Register: [EAXR: 0, EAXW: 2, EBXR: 0, EBXW: 1,
ECXR: 0, ECXW: 0, EDXR: 1, EDXW: 0,
ESIR: 1, ESIW: 0, EDIR: 0, EDIW: 0,
ESPR: 1, ESPW: 1, EBPR: 0, EBPW: 0].

In the next section, we shall discuss how to evaluate the similar-
ity of two malware programs based on their attributed FCGs. As
a number of notations will be used in the next few sections, we
summarize all these notations in Table 1 for clarity.

1359

family 1

family 2

family 3

a

b

c

d

e

f

gh

i

family 1

family 2

family 3

a

b
c d

e
f

g

h
i

(1) Before learning (2) After learning

Figure 3: Demonstration of malware distance metric learning

5. DISTANCE METRIC LEARNING
Automated malware classification requires methods to evaluate

the distances among malware instances. Having extracted an at-
tributed FCG graph for each malware program, we next look for
the appropriate distance metric to compute the distance between
two malware programs based on attributed FCG graphs.

5.1 Maximum margin principle
Our search for malware distance metric is guided by themaxi-

mum margin principle, i.e., the malware in the same family should
be closely clustered while clusters formed by different malware
families should have large margins to separate them. See Fig. 3
for a motivating example. Before distance metric learning, mal-
ware from the same class may have a large distance than those
from different classes based on the naive Euclidean distance (e.g.,
dist(a,b) > dist(a,f) in Fig. 3(1)). After learning the ap-
propriate distance metric, which projects data points in the original
feature space into a different space, the intra-class distance is de-
creased while the inter-class distance is increased. Following the
same example, we havedist(a,f)>>dist(a,b), as shown
in Fig. 3(2).

More formally, letGi be the attributed function call graph of
malwarei where1 ≤ i ≤ nl, andEq be the feature vector of type
q whereq ∈ T . Let Dq

i,j represent the pairwise distance between
malwareGi andGj computed according to attribute typeq. Then,
thewithin-class distanceSq

w, which is the sum of squared distances
among all pairs of malware belonging to the same family according
to feature typeq, is given by:

Sq
w =

∑

k

∑

i∈Ck

∑

j∈Ck

(Dq
i,j)

2. (1)

Similarly, the between-class distanceSq
b , which is the sum of

squared distances among all pairs of malware belonging to different
families according to attribute typeq, is given by:

S
q
b
=

∑

k

∑

l,l 6=k

∑

i∈Ck

∑

j∈Cl

(Dq
i,j)

2, (2)

Thus following the maximum margin principle, we need to maxi-
mize the between-class distance while minimizing the within-class
distance for attribute typeq, i.e.,

min(Sq
w − S

q
b
). (3)

Note we use a trace difference criterion in Eq. (3). As is known in
the machine learning community, it has some advantages over opti-

mizing the trace quotient criterion (i.e.,max
S
q
b

S
q
w

), such as convex-
ity formulation, ease for manipulation, etc. To minimize Eq. (3),
we need to compute pairwise malware distanceDq

ij for attribute
typeq, which will be shown next.

5.2 Malware pairwise distance computation
Given Gi(Vi, Ei) and Gj(Vj , Ej), the attributed FCGs of two

malware samplesi andj, their distanceDij can be computed through
the graph distance betweenGi andGj . To simplify computation, we
assume there exists one-to-one match between function nodes inGi

andGj . LettingVm
i be themth function node in malwareGi, the

pairwise graph distance problem breaks down into the following
two subproblems:(1) How to compute the optimal pairwise node
match matrixAij ∈ <|Vi|×|Vj | for malwareGi andGj , and (2)
How to compute the optimal pairwise node distance betweenVm

i

andVn
j .

For problem (1), we learn the pairwise malware graph match-
ing matrixAij , whereAij

mn = 1 denote nodem in malwareGi

matches noden in malwareGj , andAij
mn = 0 otherwise. We call

problem (1) thegraph matchA-learning problem. 1 For problem
(2), supposing thatFq

im, the feature vector of typeq at nodem in
malwarei’s attributed FCG, is adq-dimension vector (note thatdq
varies with the feature typeq), our goal is to learn distance metric
Wq ∈ <dq×d, whered is the dimension of the new subspace after
projection,w.r.t. each attribute type q,2:

Dim,jn =
√

(Fim −Fjn)TWWT (Fim −Fjn) (4)

For example, ifW = I, distance metricD is Euclidean distance.
Actually, the learned distance metricΣ = WWT ,Σ ∈ <dq×dq

is a symmetric semi-definite positive matrix, and now metricD is
Mahalanobis distance. Note hereW is required to be orthonormal,
i.e., WTW = I. We call problem (2) thedistance metricW-
learning problem. This process is done for each attribute typeq.

Once we have obtained distance metricW and pairwise graph
matching matrixA, we define the pairwise malware distanceDi,j

for attribute typeq (for simplicity, we ignore superscriptq here) as:

Di,j =

√

∑

mn D2
im,jn

A
ij
mn

|Vi||Vj |
+

∑

mn,m′n′ A
ij
mnA

ij

m′n′D
2
im,jn;im′,jn′

|Ei||Ej |

(5)

whereDim,jn is the node distance between nodem in Gi and
noden in Gj as defined in Eq. (4),Aij

mn represents unary assign-
ment (node match) for matching of nodem in Gi with noden in
Gj ; and the second term inside the square root represents pairwise
assignment (edge match), where both nodem ∈ Vi matches with
n ∈ Vj , and also nodem′ ∈ Vi matches withn′ ∈ Vj . That is,
not only the substitution of nodes but also the edge structure play a
role in the computation of distance between the attributed FCGs of
two malware programs (more details will be introduced in §6.4).

A key observation is that the distance between two attributed
FCGs contributed by edges mirrors the number of edge deletion/insertion
operations, and thus if the graph matching is given, this portion of
distance is fixed (see §6.4 for more details). DefineJij as follows:

Ji,j =

∑

mn,m′n′ A
ij
mnA

ij

m′n′D
2
im,jn;im′ ,jn′

|Ei||Ej |
. (6)

Then we have:

D2

i,j =
∑

m∈Vi

∑

n∈Vj

D2

im,jn + Ji,j

=

∑

m∈Vi

∑

n∈Vj
A

ij
mn(Fim − Fjn)

T
WW

T (Fim − Fjn)

|Vi||Vj|
+ Ji,j .

(7)

Then substituting Eq. (7) into Eqs. (1, 2), we have:

Sw = Tr(WT
UwW) +

∑

k

∑

i∈Ck

∑

j∈Ck

Ji,j ,

Sb = Tr(WT
UbW) +

∑

k

∑

l,l 6=k

∑

i∈Ck

∑

j∈Cl

Ji,j .
(8)

1We use one-to-one match, for two malwareGi = (Vi, Ei) and
Gj = (Vj , Ej), they may have different number of function nodes,
e.g., |Vi| > |Vj |, (|Vi| − |Vj |) virtual nodes (with null evidence
values) are added to make a alignment.
2For clarity, we ignore the superscriptq here.

1360

where

Uw =
∑

k

∑

i∈Ck

∑

j∈Ck

∑

m∈Vi

∑

n∈Vj

A
ij
mn(Fim −Fjn)(Fim − Fjn)T

|Vi||Vj |
,

Ub =
∑

k

∑

l,l 6=k

∑

i∈Ck

∑

j∈Cl

∑

m∈Vi

∑

n∈Vj

A
ij
mn(Fim − Fjn)(Fim −Fjn)

T

|Vi||Vj|
.

Substituting Eqs. (1, 2, 7) into the optimization goal in Eq. (3),
we have:

min
W

Tr(WT
UwW −W

T
UbW) + λqB, s.t. W

T
W = I (9)

for each attribute typeq, where

B =
∑

k

∑

i∈Ck

∑

j∈Ck

Ji,j −
∑

k

∑

l,l 6=k

∑

i∈Ck

∑

j∈Cl

Ji,j = const,

andλq is the coefficient for the cost contributed byB associated
with edge cost. As once the graph matchingA is fixed,B is a con-
stant and we thus need to solve the following optimization problem
in each iteration:

min
W

Tr(WT
UwW −W

T
UbW), s.t. W

T
W = I (10)

Note in the above formulation, we need to solve: (1) distance met-
ric W for each attribute typeq, (2) graph matchingA during com-
putation ofUw andUb for pairwise malware distance.

Next, we present a learning framework to solve the above prob-
lem of Eq. (10). The key idea is to apply the expectation max-
imization algorithm [5], to iteratively update parametersW and
A. More specifically, we repeatedly perform the following two
steps: (1) estimate pairwise malware matching matrixA, given the
current distance metricW (§5.3); (2) predict the optimal distance
metricW, given the current pairwise malware matching matrixA

(§5.4). These two steps are iterated for several iterations. To sum-
marize, the whole algorithm is illustrated in Alg. 1.

5.3 W-learning algorithm
In Eq. (10), given the current graph matchingA, the optimal

solutionW can be obtained according to the following theorem:

THEOREM 1. [Ky Fan [26]] Let H ∈ <d×d be a symmetric
matrix with eigenvaluesλ1 ≤ λ2 ≤ · · · ≤ λd and the correspond-
ing eigenvectorsU = [u1,u2, · · ·,ud], then

min
WTW=Ik

Tr(WTHW) =

k∑

i=1

λi. (11)

Moreover, the optimalW∗ = [u1,u2, · · ·,uk] subject to orthon-
normal transformation.

To apply Ky Fan’s theorem here, we first letH = (Uw − Ub).
We can thus obtain the optimal solutionW with d smallest eigen-
vectors ofH.

5.4 Pairwise graph matchingA-learning algo-
rithm

We now discuss how to match nodes in the attributed FCGs of
two malware programs. Note that the unary distanceDim,jn is
determined with Eq. (4), which represents the node distance; for
pairwise distanceDim,jn;im′ ,jn′ , it can be determined in four dif-
ferent cases, which are illustrated in Fig. 4, according to the graph
structure ofGi andGj .

(1) There exist both an edge from nodem tom′ in Gi and also an
edge fromn to n′ in Gj (Fig. 4(a)). It means the edgeemm′ ∈ Ei

Algorithm 1 distance metric learning algorithm
Input: (1) Attributed FCGs of labeled malware programs; (2) T: Maximum number

of iterations
Output: The learned distance metricWq for each attribute typeq
Procedure:
1: Initialization: distance metricWq = Idq , iterationt = 1

2: for t = 1, 2, · · ·, T do
3: for each pairwise malware (Gi, Gj) do
4: Update graph matchingA using Eq. (17) given current distance metricW

5: Compute pairwise distanceDq
i,j

of Eq. (7)

6: end for
7: for each attribute typeq do
8: Compute within-class and between-class distancesU

q
w andUq

b
in Eq. (9)

9: end for
10: Update distance metricW with Eq. (11)
11: t = t + 1
12: end for

m, n, m, n,
n,m,

n,m,

m n nmnmm n

Gi Gi Gi GiGj Gj Gj Gj

(a) (b) (c) (d)

Figure 4: Four cases for pairwise distance computation of
Dim,jn;im′ ,jn′ .

is substituted with edgeenn′ ∈ Ej . Since both pairwise nodes
(m,m′) and(n, n′) have been matched in the unary node matching
process, no edit cost is needed for transforming one edge inGi to
another inGj , i.e.,Dim,jn;im′ ,jn′ = 0;

(2) Only edge(m,m′) exists, or only edge(n, n′) edge exists
(Fig. 4(b) or 4(c)). It means one edge insertion/deletion operation
is needed. We assume all the edge insertion/deletion operation has
the same cost, and thus assignDim,jn;im′ ,jn′ = const.

(3) Neither edge(m,m′) nor edge(n, n′) exist in Gi or Gj

(Fig. 4(d)). No edge edit operation is needed to transform edge
(m,m′) to (n, n′), and thusDim,jn;im′ ,jn′ = 0.

In order to perform pairwise graph matching to obtainA1, we
first establish the following lemma:

LEMMA 1. Letp = |Vi|×|Vj |, a ∈ <p, r = (m−1)×|Vj |+n,
ands = (m′−1)×|Vj |+n′2. FindingAij to minimize the distance
betweenGi andGj , i.e.,

min
Aij

Di,j

as shown in Eq. (5), is equivalent to solving:

min
a

f(a) = a
TMa s.t. ai = {1, 0}, (12)

whereM ∈ <p×p encodes the distance metric computed from
Dim,jn and Dim,jn;im′ ,jn′ . That is to say, diagonals of matrix

Mr,r =
Dim,jn

|Vi||Vj |
is computed from Eq. (4), and off-diagonals of

matrixMr,s =
Dim,jn;im′,jn′

|Ei||Ej |
wheres 6= r is computed accord-

ing to the four cases discussed before.

PROOF. First note that finding the solution tominAij Di,j is
equivalent to solving:

min
Aij

D2
i,j (13)

1For computational cost consideration, we need not actually add
virtual node in the computation of Eqs.(12,17). After we get
(min |Vi|, |Vj |) pairwise one-to-one match, we just match the un-
matched(||Vi| − |Vj ||) nodes to virtual nodes with null values.
2Here we use “row-first" order to assign the order.

1361

Supposingar = Aij
mn andas = A

ij

m′n′ , we now establish the
relationship between Eq. (13) and Eq. (12). Clearly,

a
TMa =

∑

rs

arMrsas =
∑

r

a
2
rMrr +

∑

r

∑

s,s6=r

arMrsas

=
∑

r

arMrr +
∑

r

∑

s,s6=r

arMrsas.
(14)

In Eq. (5), for the node distance,
∑

mn Dim,jnA
ij
mn

|Vi||Vj|
=

∑

r

arMr,r (15)

for the edge distance,
∑

mn,m′n′ A
ij
mnA

ij

m′n′Dim,jn;im′ ,jn′

|Ei||Ej |
=

∑

r,s

arasMr,s (16)

By making a sum over of Eq. (15) and Eq. (16) on both sides,
we have LHS = RHS, where LHS gives Eq. (13) and RHS gives
Eq. (12). This completes the proof.

Optimal solution: Eq. (12) is a discrete optimization problem,
which is NP-hard and thus hard to handle. We relax the constraint
ai ∈ {1, 0} to aTa = 1, and have:

min
b

f(b) = b
TMb s.t. b

T
b = 1. (17)

Clearly, according to Theorem 1 (Ky Fan [26]), we obtain the op-
timal solution ofb is given by the smallest eigenvector ofM. We
useb to obtain the pairwise graph matchingA as follows.

Computation of pairwise graph matching A: Before com-
puting pairwise graph matching matrixAij for pairwise malware
Gi andGj , firstly we setAij = 0. After obtainingb, we select
the one with the largest value in it, i.e., findt = argmaxt bt,
and set the pairwise matching matrixAij

mn = 1, wherem =
((t− 1)/|Vj |+1), n = mod ((t− 1), |Vj |) + 1 . Then all node
pairs that involvem orn will no longer be considered. Again, in the
remaining pairwise node, we select thet′ = argmaxt bt, where
t′ 6= t,m′ = ((t′ − 1)/|Vj | + 1), n′ = mod ((t′ − 1), |Vj |) +
1, m′ 6= m,n 6= n′, and setAij

m′n′ = 1. This process is iterated
until no node can be selected fromb. If there are still unmatched
nodes, they are matched withvirtual nodewith null evidence val-
ues. Finally, the updated solutionA is used for malware distance
computation.

6. ENSEMBLE OF CLASSIFIERS
With learned distance metricWq for each attribute typeq, we

next discuss how to combine results from classifiers developed for
different attribute types. To this end, we use the Adaboost al-
gorithm [6], which was proposed by Freund and Schapire, and
can be used in conjunction with many other learning algorithms
to further improve the classification performance. The key idea of
Adaboost is that the classifiers are repeatedly improved by giving
higher weights to those instances misclassified previously.
Training stage. Given the distance calculated between the attributed
FCGs of two malware programs, we use the standard support vec-
tor machine (SVM) or the k-nearest neighbor classifier (kNN) for
classification. For SVM, we use the Gaussian kernel, where:

k(Gi,Gj) = e
−γ

D2
i,j

t2 , (18)

whereγ is a tunable parameter, andt is the average distance of
thek-nearest neighbors for each malware, which plays the role of
normalization. Note that the classifier built herein deals with pair-
wise distances as the input for classification, rather than feature

vectors as in most previous works. We further feed the similarity
measures to the standard support vector machine (SVM) or the k-
nearest neighbor classifier (kNN) for classification. Once we train a
classifier with respect to each attribute type, we further use the Ad-
aboost algorithm [6] to learn the confidence level associated with
each classifier. Taking the SVM classifier as an example, suppose
that we have obtained classification results using SVM for differ-
ent attribute types on the training dataset. We then setZiq = 1 if
the SVM classifier for feature typeq correctly labeled malwareGi,
otherwiseZiq = 0. Our goal is to learn the confidence levelαq for
each attribute typeq, such that the classification error is minimized
on the training malware samples. A similar approach is adopted for
the kNN classifier.
Classification stage.Having obtained the confidence levelαq as-
sociated with the classifier for each feature typeq, we can use the
ensemble of classifiers to classify new malware samples. Given a
new malware instance, we first extract its attributed FCGG′. Next,
for each individual classifier corresponding an attribute typeq, we
form the evidence for this malware instance, including a set of an-
chor instances and their labels (i.e., the family each anchor instance
belongs to), as well as the distance that the new malware sample is
from each anchor instance. For instance, if the SVM classifier is
used, the anchor instances are exactly those in the classifier’s sup-
port vector, and for the kNN classifier, thek closest instances from
the new malware sample are the anchor instances. Based on the
evidence provided for each attribute type as well as the confidence
level associated with each type of evidence, the ensemble of clas-
sifiers makes a decision on which family the new malware sam-
ple belongs to, where it always chooses the malware family that
collects the highest total confidence weight from all the individual
classifiers.

7. EXPERIMENTS
In this section, we first introduce the malware dataset used in our

experiments, and then show the performance of our method.
Malware dataset. We use a malware dataset from Offensive

Computing [17], which contains 526,179 unique malware variants
collected in the wild. Using the VirusTotal website [24], we find
that the average detection rate for 43 Anti-Virus software (such as
NOD32, Symantec, McAfee, etc) is60.5%. The malware dataset
contains both packed and unpacked instances, and in our evalua-
tion, we only use unpacked ones, and disasemble them with IDA
pro [8].

Automated malware classification requires labeled malware in-
stances for which we know their families. As reverse engineering
each malware variant to obtain its family information, is a daunting
task, we use majority agreement results from the five well-reputated
Anti-Virus Software, McAfee, NOD32, Kaspersky, Microsoft, and
Symantec. If more than three of them classify a malware into
the same family, we label this malware as a variant belonging to
this family. Through this way, we obtain 11 families of malware:
Bagle(Ba),Bifrose(Bi),Ldpinch(Ld),Swizzor(Sw),
Zbot(Zb),Koobface(Ko),Lmir(Lm),Rbot(Rb),Sdbot(Sd),
Vundo(Vu),Zlob(Zl). All these malware target theWindows
system, and they belong to different categories, including worms,
backdoor trojans, multi-component malware, etc. These malware
have diverse functionalities, such as stealing user data, connection
to remote IP addresses, establishment of IRC communications, etc.

Number of local functions in FCGs In Fig.(5), we show the
mean and standard deviation of the number of local functions in
the FCGs for each malware family. We note that the number of
local functions for theLmir family varies more significantly than
other families. Clearly, simple statistical test using the number of

1362

Ba Bi Ko Ld Lm Rb Sd Sw Vu Zb Zl

−200

0

200

400

of

 fu
nc

tio
ns

 in
 F

C
G

Malware Category

of function
in FCG

Figure 5:Mean number of functions per sample (one standard deviation).

Table 2:Different scenarios used in our experiments

Scenario op-n mem-n reg-n io-n flag-n api-n ES-ndis
Attribute Opcode Memory Register I/O Flag API Ensemble
Distance No No No No No No No
learning

Scenario op-d mem-d reg-d io-d flag-d api-d ES-dis
Attribute Opcode Memory Register I/O Flag API Ensemble
Distance Yes Yes Yes Yes Yes Yes Yes
learning

function nodes is not sufficient for identifying all malware families.
Next, we show the performance of our proposed method, which
exploits the structural information in these malware instances for
automated malware classification.

7.1 Evaluation of our proposed method
Five-fold cross validation: In the experiments, we use 80% of

the malware samples from each family to train our model, and the
remaining ones are used for testing the effectiveness of our ap-
proach. This process is iterated for five times, and we report the
averages as the classification performance.

Performance evaluation: The performance of a classifier can
be quantified withprecision, recall, andF1. Let the number of true
positives, false positives, true negatives, and false negatives bentp,
nfp, ntn andnfn, respectively, w.r.t, a classifier. The precision
metric is defined to be ntp

ntp+nfp
, and the recall metric is ntp

ntp+nfn
.

TheF1 measure is the harmonic mean of precision and recall, i.e.,
F1 =

2ntp

2ntp+nfp+nfn
. An ideal classifier should haveF1 metric

close to 1, implying that both precision and recall are close to 1.
Parameter settings: For thekNN classifier, we choosek be-

tween 6 and 10 in our experiments. For malware similarity compu-
tation of Eq. (18), we chooseγ between 0.3 and 0.7 in one set of
experiments, andt is computed using the three nearest neighbors.

7.1.1 Performance comparison
As the key components of our proposed method consists of dis-

tance metric learning and ensemble of weighted classifiers, we com-
pare the performances of the methods in different scenarios as shown
in Table 2. It is noted that our method corresponds to theES-dis
scenario. The distinction among these different scenarios is helpful
for us to understand the origin of performance improvement.

Overall improvement: We show the F1 measure for each fam-
ily of malware in Figs. (6a, 6b) atk = 6 and10, respectively, using
the kNN classifier, and in Figs. (6d, 6e) atγ = 0.3 and0.7, re-
spectively, for the SVM classifier. In Table 3, we show the average
performance improvement across all malware families. Clearly, for
both classifiers, theF1 measure is significantly improved using our
method (i.e.,ES-dis). For instance, considering both the aver-
age cases, our method improves over the best individual method by
9.3% for the SVM classifier, and by 23.2% for the kNN classifier.

Breakdown of performance improvement: In order to show
how the performance improvement of our proposed method at-
tributes to the two steps involved, distance metric learning and en-
semble learning, we present in Table 4 the average F-1 measures
for scenarios when distance learning is performed on individual

Table 3: Average F-1 measure in terms of percentage across all families.
For SVM, we show the results whenγ = 0.3, γ = 0.7, and also the
average whenγ is chosen from[0.1, 0.3, · · ·, 1.9]; for kNN, we show the
results whenk = 6, 10, and also the average whenk is chosen from [2, 4,
..., 16].

classifier γ/k op-n mem-n reg-n io-n flag-n api-n ES-dis
SVM 0.3 86.06 84.20 86.14 85.07 68.59 82.99 93.88
kNN 6 48.89 67.82 56.52 54.53 85.33 66.71 91.23
SVM 0.7 88.61 87.49 87.76 87.63 72.25 82.65 98.73
kNN 10 62.33 66.30 87.79 58.26 66.11 68.90 95.31
SVM avg 84.54 84.51 83.57 85.52 68.39 84.72 93.44
kNN avg 54.28 65.77 69.04 55.25 73.52 66.39 90.54

Table 4:Analysis of performance improvement. Values are shown in per-
centage whenγ = 0.7 for SVM and whenk = 10 for kNN.

Scenario op-n mem-n reg-n io-n flag-n api-n ES-ndis
SVM 88.61 87.49 87.76 87.63 72.25 82.65 90.86
kNN 62.33 66.30 87.79 58.26 66.11 68.90 89.32

Scenario op-d mem-d reg-d io-d flag-d api-d ES-dis
SVM 97.32 94.80 96.91 97.04 97.39 95.05 98.73
kNN 63.24 67.05 89.15 63.05 87.03 91.92 95.31

attribute types, as well as those scenarios when the ensemblelearn-
ing is used to combine individual classifiers without distance met-
ric learning. We make two important observations from the re-
sults. First, even for the individual classifier trained for a single
attribution type, distance metric learning significantly improves the
classification performance, except a few cases (e.g., when kNN is
used and the attribute type is opcode, memory, or register). This
suggests that distance metric learning indeed helps separate mal-
ware instances belonging to different families, which eventually
improves classification performance. Second, although the ensem-
ble of classifiers does not provide significant performance improve-
ment over the best classifier trained for a single attribute type, it
does have the capability of approaching the performance of the best
individual classifier trained for a single attribute. This is impor-
tant, because from Figure 6 we observe that no individual classifier
trained for a single attribute type is able to provide the best classi-
fication performance for different malware families on a consistent
basis. Hence, ensemble learning has the advantages of finding the
best-performed individual classifier, and even provides slight per-
formance improvement over it.

7.1.2 Effects of parametersγ andk

In the following, we discuss how different parameter setting of
γ andk affects the performance of the SVM and kNN classifiers,
respectively. In a new set of experiments, we choose the parameter
γ from [0.1, 0.3, 0.5, 0.7, · · ·, 1.5, 1.7, 1.9] in the gaussian kernel
used for the SVM classifier, andk from [2, 4, 6, 8, 10, 12, 14, 16]
for the kNN classifier. The F1 measures are shown in Fig. 6, where
both distance metric learning and ensemble learning are performed
in all these experiments. Clearly, irrespective ofγ andk chosen for
the SVM and kNN classifier, respectively, our proposed method
improves the classification performance over the individual classi-
fier trained for each feature type. Moreover, we observe that there
is no apparent trend of change of classification performance when
we increase parameterγ (or k) for the SVM (or kNN) classifier.
Actually, for the individual classifier trained for a single attribute
type, we find that for some attribute types (e.g., opcode features for
kNN and flag feature for SVM), changing the parameter of the clas-
sifier leads to unstable classification performance. This may be due
to the majority agreement kNN used in our approach, where for
some malware samples, its k nearest neighbors may vary greatly.

1363

Ba Bi Ko Ld Lm Rb Sd Sw Vu Zb Zl AVG
0

0.2

0.4

0.6

0.8

1

Malware Category

F
1

m
ea

su
re

op−n
mem−n
reg−n
io−n
flag−n
api−n
ES−dis

(a) (SF-ndis, ES-dis),k = 6, kNN

Ba Bi Ko Ld Lm Rb Sd Sw Vu Zb Zl AVG
0

0.2

0.4

0.6

0.8

1

Malware Category

F
1

m
ea

su
re

op−n
mem−n
reg−n
io−n
flag−n
api−n
ES−dis

(b) (SF-ndis, ES-dis),k = 10, kNN

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter k

F
1

m
ea

su
re

op−n
mem−n
reg−n
io−n
flag−n
api−n
ES−dis

(c) Effects ofk on performance of kNN

Ba Bi Ko Ld Lm Rb Sd Sw Vu Zb Zl AVG
0

0.2

0.4

0.6

0.8

1

Malware Category

F
1

m
ea

su
re

op−n
mem−n
reg−n
io−n
flag−n
api−n
ES−dis

(d) (SF-ndis, ES-dis),γ = 0.3, SVM

Ba Bi Ko Ld Lm Rb Sd Sw Vu Zb Zl AVG
0.4

0.6

0.8

1

Malware Category

F
1

m
ea

su
re

op−n
mem−n
reg−n
io−n
flag−n
api−n
ES−dis

(e) (SF-ndis, ES-dis),γ = 0.7, SVM

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Parameter γ

F
1

m
ea

su
re

op−n
mem−n
reg−n
io−n
flag−n
api−n
ES−dis

(f) Effects ofγ on performance of SVM

Figure 6: (a-f) Performance comparison under different scenarios.SF-ndis means using a single feature type without distance metric learning (i.e., op-n,
mem-n, etc), andES-dis means using ensembles of feature types with distance metric learning. We consider both the kNN and SVM classifiers. For the
former, in (a-b), we varyk between 6 and 10, and for the latter, in (d-e), we chooseγ between 0.3 and 0.7. (e-f) Effects of classification parameters on kNN
and SVM classifiers.

Ba Bi Ko Ld Lm Rd Sd Sw Vu Zb Zl

Ba 0.82 0 0.04 0 0 0 0 0.14 0 0 0

Bi 0 0.96 0 0 0 0.02 0 0.02 0 0 0

Ko 0 0.02 0.98 0 0 0 0 0 0 0 0

Ld 0 0 0.04 0.9 0.06 0 0 0 0 0 0

Lm 0 0 0 0.1 0.74 0.16 0 0 0 0 0

Rd 0 0 0 0 0 0.82 0.18 0 0 0 0

Sd 0 0 0 0 0 0.12 0.88 0 0 0 0

Sw 0 0 0 0 0 0 0 0.96 0 0.02 0.02

Vu 0 0 0 0 0 0 0 0 1 0 0

Zb 0 0 0 0.02 0.04 0 0 0 0 0.9 0.04

Zl 0 0 0.02 0 0.06 0 0 0.02 0 0 0.9

Figure 7:Confusion matrix for the SVM classifier withγ = 0.1

For SVM classifier, it is known that it can be influenced a lot by
different kernel parameters.

7.1.3 Cross family analysis
We show in Fig. 7 the confusion matrix, which depicts how mal-

ware instances belonging to each family are classified – or mis-
classified – into different families. A confusion matrix is a tabular
layout in which each column corresponds to a predicted class while
each row represents a real class of instances. The(i, j) element of
a confusion matrix shows the percentage of instances from classi
are labeled as classj. Hence, the diagonals of the confusion matrix
(i.e., the(i, i) elements) provide the percentages of correctly la-
beled instances, whereas the off-diagonals indicate the percentages
of incorrectly labeled ones.

It is known that the source code of Sdbot was published in the In-
ternet, and the development of Rbot was influenced by it [22]. This
is verified in our results, as shown in Fig. 7, where18% of Rbot
instances are labeled asSdbot and12% of Sdbotinstances are
labeled asRbot. Moreover, for theLmir family, the number of lo-
cal function nodes in its attributed FCGs is highly divergent across
different instances, as seen from Fig. 5, which adversely affects the
computation of intra-family malware distances. This explains its
poor classification performance relative to the other families.

7.1.4 Classifying samples not in known families

In practice, a newly captured executable program may not belong
to the malware families which are already known to us. It can come
from an unknown malware family, or even be a legitimate program.
Our proposed framework can be easily extended to deal with both
scenarios with little extra computation cost. In the following we
show how to use the standard kNN classifier for classifying an un-
known malware variant or a legimate program. As discussed above,
once we learn the distance metric, for each malware family, we ob-
tain the shortest distance between any two labeled instances in this
family. Given a new samplext, if it is classified as familyA by our
method, we further check its distance from its nearest neighboryt

in this family. If the distanced(xt,yt) > (1 + ε)θA, whereθA is
the smallest distance between any two labeled samples in familyA
andε is a tunable parameter, then we flag the new sample as one
not belonging to any known malware family. The smaller parame-
ter ε is, a sample that does not belong to any known family will be
detected as such with a higher probability, but a sample that indeed
belongs to any known family is also more likely to be misclassified.

We further perform two sets of experiments. In the first one,
we choose 30 samples from theHupigon family, and the second
one has 15 benign executable programs.ε is set to be 0 and the
classification accuracy (shown as percentages) is as follows:

Test samples Hupigon Benign
Accuracy 86.67 93.33

Clearly, our scheme can detect samples that do not belong to known
families with high accuracy.

8. RELATED WORK
Since the seminal works done by Schultzet al. [21] and Kolter

et al. [11], machine learning has been used in a number of efforts
to automatically distinguish malware from benign executable pro-
grams (e.g., [18, 20]). In contrast to these earlier works on malware
detection, our study focuses on malware classification, which aims
to distinguish instances belonging to different malware families.

1364

Even if we treat malware detection as a binary classification prob-
lem, the machine learning method proposed in this work is still
unique: rather than using distance metrics that are predefined in
an ad-hoc way, we learn the distance metrics in order to separate
different malware families with large margin. Our experimental re-
sults tell us that distance metric learning plays an important role
in improving the overall performance of automated malware clas-
sification. In [16], Natarajet al. conducted a comparative assess-
ment of malware classification using binary texture analysis and
dynamic analysis, and found that binary texture analysis performs
as equally effectively as dynamic analysis but is much more effi-
cient than dynamic analysis. Although we did not compare our
proposed method against the two techniques they studied, we be-
lieve that in order to improve the robustness of automated malware
classification, we should consider using a combination of malware
features extracted from malware programs. Hence, the structural
information of malware programs considered in this work adds an-
other layer of protection to those techniques that rely solely on bi-
nary representations of the malware programs (e.g., binary texture
analysis [16]) or features extracted from dynamic execution traces.

Most existing works on malware detection and classification [18,
20] use vector features, which are amenable to traditional classifi-
cation techniques such as SVM and kNN. A few other efforts (e.g.,
[7, 14, 10, 1, 12, 13]) also considered using the structure infor-
mation in malware programs. For instance, Huet al. used FCGs
extracted from malware programs for fast indexing, which aims
to find the nearest neighbors of a new malware sample [7], and
Kruegelet al. formulated the problem of polymorphic worm de-
tection as coloring of control flow graphs [14]. In [25], Yanet al.
compared the discriminative power of different types of malware
features for automated malware classification. Our work differs
from these efforts not only because our goal is to automatically
classifying instances into their corresponding families but also our
method is more generic as it learns malware distance metrics based
on the structural information of labeled malware programs rather
than using a predefined metric to evaluate malware similarity.

Another direction for malware research is clustering malware in-
stances to identify groups of malware that share similar characteris-
tics [3, 4, 9]. In contrast to malware clustering, automated malware
classification trains malware classifiers from labeled data. Hence,
the malware distance metric learning method proposed in this work
is not suitable for malware clustering, as it requires labeled data to
guide how to separate malware families with large margin. Some
other contributions made in this work, such as FCG-driven feature
extraction and pairwise graph matching, could be used for malware
clustering as well.

9. CONCLUSIONS
In this paper, we present a generic framework that exploits the

rich structural information inherent in malware programs for auto-
mated malware classification. Towards this end, we use the func-
tion call graph of a malware program to drive the process of feature
extraction. We develop methods to compute the similarity of two
malware programs based on their attributed function call graphs,
and use an ensemble of classifiers that learn from the pairwise mal-
ware distances and classify new malware instances automatically.
In the future, we plan to improve the process of obtaining labeled
samples for bootstrapping automated malware classification and
will also consider transductive malware classification when only
limited labeled samples are available.

Acknowledgment The authors acknowledge and appreciate the support
provided for this work by the Los Alamos National Laboratory Directed
Research and Development Program (LDRD project 20120443ER).

10. REFERENCES
[1] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane. Graph-based

malware detection using dynamic analysis.Journal in Computer
Virology, 7(4):247–258, 2011.

[2] B. Anderson, C. Storlie, and T. Lane. Improving malware
classification: bridging the static/dynamic gap. InProceedings of the
5th ACM workshop on Security and artificial intelligence, AISec ’12,
pages 3–14, New York, NY, USA, 2012. ACM.

[3] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario. Automated classification and analysis of internet
malware. InRAID, pages 178–197, 2007.

[4] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and E. Kirda.
Scalable, behavior-based malware clustering. InNDSS, 2009.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin.Journal of the Royal
Statistical Society. Series B (Methodological), 39(1):pp. 1–38, 1977.

[6] Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. InEuroCOLT, pages
23–37, 1995.

[7] X. Hu, T. cker Chiueh, and K. G. Shin. Large-scale malware indexing
using function-call graphs. InCCS, 2009.

[8] http:
//www.hex-rays.com/products/ida/index.shtml.

[9] Y. Jang, D. Brumley, and S. Venkatartaman. Bitshred: feature
hashing malware for scalable triage and semantic analysis. InACM
Conference on Computer and Comunication Security, 2011.

[10] J. Kinable and O. Kostakis. Malware classification based on call
graph clustering.Journal in Computer Virology, 7(4):233–245, 2011.

[11] J. Z. Kolter and M. A. Maloof. Learning to detect and classify
malicious executables in the wild.Journal of Machine Learning
Research, 7:2721–2744, 2006.

[12] D. Kong, Y. Jhi, T. Gong, S. Zhu, P. Liu, and H. Xi. Sas: Semantics
aware signature generation for polymorphic worm detection. In
SecureComm, pages 1–19, 2010.

[13] D. Kong, D. Tian, P. Liu, and D. Wu. SA3: Automatic semantic
aware attribution analysis of remote exploits. InSecureComm, 2011.

[14] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic worm detection using structural information of
executables. InRAID, pages 207–226. Springer-Verlag, 2005.

[15] Microsoft security intelligence report, January-June 2006.
[16] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang. A comparative

assessment of malware classification using binary texture analysis
and dynamic analysis. InACM AISec’11.

[17] http://www.offensivecomputing.net/. Accessed in
March 2012.

[18] R. Perdisci, A. Lanzi, and W. Lee. Mcboost: Boosting scalability in
malware collection and analysis using statistical classification of
executables. InACSAC, pages 301–310, 2008.

[19] K. Raman. Selecting features to classify malware. InProceedings of
InfoSec Southwest, 2012.

[20] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis of
malware behavior using machine learning.Journal of Computer
Security, 19(4):639–668, 2011.

[21] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining
methods for detection of new malicious executables. InIn
Proceedings of the IEEE Symposium on Security and Privacy, 2001.

[22] http://www.honeynet.org/node/53.
[23] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq. Pe-miner:

Mining structural information to detect malicious executables in
realtime. InRAID’09.

[24] http://www.virustotal.com/.
[25] G. Yan, N. Brown, and D. Kong. Exploring discriminatory features

for automated malware classification. InProceedings of DIMVA’13.
[26] H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon. Spectral

relaxation for k-means clustering. InNIPS, pages 1057–1064, 2001.

1365

