
Efficiently Rewriting Large Multimedia Application
Execution Traces with few Event Sequences

Christiane Kamdem
Kengne

University of Grenoble,LIG
University of Yaounde I

LIRIMA
kamdemk@imag.fr

Leon Constantin Fopa
University of Grenoble,LIG

University of Yaounde I
LIRIMA

Yaounde, Cameroon
fopal@imag.fr

Alexandre Termier
University of Grenoble,LIG

Grenoble,France
alexandre.termier@imag.fr

Noha Ibrahim
University of Grenoble,LIG

Grenoble,France
noha.ibrahim@imag.fr

Marie-Christine Rousset
University of Grenoble,LIG

Grenoble,France
marie-

christine.rousset@imag.fr

Takashi Washio
Osaka University, ISIR

Osaka, Japan
washio@ar.sanken.osaka-

u.ac.jp

ABSTRACT
The analysis of multimedia application traces can reveal im-
portant information to enhance program execution compre-
hension. However typical size of traces can be in gigabytes,
which hinders their effective exploitation by application de-
velopers. In this paper, we study the problem of finding a
set of sequences of events that allows a reduced-size rewrit-
ing of the original trace. These sequences of events, that we
call blocks, can simplify the exploration of large execution
traces by allowing application developers to see an abstrac-
tion instead of low-level events.
The problem of computing such set of blocks is NP-hard
and naive approaches lead to prohibitive running times that
prevent analysing real world traces. We propose a novel
algorithm that directly mines the set of blocks. Our exper-
iments show that our algorithm can analyse real traces of
up to two hours of video. We also show experimentally the
quality of the set of blocks proposed, and the interest of the
rewriting to understand actual trace data.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; H.3.1 [Content
Analysis and Indexing]: Abstracting methods

Keywords
Pattern mining, Combinatorial optimization, Execution traces,
Multimedia applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2174-7/13/08 ...$15.00.

1. INTRODUCTION
The use of embedded systems like smartphones, tablets and
controllers has been expanded in many fields of our everyday
life. This situation increases the needs to develop applica-
tions for these systems. One of the most used are multimedia
applications in which video and audio decoding are the im-
portant tasks. A multimedia decoding is the process of ren-
dering images and sounds on a screen, and the result must be
of good quality, without interruption between images or any
delay between picture and sound. This process deals with
computations over frames. A frame is an image rendered
during a known time interval. An anomaly or an unusual
execution in an application decoding video (or audio) can
waste a lot of time and a lot of money in industry for au-
dio/video decoding solution providers such as STMicroelec-
tronics. Increasingly, the analysis techniques of applications
use execution traces, which are sequences of timestamped
events produced by an application or a system, to efficiently
uncover bugs causing such faulty behaviors ([2,4,10]).
The challenge in this case is the size of these traces that can
easily reach gigabytes for only few minutes of decoding. For
instance, the STMicroelectronics video decoding application
DVBTest can produce a trace file of 1 Gigabyte for less than
10 minutes of playback. Various studies have proposed tech-
niques to reduce the volume of traces ([13,16]) with sampling
methods. These techniques can obtain a reduced execution
trace but not always representative of the entire trace [11].
Pirzadeh et al. introduced in [10] that the general consen-
sus in the trace analysis community is to emphasise the work
towards effective trace abstraction techniques, such as [5].
In this paper, we investigate an approach based on cover-
ing frames by blocks that are sequences of low-level events.
More precisely, given a set of frames, the problem is to dis-
cover a given (small) number of blocks that cover as much
as possible each frame of the input set, thus making possible
to rewrite them using blocks. Fig. 1 illustrates a trace with
frames and blocks.
In fact, this maximal covering problem is a variant of the
packing problem which is NP-hard, and for which no generic
algorithm leading to local or global solution is known. We
thus propose and experimentally compare several greedy al-

1348

gorithms. They differ in the way they discover candidate
blocks, either as a preliminary step independent of the cov-
erage test, or combined with the coverage test. As a result
we show that two of our proposed greedy algorithms scale
to gigabyte-sized traces.

GetFrame
exitGet
CS_I:Produc
Interrupt_Period
exitI
Interrupt_soft
exitS
exitIT
CheckData
FillJob
CS_VGA
CS_I:produc
GetFrame
exitGet
Interrupt_Hand
exitI
exitIt
Interrupt_Soft
Interrupt_Period
exitI
Interrupt_soft
exitS
exitIT
CS_I:produc
CheckData
FillJob
CS_MTU
Interrupt_Hand

B1

B2

B3

B1

B2

B3

9.5054
9.5073
9.5081
9.5083
9.5084
9.5086
9.5102
9.5127
9.5154
9.5260
9.5715
9.5845
9.5974
9.6012
9.6125
9.6155
9.6234
9.6315
9.6405
9.6483
9.6514
9.6622
9.6715
9.6811
9.6898
9.6932
9.6987
9.7001

Frame 1

Frame 2

Blocks

Figure 1: An example trace with blocks

This paper is organized as follows: Section 2 states the prob-
lem and briefly gives some notations and important defini-
tions. In Section 3, we present our approaches based on
greedy algorithms. Section 4 reports on experiments done
on real traces of multimedia applications. Section 5 is an
overview of the related work. We end in Section 6 by a
conclusion and future work.

2. PRELIMINARIES AND PROBLEM STATE-
MENT

In this section we give the notations and definitions neces-
sary to model our problem. This formalism comes from our
previous work [6].

2.1 Notations
Let Σ be a set of events. A block is a non empty sequence
of events. A timestamped event is a pair (t, e) where t ∈ N,
is a timestamp and e is an event. Frames are sequences
of timestamped events and a trace is a sequence of frames
ordered by timestamps. The size of a sequence Q, denoted
by ‖Q‖, is the total number of events that it contains.
Example: For the trace in Fig. 2, ‖F1‖ = 4. B2 = 〈B,D〉
is a block of two events B and D.

2.2 Definitions
The first definition that we introduce is the occurrence time
of a block in a frame.

Definition 1. Let B = 〈e1B , . . . , evB〉 be a block and let
F = 〈(t1, e1F), . . . , (tn, enF)〉 be a frame. B occurs in F (de-
noted B � F) between timestamps i and i+ v iff:

∀j ∈ [i, i+ v], ejF = ej−i+1
B .

i is then called the occurrence time of B in F .
Example: In Fig.2(a), B1 = 〈B,D〉 occurs in F1 between

(a) - A trace with
3 frames F1, F2, F3

(b) - The frame
F1 with 3 blocks:
B1 = 〈A〉, B2 =
〈B,D〉, B3 = 〈C〉

Figure 2: Example of trace, frames and blocks

timestamps 2 and 3; it occurs in F2 between 6 and 7.

Our granularity level is the frame for the covering expected,
so we forbid: 1) to have several consecutive frames covered
by a big block ; 2) to have a block that covers the end of a
frame and the beginning of the next frame. In this setting,
blocks of the covering can only occur inside frames. The
global coverage of the set of frames can thus be expressed
through a series of local coverages of each of the frames.
A local coverage is a sequence of blocks taken from a given
large set of blocks, and veryfing the constraints stated below.

Definition 2. Given a frame F and a set of blocks S,
a sequence of blocks C = 〈B1, . . . , Bm〉, with m ≤ |S| and
∀i ∈ [1, m] Bi ∈ S, is a local coverage of F , if and only
if all blocks in C occur in F in a non overlapping manner,
and by following the order in C.
More formally, for each Bi ∈ C, let φi be the occurrence
time of Bi in F , the following relation holds:

∀i ∈ [1,m− 1], φi + ‖Bi‖ ≤ φi+1

Note that the Bi are not necessarily distinct blocks: the
same block can appear several times in a local coverage.
Moreover, for a given F and S, there may be many local
coverages satisfying the definition.

Example: In Fig.2(b), C = 〈B1, B2〉 occurs in non over-
lapping manner and by following this order in F1, and so it
is a local coverage of F1 when considering S = {B1, B2, B3}.

With the above definition, a coverage over a set of frames is
dependant of locale coverage of each frame of the set. We
define a coverage over F = {F1, . . . , Fl} using a set of can-
didate blocks S as a set of the local coverages of the frames.

Definition 3. Let S be a set of candidate blocks
{B1, . . . , Bn} and F = {F1, . . . , Fl} be a set of frames. A
coverage of F using S is a set {C1, . . . , Cl} such that ∀i ∈
[1, l], Ci is a local coverage of Fi using blocks in S.

Based on the above definition, there may exist frames Fi

such as their local coverage Ci is the empty sequence. These
frames cannot be covered with blocks in S at all.

The covering degree of a coverage is the proportion of the
number of events in the frames of a trace file that are cov-
ered by the blocks in the coverage.

1349

Definition 4. Let C = {C1, . . . , Cl} be a coverage of a
set of frames F = {F1, . . . , Fl}. The covering degree of C
over F is defined as follows:

coverDegree(C,F) =
∑l

i=1

∑vi
j=1 ‖Bi

j‖
∑l

i=1 ‖Fi‖
where Bi

j is the j-th block in the i-th local coverage Ci in C.
Example: For a given set of candidate blocks S = {〈A,B〉,
〈B,D〉, 〈D,C〉}, a coverage of F = {F1, F2, F3} in Fig.3 is
C = {C1, C2, C3}, with C1 = 〈〈B,D〉〉, C2 = 〈〈B,D〉〉, and
C3 = 〈〈D,C〉〉. Its covering degree coverDegree(C,F) is
2+2+2

10
= 0.6

Figure 3: A set of frames with a coverage:{〈〈B,D〉〉,
〈〈B,D〉〉, 〈〈D,C〉〉}

Because a set of candidate blocks S may lead to many local
coverages for a single frame (Def. 2), it may also lead to
many coverages for a set of frames. We define the coverage
rank of S on F as the maximum degree of all the coverages
that can be built from the set S.

Definition 5. Let S be a set of blocks, F be a set of
frames and {C1, . . . Cp} be the set of all coverages of F using
blocks in S, the coverage rank of S on F is defined as follows:

coverRank(S,F) = Max
i∈[1,p]

coverDegree(Ci,F)

Example: The coverage rank of S on the set of frames of
Fig. 3 is 0.8 with the coverage {〈〈A,B〉, 〈D,C〉〉, 〈〈B,D〉〉,
〈〈D,C〉〉}

Remark: ∀ S,F , 0 ≤ coverRank(S,F) ≤ 1

Given a set of frames F , we can compare the coverage ranks
of different S having a fixed size k, and choose S maximizing
the coverage rank. Such a set of blocks, with size k, is called
k-most representative block set (denoted k-MRBS), and its
elements, the most representative blocks (noted MR-blocks).
The most representative blocks in a k-most representative
block set provide the maximum power of coverage on the set
of frames for any combination of k blocks.

Definition 6. In a family {S1, . . . , Sq} of sets of blocks
where all sets have an identical size k, a k-most representa-
tive block set is a set Si, satisfying:

i = argmax
j∈[1,q]

coverRank(Sj ,F)

.

Example: Assuming that 〈C〉, 〈A,B〉, 〈B,D〉, and 〈D,C〉
are frequent consecutive events for the set of frames in Fig.
3, let us consider the following sets consisting of 3 blocks:
S1 = {〈C〉, 〈B,D〉, 〈D,C〉}, and S2 = {〈C〉, 〈A,B〉, 〈D,C〉},
S3 = {〈C〉, 〈A,B〉 〈B,D〉}, and S4 = {〈D,C〉, 〈A,B〉 〈B,D〉}
coverRank(S1,F) = 0.8; coverRank(S2,F) = 0.9;
coverRank(S3,F) = 0.7; coverRank(S4,F) = 0.8. S2 is
then the 3-most representative block set (3-MRBS).

2.3 Problem statement
The problem that we consider is the following: given as in-
put a set of frames F and a number k, our goal is to output
a k-most representative block set S that maximizes the cov-
erage of F .

This problem is a variant of the packing problem [3], which
consists of maximally filling a space with k types of pieces.
In our case the space is the set of frames, and the pieces are
the blocks. An additional constraint in our setting is thus
that the location of each type of piece is constrained: a block
can only cover specific places of the frames. An additional
difficulty of our case is that the pieces, i.e. the blocks, are
not given as input, and must be computed from the data.
The packing problem is a NP-hard problem. There is no
known generic algorithm for global optimization of this prob-
lem. In the next section, we propose several approaches to
solve our problem, based on greedy algorithms.

3. APPROACH
The problem of finding a limited set of blocks allowing to
maximal cover a set of frames can be decomposed into two
subproblems:

• find a large set S0 of “candidate” blocks that are sub-
sequences of frames

• find S ⊂ S0 such that |S| = k and the coverage of the
frames is maximized by the blocks of S

3.1 Baseline approaches
A naive approach, that we exposed previously in [6], consists
in solving these two subproblems separately. A good heuris-
tic for the discovery of the blocks is to assume the blocks
are frequent sequences of the set of frames. Such frequent
sequences of large support (i.e. appearing in many frames)
and of sufficient length are likely to exhibit important cover-
age values. Standard pattern mining algorithms can be ap-
plied to discover the complete set S0 of frequent sequences
[19]. Then, a simple greedy algorithm can be used to choose
the k frequent sequences of S0 that maximize coverage. We
call this approach NaiveBaseline.
The disadvantage of this approach is that it has a prohibitive
computation time. Computing the frequent sequences has
a time complexity exponential in the number of events in
the frames, and can output thousands, even millions of fre-
quent sequences. The greedy algorithm is then confronted
with a very large combinatorial search space, thus requiring
long computation. In our experiments, finding blocks for
rewriting a small set of 200 frames (less than 10 seconds of
video) took more than 10 hours on a standard computer.
This simple approach thus do not scale to real world multi-
media traces having tens of thousands of frames, and cannot
be exploited to help multimedia application developers.

1350

To address this limitation, we propose several approaches,
which are based on the following ideas: 1) the greedy algo-
rithm should have a considerably smaller search space, i.e.
receive several orders of magnitude less frequent sequences to
choose from ; 2) reducing the number of frequent sequences
should be done by considering coverage constraints.
An aggressive reduction in the number of input frequent
sequences given to the greedy algorithm may prevent to
find a solution with k elements. All the approaches that
we propose are thus based on an iterative structure, where
in each iteration a set of frequent sequences is generated,
then passed to the greedy algorithm. If the solution found
has k blocks the algorithm stops, else it continues to further
add extra blocks having large coverages until the number of
blocks reaches k.
In order to illustrate this structure, consider the pseudo code
of Algorithm 1, which consists in our RandomBaseline ap-
proach.

Algorithm 1 RandomBaseline

Input: A set of frames F , an integer K, a frequency
threshold ε, minimum block size m, size of greedy algorithm
input �
Output: A set S of frequent sequences optimizing coverage
over F , with |S| = k

1: S ← ∅
2: AllFrqSeq← computeFrequentSequences(F , ε,m)
3: while |S| < k and AllFrqSeq �= ∅ do
4: PatPool← randomly get � frequent sequences from

AllFrqSeq
5: Snew ← greedyChooseBlocks(PatPool,F , k − |S|)

6: S ← S ∪ Snew

7: F ← Remove all blocks of Snew from F
8: AllFrqSeq ← AllFrqSeq \ PatPool
9: end while
10: return S

This algorithm is still a baseline because it only exploits
intuition 1) above when � << |AllFreqSeq| . As in the
NaiveBaseline approach, the complete set of frequent se-
quences AllFrqSeq is computed beforehand in line 2. Then
in the iteration of lines 3-9, a set PatPool of fixed size �
(user given) is taken from AllFrqSeq (line 4). This set is
fed into the greedy algorithm, which produces (a part of)
the solution in line 5. Blocks in the solution are removed
from the frames (line 7), and if the solution do not have k
blocks the algorithm continues. Note that in some rare cases
(for example when |AllFrqSeq| is small, or when k is set too
high), the algorithm may not find a solution. Although such
cases are unlikely to happen on real data, should they hap-
pen, the user would have to decrease k and/or decrease the
support threshold ε.
We briefly review the function greedyChooseBlocks, pre-
sented in Algorithm 2. It is a standard greedy algorithm:
the algorithm is given a target number of blocks k′, and it-
erates as long as its solutions has less than k′ blocks and it
has not exhausted patterns of PatPool. At each iteration it
chooses the block B′ giving best coverage in line 4 and add
it to the solution Snew . The algorithm then suppresses all
blocks of PatPool overlapping B′ (they can’t be part of the
solution any longer), and all instances of B′ from a projec-

tion of the frames in order to avoid doing computations for
already covered parts.

Algorithm 2 greedyChooseBlocks

Input: A set of frequent sequences PatPool, a set of frames
F , an maximal number of blocks k′

Output: A set Snew ⊆ PatPool of frequent sequences that
optimize coverage on the parts of F not already covered by
the blocks of S, with |Snew | ≤ k′

1: F ′ ← F
2: Snew ← ∅
3: while PatPool �= ∅ and |Snew | < k′ do
4: B′ ← argmaxB∈PatPool(coverRank({B},F ′))
5: // by definition of coverRank, B′ is non-

overlapping with all blocks of Snew

6: Snew ← Snew ∪ {B′}
7: OB ← {P | P ∈ PatPool, overlap(P,B′)}
8: PatPool← PatPool \ OB
9: Remove from F ′ all instances of B′

10: end while
11: return Snew

This algorithm guarantees the non-overlapping of the blocks
in Snew: they will make a proper coverage of F according to
Def. 3. However, it is not guaranteed that this coverage will
have the highest coverRank value, as the coverage is only
estimated on the new block being added at each iteration,
and not globally on the set of blocks. The heuristic of adding
first blocks of highest coverage has good practical results, as
experimentally shown in Section 4. Moreover, it avoids the
huge computational price of an exhaustive computation of
the best coverRank.

3.2 One step approaches
We now have the necessary material to present our con-
tribution. First, recall that the main difference between
NaiveBaseline and RandomBaseline is that RandomBase-
line does not consider all possible frequent patterns at once
in the greedy algorithm: it proceed iteratively, considering
at each iteration a small set PatPool ⊂ AllFreqSet. This
should improve the computation time of the greedy algo-
rithm, but because patterns of PatPool are choosen at ran-
dom, the coverage of the solution output may be far from
optimal.
Our contribution thus consists in two approaches, coined
OneStepMultSon and OneStepOneSon, which follow an iter-
ative structure similar to RandomBaseline, but where, by
exploiting intuition 2) above, the choice of PatPool is im-
proved. In these approaches, PatPool is guaranteed to con-
tain blocks that all have high coverage, and that are already
know to participate together in at least one local coverage.
The pseudo-code for OneStepMultSon is given in Algorithm
3. The pseudo-code for OneStepOneSon is identical, expect
for line 5 where the call to getFramePatternsMS is re-
placed by a call to getFramePatternsOS.
Before elaborating on the two different ways of computing
PatPool, we focus on the common parts of OneStepMultSon
and OneStepOneSon, and position them w.r.t. RandomBase-

line. The non-baseline algorithm are“one step”, in the sense
that they don’t need to compute the whole set of frequent
sequences beforehand. A reduced set of frequent sequences
is computed at each iteration by getFramePatternsMS /
getFramePatternsOS and feeds the greedy algorithm. The

1351

Algorithm 3 OneStepMultSon

Input: A set of frames F , an integer k, a frequency
threshold ε, minimum block size m
Output: A set S of frequent sequences optimizing coverage
over F , with |S| = k

1: S ← ∅
2: ∀f ∈ F f.mark = false
3: while |S| < k and ∃f ∈ F s.t. f.mark = false do
4: f ← random({f ∈ F | f.mark = false})
5: PatPool← getFramePatternsMS(f,F , ε,m)
6: Snew ← greedyChooseBlocks(PatPool,F , k − |S|)

7: S ← S ∪ Snew

8: F ← Remove all blocks of Snew from F
9: f.mark ← true
10: end while
11: return S

reduction comes from two points: first, the coverage con-
straint is taken into account during frequent sequence gen-
eration. Second, at each iteration of the algorithm, only
sequences belonging to a selected random frame can be gen-
erated. This last point means that our approach is a based
on a sampling of frames: the blocks output by OneStepMult-

Son/OneStepOneSon will be blocks appearing in a small set
of randomly chosen frames (one random frame per iteration
of the algorithm). This comes from the observation that
usually multimedia application have a very regular execu-
tion, thus the sequences of events of the frames will be quite
similar. When mining frequent sequences that should occur
in most of the trace (support threshold > 50 %), taking a
few sample frames is likely to quiclky give enough blocks to
get a good coverage of the whole trace.
Note that this is different from the RandomBaseline ap-
proach, where at each iteration a random sample of blocks
is selected, but there are no constraints on where do this
blocks come from: they may all come from different frames,
possibly never appearing together in local coverages.
In the algorithm, this is realized by first setting all frames
as “unmarked” in line 2. In each iteration, a random sample
frame f in selected in line 4, which is then passed as input
to the frequent sequence mining algorithm. At the end of
an iteration, frame f is marked in order to avoid selecting it
again.
We first present the approach used in OneStepMultiple-

Son, by explaining function getFramePatternsMS, whose
pseudo-code is given in Algorithm 4. This function is very
similar to a classical pattern growth algorithm. However,
there are two key differences from traditional pattern growth,
that come from the fact that the goal of the patterns is to
be arranged together to cover frames by a greedy algorithm
later, and that constitute part of our contribution:

• all the patterns found are necessarily rooted in a ran-
dom frame f , which severely restricts the search space

• for a given “seed” pattern of pattern growth (see be-
low), the output is not all the frequent patterns ex-
tending this seed pattern, but only those extensions
that provide better coverage than the patterns they
extend.

The first step, shown in line 2, is to find pattern growth
“seeds”. It is done by computing all sequences of length
m of the frame f . For each of these seeds, its extension
is computed by the procedure pattGrowth called in line 4.
This procedure is shown in lines 7-21. It takes as input a
pattern P , and modifies the final output PatPool. First
the frequency of the P is tested (line 9). If P is frequent, its
extensions in f are computed (line 11), i.e. all occurrences of
P plus one event e are computed in f . The extensions that
have a higher or equal coverage than P (line 12) are explored
recursively in line 15. If none exist, that P is added to the
final result PatPool. This way pattGrowth guarantees its
maximality condition.

Algorithm 4 getFramePatternsMS

Input: A frame f ∈ F , a set of frames F , a frequency
threshold ε, minimum block size m
Output: A set PatPool of coverage-maximal frequent
sequences (each of length ≥ m) occurring in f and frequent
in F

1: PatPool← ∅
2: Poolm ← set of all sequences of consecutive events of f

of length m
3: for all P ∈ Poolm do
4: pattGrowthMS(P, ε,F , PatPool)
5: end for
6: return PatPool

7: procedure pattGrowthMS(in P, ε,F , in/out
PatPool)

8: begin
9: if isFrequent(P, ε,F) = true then
10: cp ← coverRank({P},F)
11: ExtP ← {e ∈ f | P + e is a sequence in f}
12: ChildP ← {P + e | e ∈ Extp s.t. coverRank({P +

e},F) ≥ cp}
13: if ChildP �= ∅ then
14: for all P ′ ∈ ChildP do
15: pattGrowthMS(P ′, ε,F , PatPool)
16: end for
17: else
18: PatPool← PatPool ∪ {P}
19: end if
20: end if
21: end // procedure pattGrowthMS

The method used in getFramePatternsMS is close to a full
fledged pattern mining algorithm. Especially, it may explore
and even return a number of frequent sequences exponential
with the size of input frame f , due to the way it explores
most subsequences of f .
The approach used in function getFramePatternsOS, pre-
sented in Algorithm 5, is a slight variation, which relaxes
the exhaustiveness in search of traditionnal pattern mining
algorithms.
Here, instead of choosing a set of possible extensions in line
12, only the extension BestExt leading to the best coverage
is retained. If it leads to a better coverage than original
pattern P , then a single recursive call is performed on {P +
BestExt}.
The consequence is that in getFramePatternsOS, in the
worst case the number of frequent sequences examined is

1352

Algorithm 5 getFramePatternsOS

Input: A frame f ∈ F , a set of frames F , a frequency
threshold ε, minimum block size m
Output: A set PatPool of cover- maximal frequent
sequences (each of length ≥ m) occurring in f and frequent
in F

1: PatPool← ∅
2: Poolm ← set of all sequences of consecutive events of f

of length m
3: for all P ∈ Poolm do
4: pattGrowthOS(P, ε,F , PatPool)
5: end for
6: return PatPool

7: procedure pattGrowthOS(in P, ε,F , in/out PatPool)

8: begin
9: if isFrequent(P, ε,F) = true then
10: cp ← coverRank({P},F)
11: ExtP ← {e ∈ f | P + e is a sequence in f}
12: BestExt ← argmaxe∈Extp(coverRank({P +

e},F)) s.t. coverRank({P + BestExt},F) ≥ cp

13: if BestExt exists then
14: pattGrowthOS({P +BestExt}, ε,F , PatPool)

15: else
16: PatPool← PatPool ∪ {P}
17: end if
18: end if
19: end // procedure pattGrowthOS

O(|f |3): Poolm has less than |f | elements, for each of these
elements there can’t be more than |f | extensions to check in
line 12, and the number of recursive calls to pattGrowthOS
it generates is bounded by |f |. getFramePatternsOS is
thus polynomial in the size of the input frame. This was
not the case in getFramePatternsMS, where it was possi-
ble to have one recursive call to pattGrowthMS per exten-
sion, leading to a worst case complexity of O(2|f |). Thus,
OneStepOneSon should exhibit better execution times than
OneStepMultSon, possibly with a minor degradation of cov-
erage value of the solution.
Comparing the performances of NaiveBaseline, Random-

Baseline, OneStepMultSon and OneStepOneSon in terms of
computation time and of coverage value is the objective of
the next section. We will also show the interest of the k-most
representative block sets obtained on real execution traces.

4. EXPERIMENTS
In this experimental section, our goal is first to evaluate the
scalability on large real world traces of the four approaches
presented above. For each approach, we will also evaluate
the average coverage given by a solution, in order to evalu-
ate the quality of the found solution. We will also show how
real traces can be rewritten as sequences of most represen-
tative blocks, and show how helpful it can be for application
developers.

4.1 Experimental settings
We implemented the algorithms of Section 3 in Python 3.
The frequent sequence mining algorithm used is our imple-
mentation of ProfScan [19]. The experiments were run on
an Intel Xeon E5-2650 at 2.0GHz with 32 Gigabytes of RAM
with Linux. The parameters of the algorithms are fixed to
k = 10, ε = 75%, m = 2 and � = 300.
The datasets used are traces from two real applications, de-
scribed below.
Gstreamer application: Gstreamer [1] is a powerful open
source multimedia framework for creating streaming appli-
cations, used by several corporations as Intel, Nokia, STMi-
croelectronics and many others. It is modular, pipeline-
based and open source. For our experiments we decoded
a movie of 2 hours using Gstreamer on a Linux platform,
with the ffmpeg plugin for video decoding. The execution
trace obtained has a size of 1 Gigabyte. This trace comprises
131, 340 frames, for a total of 5, 120, 973 events.
DVBTest application: It is a test video decoding applica-
tion for STMicroelectronics development boards. This appli-
cation is widely used by STMicroelectronics developers. In
our trace, the application is run on a STi7208 SoC, which is
used in high definition set-top boxes produced by STMicro-
electronics. The execution trace contains both application
events and system-level events. It is generated from a ST40
core of the SoC, which is dedicated to application execution
and device control. This trace has a size of 1.2 Gigabytes,
contains 13, 224 frames for a total of 18, 208, 938 events.

4.2 Comparison of scalability
Fig. 4 reports the wall clock time of the four algorithms
presented in Section 3, when varying the number of frames
given as input. Each point represents the average of 10
executions.
One can notice that both OneStepMultSon and OneStepOne-

Son are always faster than NaiveBaseline and RandomBase-

line. For the GStreamer dataset, both OneStep approaches
are one order of magnitude faster than RandomBaseline and
two orders of magnitude faster than NaiveBaseline. For the
DVBTest dataset, the difference is less important for small
number of frames, but quickly jumps to more than one order
of magnitude for 5, 000 frames. Note that in both datasets,
the baseline approaches could not output results for more
than 5, 000 frames even after more than 10 hours of compu-
tation. This comes from the much bigger search space that
they have to explore. On the other hand both OneStep-

MultSon and OneStepOneSon can output results even for the
131, 340 frames of the GStreamer dataset within 3 hours.
This makes them more suitable for analysis of real traces.

4.3 Comparison of coverage
Fig. 5 shows the coverage of the set of blocks obtained, w.r.t.
the number of frames given as input.
The first observation from the DVBTest dataset is that the
coverage value of the solutions given by all approaches de-
creases with the number of frames given as input. The rea-
son is that we fixed k = 10, which is small and thus prefers
blocks that appear in a many frames, i.e. with large sup-
port. The frames in this dataset tend to have many events
with some variety between the frames, especially because of
system-level events. For small number of frames, interesting
frequent blocks with good coverage can be found. However

1353

101

102

103

104

102 103 104 105

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of frames

Gstreamer Dataset

NaiveBaseline
RandomBaseline
OneStepMultSon
OneStepOneSon

(a) Gstreamer trace

101

102

103

104

105

102 103 104

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of frames

DVBTest Dataset

NaiveBaseline
RandomBaseline
OneStepMultSon
OneStepOneSon

(b) DVBTest trace

Figure 4: Running Time

(a) Gstreamer trace (b) DVBTest trace

Figure 5: Coverage

with more frames, blocks with very high support tend to
have small size and thus bad coverage.
Oppositely, in the GStreamer dataset, there are only appli-
cation level events, leading to frames with less events and
less inter-frame variability. Thus the coverage values for this
dataset stay high whatever the number of frames considered.
When comparing the approaches, one can notice that the
random selection of PatPool in RandomBaseline does not
give good results, as this approach has the lowest coverage
of all. On the other hand, both OneStep approaches achieve
coverage results similar to NaiveBaseline even if they don’t
have access to as many candidate blocks. This validates the
interest of our iterative greedy algorithm approach.
Last, the OneStepOneSon approach, which generates smaller
PatPool than OneStepMultSon, achieves similar coverage re-
sults. This is interesting as it means that few well selected
patterns in PatPool are enough to allow the greedy algo-
rithm to find a good solution, and that the selection of this
pattern can be done with aggressive pruning compared to
traditional pattern mining methods. Overall OneStepOne-
Son is the most interesting tradeoff, as it presents the best
computation time and near best coverage values.

4.4 Practical trace analysis
The previous experiments showed that the methods we pro-
posed can scale to real application traces, and allow to find

most representative blocks. We now present how such blocks
could be of interest for application developers.
A first simple point is information reduction. In the case of
the GStreamer dataset, here reduced to its first 100 frames,
usually a developer would have to analyze manually or with
graphical tools a trace having 3, 915 events. Rewriting this
trace as a sequence using 10-most representative blocks (10-
MRB) extracted by one of our algorithms and special blocks
for regions not covered leads to a trace of 320 blocks, which
gives a 92% reduction factor.
Such rewriting is easier to represent graphically than the
original trace. Consider Fig. 6 which shows a rewriting of
the 50 first frames of the GStreamer dataset. The frames
are the horizontal lines in the picture. Each frame is com-
posed of blocks represented as rectangles, where each of the
10-MRB has a different shade of grey and the parts of the
frame not covered by blocks are in black. The length of a
block corresponds to the number of events of this block. One
can notice that most frames have similar number of events,
except for some of them having more events. A developer
can quickly notice two things with this representation: first,
the regular structure of computation of the frames is exhib-
ited by the regular sequencing of blocks across the frames.
Especially, the middle and end parts of the frames is very
regular and should not require too much attention. Second,
some irregularities can quickly be spotted, either by not cov-
ered parts of the trace or by MR-blocks that do not appear

1354

as often as the others. The developer can quickly check that
these irregularities come mostly at the beginning of frames.
MR-blocks arising in these irregularities can give good hints
of what is going on, and suggest that the irregularities they
participate in are not anomalies but more likely operations
that do not need to appear in all frames. Not covered sec-
tions, on an other hand, may be beneficial for the developer
to investigate.

Figure 6: Global View

Fig. 7 shows a detailed view of the fourth frame, which
has an uncovered region at its beginning. The figure shows
the frame rewritten with MR-blocks. For convenience, the
events have been written inside the blocks on this figure.
The developer can quickly identify in the uncovered region
a rare call to the function gst_ffmpegdec_chain:’resized,
Such call signal that after receiving new data it was nec-
essary to resize the buffer, an operation usually unneeded
as buffers are supposed to be of sufficient size for handling
frame data. Memory operations being critical, the devel-
oper, without looking at the whole frame, immediately knows
that he has to investigate if this buffer resizing caused prob-
lems or not.
To summarize, the MR-blocks allow to rewrite the frame
as a sequence of blocks of limited size, which is much more
manageable that a large sequence of events. Such sequence
of blocks can for instance easily be displayed by graphical
tools, and shows irregular parts of the traces. The developer
can then delve into the analysis of a single frame, and in
last resort to the events arising at some point of this frames,
allowing to quickly pinpoint possible problems.

5. RELATED WORK
The problem we consider falls in two different domains of
Computer Science. The first is Combinatorial Optimisa-
tion, as our problem is a variant of the packing problem.
This problem is of special use in logistics, for example in
order to fill shipment containers with rectangular boxes of
different sizes [3]. This problem has no known general algo-
ritthm for computing either global or local solutions that we
could use in our case. Moreover, in traditional combinato-
rial optimization settings the elements filling the container

Figure 7: Blocks of fourth frame

(i.e. the blocks in our case) are given as input, whereas in
our problem they must be discovered as well.
Our work is closer to Data Mining works where a small set
of patterns best describing the data has to be computed.
Such patterns are often qualified of “useful”, “descriptive”
or “summarizing” patterns. Older approaches are “two-step”
approaches that first compute the complete set of frequent
patterns, then postprocess this set to compute a small set
of descriptive patterns. More recent approches focus on
more efficient “one step” approaches which directely mines
the small set of descriptive patterns. Our OneStepMult-

Son/OneStepOneSon algorithms also follow this approach.
Among existing approaches, high utility pattern mining refers
to the discovery of itemsets with “utilities” higher than a
user-specific minimum utility threshold, where utility is a
numerical value associated to items in input data. Many
studies have been proposed for mining high utility pattern
sets (HUI) in two step as [8,15,17], but recently some works
were proposed to discover HUI without candidate genera-
tion. For instance, J. Liu et. al [9] proposed an efficient
pruning of the search space based on estimated utility val-
ues for itemsets. These techniques focus on itemsets, so they
can not be applied in our setting where the sequencing of
events matters. Some studies have been done to integrate
utility into sequential pattern mining, and the most recent
is USpan [18] which defines the problem of mining high util-
ity sequential patterns, but the approach used is a two-step
approach, which may have difficulties to scale on very large
datasets.
Another trend is to mine “descriptive” or “informative pat-
terns”which are in general small sets of patterns, containing
no redundancy, which describe datasets. Among those are
approaches that return a set of patterns allowing to com-
press maximally the dataset according to the MDL principle
[14] and [12]. Their approaches is of great practical interest,
but compared to our case, the number of desired patterns in
output cannot be specified, and as these approaches do not
take coverage into account they will typically output much
more than the dozen of patterns that a developer accepts to
see.

1355

Our work also falls within the more general problem of analysing
execution traces. Many existing approaches, such as [5,7,10]
need some external information to proceed to trace size re-
duction or pattern extraction. On the other hand, our ap-
proach is purely combinatorial and does not need such in-
formation. It is thus better adapted for a first processing
of unknown traces where no information are available. An-
other point is that many approaches [4,7,11] focus on fre-
quent itemsets as patterns, whereas our approach finds fre-
quent sequences. In multimedia application where a strict
sequencing of processing steps has to be enforced, our ap-
proach is better adapted.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the problem of finding a small set
of representative blocks of events that can maximally cover
an execution trace of a multimedia application. This prob-
lem is a variant of the packing problem, a NP-hard problem
for which no general algorithm is known. We thus present
several greedy approaches, and show experimentally that
our best approaches scale well to real application traces up
to gigabyte size.
We presented a detailed case study on how to analyze a
trace with such representative blocks. Our approach allow
to drastically reduce the quantity of information a devel-
oper has to handle, and is appropriate for graphical visual-
ization. We show with such visualization how a developer
can with few operations spot unusual behaviors in the trace,
and understand the reason of such behavior. We think that
this approach is promising to help application developers in
their everyday debugging or optimization tasks. It is gener-
alizable on other problems such as automatic log analysis or
system events analysis, which do not have equivalent notion
of frames. Indeed, a system events trace can be sliced, for
instance according to the average time of activity of system
components. Thus, a frame in this case is equivalent to the
sequence of events occurred during a specific time period.
We have two research directions. The first one is about the
labeling of blocks: for now blocks are simply sequences of
events, and the developer has to find out himself what is
the block about. Integrating some domain knowledge could
allow for an automatic or semi-automatic method of label-
ing blocks. The second research direction is to extend our
works to the analysis of parallel traces. The sequencing of
events is only important for events having some temporal
dependency. We would like to detect such dependencies, in
order to restrict the covering conditions on blocks to only
such time-dependent events.

7. ACKNOWLEDGEMENTS
This work is supported by French FUI project SoCTrace.

8. ADDITIONAL AUTHORS
Miguel Santana, STMicroelectronics (Crolles,France)
email:miguel.santana@st.com

9. REFERENCES
[1] Gstreamer website. http://www.gstreamer.net.

Accessed:20/02/2013.
[2] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J.

van Wijk, and A. van Deursen. Understanding Execution
Traces Using Massive Sequence and Circular Bundle Views.
15th IEEE International Conference on Program
Comprehension (ICPC ’07), pages 49–58, 2007.

[3] J. Egeblad. Heuristics for Multidimensional Packing
Problems. PhD thesis, University of Copenhagen,
Department of Computer Science, 2008.

[4] A. Hamou-Lhadj and T. C. Lethbridge. A survey of trace
exploration tools and techniques. In Proceedings of the
2004 conference of the Centre for Advanced Studies on
Collaborative research, CASCON ’04, pages 42–55. IBM
Press, 2004.

[5] K. J. Hoffman, P. Eugster, and S. Jagannathan.
Semantics-aware trace analysis. In ACM SIGPLAN
Notices, volume 44, page 453, May 2009.

[6] C. K. Kengne, L. C. Fopa, N. Ibrahim, A. Termier, M.-C.
Rousset, and T. Washio. Enhancing the analysis of large
multimedia applications execution traces with frameminer.
In ICDM Workshops, pages 595–602, 2012.

[7] H. Kim, S. Im, T. Abdelzaher, J. Han, D. Sheridan, and
S. Vasudevan. Signature Pattern Covering via Local Greedy
Algorithm and Pattern Shrink. 2011 IEEE 11th
International Conference on Data Mining, pages 330–339,
Dec. 2011.

[8] Y.-C. Li, J.-S. Yeh, and C.-C. Chang. Isolated items
discarding strategy for discovering high utility itemsets.
2007.

[9] J. Liu, K. Wang, and B. Fung. Direct discovery of high
utility itemsets without candidate generation. In Data
Mining (ICDM), 2012 IEEE 12th International Conference
on, pages 984–989. IEEE, 2012.

[10] H. Pirzadeh and A. Hamou-Lhadj. A Novel Approach
Based on Gestalt Psychology for Abstracting the Content
of Large Execution Traces for Program Comprehension. In
2011 16th IEEE International Conference on Engineering
of Complex Computer Systems, pages 221–230. IEEE, 2011.

[11] H. Pirzadeh, S. Shanian, A. Hamou-Lhadj, and
A. Mehrabian. The Concept of Stratified Sampling of
Execution Traces. In 2011 IEEE 19th International
Conference on Program Comprehension, pages 225–226.
IEEE, 2011.

[12] K. Smets and J. Vreeken. Slim: Directly mining descriptive
patterns. In Proc of the SDM, volume 12, 2012.

[13] B. D. O. Stein. Pajé trace file format. 2003.
[14] N. Tatti and J. Vreeken. The long and the short of it:

Summarising event sequences with serial episodes. In
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
462–470. ACM, 2012.

[15] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu.
Up-growth: an efficient algorithm for high utility itemset
mining. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data
mining, KDD ’10, pages 253–262, New York, NY, USA,
2010. ACM.

[16] Z. Weg and R. Henschel. Introducing OTF / Vampir /
VampirTrace. Memory.

[17] C. W. Wu, B.-E. Shie, V. S. Tseng, and P. S. Yu. Mining
top-k high utility itemsets. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery
and data mining, KDD ’12, pages 78–86, New York, NY,
USA, 2012. ACM.

[18] J. Yin, Z. Zheng, and L. Cao. Uspan: an efficient algorithm
for mining high utility sequential patterns. In Proceedings
of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’12, pages
660–668, New York, NY, USA, 2012. ACM.

[19] J. Zou, J. Xiao, R. Hou, and Y. Wang. Frequent Instruction
Sequential Pattern Mining in Hardware Sample Data. 2010
IEEE International Conference on Data Mining, pages
1205–1210, Dec. 2010.

1356

