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ABSTRACT
Data mining is a crucial tool for identifying risk signals of
potential adverse drug reactions (ADRs). However, mining
of ADR signals is currently limited to leveraging a single
data source at a time. It is widely believed that combining
ADR evidence from multiple data sources will result in
a more accurate risk identification system. We present a
methodology based on empirical Bayes modeling to combine
ADR signals mined from ∼ 5 million adverse event reports
collected by the FDA, and healthcare data corresponding to
∼ 46 million patients—the main two types of information
sources currently employed for signal detection. Based on
four sets of test cases (gold standard), we demonstrate that
our method leads to a statistically significant and substan-
tial improvement in signal detection accuracy, averaging
40% over the use of each source independently, and an
area under the ROC curve of 0.87. We also compare the
method with alternative supervised learning approaches,
and argue that our approach is preferable as it does not
require labeled (training) samples whose availability is
currently limited. To our knowledge, this is the first
effort to combine signals from these two complementary
data sources, and to demonstrate the benefits of a com-
putationally integrative strategy for drug safety surveillance.
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H.2.8 [Database Management]: Database Applications—
Data Mining
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1. INTRODUCTION
After a drug has been approved and is used on large,

diverse populations, and for more varied periods of time,
unanticipated adverse drug reactions (ADRs) may occur,
which alter a drug’s risk-benefit ratio enough to require
remedial action. Post-approval ADRs are a major global
health concern accounting for more than 2 million poten-
tially preventable injuries, hospitalizations, and deaths each
year in the US alone[15, 8], and associated costs estimated
at $75 billion annually[6]. Pharmacovigilance, also known
as drug safety surveillance, refers to the science and activi-
ties relating to the detection, assessment, understanding and
prevention of ADRs in the post-approval period.

Data mining approaches that empower drug safety evalua-
tors to analyze large volumes of data and to identify risk sig-
nals of potential ADRs, have proven to be a critical compo-
nent in pharmacovigilance. Also known as signal detection
methodologies, these data mining approaches are designed
to compute measures of statistical association between pairs
of drugs and clinical outcomes recorded in an underlying
database. In a knowledge discovery scenario, the associa-
tion statistics computed by data mining are interpreted as
signal-scores, with larger values representing stronger asso-
ciations, which are assumed more likely to represent true
ADRs. Rankings of signal-scores or signal-score-thresholds
are then used to flag associations worthy of further expert
evaluation.

The US Food and Drug Administration (FDA) has main-
tained the Adverse Event Reporting System (AERS)[1] since
1968, which to date contains over 5 million spontaneous re-
ports of suspected ADRs collected from healthcare profes-
sionals, consumers, and pharmaceutical companies. Each
report includes one or more adverse events that appear to
be associated with the administration of a drug, as well as
indications and limited demographic information. Sponta-
neous reporting systems such as AERS communicate gen-
uine health concerns, cover large populations, and are gen-
erally accessible for analysis. Since its inception AERS has
supported regulatory decisions for a long list of marketed
drugs[22]. Notwithstanding, AERS suffers from a range of
recognized limitations including: reporting biases, misattri-
bution of causality in reported ADRs, missing and incom-
plete data, duplicated reporting, and lack of true exposure
information[7, 20].

Pharmacovigilance has predominantly relied on sponta-
neous reporting systems such as AERS. However, given their
limitations, and the expanding availability and tremendous
potential of healthcare data to advance pharmacovigilance,
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research efforts are now shifting towards the secondary use
of large healthcare databases[10] such as electronic health
records and administrative claims that typically contain:
time-stamped interventions, procedures, diagnoses, medica-
tions, medical narratives, and billing codes. Unlike spon-
taneous reports, healthcare data reflect ‘real-world’ routine
clinical care recorded over long periods of time. As such,
they contain a more complete record of the patient’s medical
history, treatments, conditions, and potential risk factors.
US Food and Drug Administration Amendments Act of

2007 requires the FDA to develop a national system for mon-
itoring medical product safety based on diverse healthcare
data[2]. In 2008 the FDA launched the Sentinel Initiative[16]
to meet this requirement. As part of this effort the Obser-
vational Medical Outcomes Partnership (OMOP)[19, 18, 4]
was established to conduct methodological research to sup-
port the development of a national risk identification and
analysis system, and a similar research initiative called the
EU-ADR project was initiated in Europe[9].
The FDA routinely applies data mining to AERS in order

to monitor and identify new safety signals of ADRs that war-
rant further attention. Similar surveillance strategies can be
applied to healthcare data as demonstrated through pilot
studies by the OMOP and the EU-ADR project. Although
both AERS and healthcare data present unique challenges
in its use, a common belief is that they may complement
each other along several dimensions that will improve phar-
macovigilance.
This paper presents a methodology to combine signals

generated from spontaneous reports and healthcare data,
and importantly aims to demonstrate that signal detection
accuracy can be improved by such an integrative strategy.
To our knowledge, this work is the first to explicitly and
computationally combine signals from the two sources. We
further argue that the proposed methodology is preferable
to alternative approaches based on supervised learning that
may be employed.
The proposed methodology draws parallels from statisti-

cal meta-analysis, and is based on empirical Bayes model-
ing where ADR signal-scores mined from each data source
are modeled concomitantly using a Bayesian two-stage nor-
mal/normal model whose two hyper-parameters are esti-
mated from the data using the expectation maximization
(EM) algorithm. The output of the method is compos-
ite (combined) signal-scores consolidating the statistical ev-
idence supplied by the source-dependent signal-scores. The
methodology is applied to signals mined from ∼ 5 million
public domain AERS reports, and healthcare data corre-
sponding to ∼ 46 million patients captured in the ‘OMOP
results set’. The performance of the method (i.e., the signal
detection accuracy of the combined signal-scores) is mea-
sured based on a validated gold standard created by the
OMOP, totaling 380 positive and negative ADR test cases,
and spanning four clinical outcomes.
The remainder of the paper is organized as follows: Sec-

tion 2 provides background on signal detection methodolo-
gies and the specific methods used in this paper. Section 3
presents the proposed method to combine signals. Section 4
describes the experiments performed including data sources
and the evaluation process. Section 5 provides the results
and discussion, and Section 6 presents the conclusion. The
term “signal-score” (or just signal) will be used to refer to
a statistic that represents the strength of statistical associ-

Table 1: Contingency table used to compute associ-
ation statistics for SRS-based signal detection

reports reports
w outcome wo outcome

reports w drug a b
reports wo drug c d

Each cell contains report counts. Reports are assigned to cells

based on whether they contain a specific drug and outcome. The

table must be computed for every drug–outcome combination

being considered.

ation between a drug-outcome combination recorded in an
underlying database.

2. MINING ADR SIGNALS
Due to inherent differences between spontaneous report-

ing systems (SRS) and healthcare databases, different data
mining (signal detection) approaches are usually applied to
each.

2.1 Mining Signals from SRS
Currently, the main driving force behind SRS-based sig-

nal detection is an approach referred to as disproportional-
ity analysis, which aims to quantify the degree to which a
reported drug-outcome combination co-occurs in the data
“disproportionally” as compared with what would be ex-
pected if there were no statistical association between the
drug and the outcome. All signal detection methodologies
based on disproportionality analysis use the entries of Table
1 (or stratified versions thereof) to derive surrogate measures
of statistical association. The table is computed for every
drug-outcome combination being considered. The method-
ologies may differ with respect to the exact association mea-
sure that is used and the statistical adjustments that may
be applied to the measure. The most widely cited measure
is the relative reporting ratio (RRR), defined as the ratio
between the number of reports in a SRS mentioning a spe-
cific drug-outcome combination to an expected number of
reports under the assumption that the drug and outcome
occur independently. The expected number of reports is
calculated using all the reports in the SRS mentioning the
drug or outcome as a proxy for the true value. Specifically,
based on Table 1

RRR =
(a+ b+ c+ d)(a)

(a+ b)(a+ c)

where Pr(outcome|drug)/Pr(outcome) can be viewed as the
probabilistic interpretation of RRR. A RRR=3, for example,
would indicate that there are three times as many sponta-
neous reports mentioning a specific drug-outcome combina-
tion than would be expected by chance, which in turn may
support the hypothesis of an ADR relationship between the
drug and outcome. A true value of RRR close to 1 supports
the hypothesis that there is no association between the drug
and outcome.

The Multi-item Gamma Poisson Shrinker (MGPS)[12]
used in this work to generate signals from AERS, is a leading
SRS-based signal detection algorithm, which has been en-
dorsed by the FDA as well as other regulatory agencies and
pharmaceutical companies world-wide. MGPS computes a
Bayesian regularized and stratified RRR designed to guard
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against false positive signals due to sampling variance, as
well as account for biases due to temporal reporting trends
and confounding by age and sex. It uses a Gamma-Poisson
model to compute a centrality measure of the posterior dis-
tribution of the true RRR in the population. The measure
is called empirical Bayes geometric mean (EBGM), and can
be interpreted as the observed stratified RRR shrunken to-
wards a prior when less data is available about the specific
drug-outcome association being estimated. The prior is as-
sumed to follow a bimodal Gamma distribution that models
the RRRs of all distinct drug-outcome combinations in the
SRS.
Drugs in AERS are entered verbatim, but are then usu-

ally mapped to their generic names or their active ingre-
dients. Outcomes in AERS are coded using MedDRA[3]
(a controlled vocabulary developed for ADR applications)
usually at the ‘preferred term’ level of the MedDRA hierar-
chy. AERS currently includes about 4,000 mapped drugs,
about 15,000 MedDRA preferred terms, and about 5 mil-
lion distinct drug-outcome combinations appearing at least
once that may be considered for analysis and for which as-
sociations statistics need to be computed. Signal detection
methods such MGPS are usually applied to compute asso-
ciations for all reported drug-outcome combinations in the
SRS, typically on a quarterly basis whenever a new batch of
spontaneous reports becomes available.

2.2 Mining Signals from Healthcare Data
Unlike SRS that are oriented towards pharmacovigilance,

the secondary use of healthcare data requires special care
to properly account for potential confounding biases (e.g.,
pre-existing risk factors) that may distort the estimation of
a drug-outcome association. Although methods originally
developed for SRS may be applied, an alternative class of
approaches that are better equipped to deal with confound-
ing is usually employed. This class of approaches is based
on epidemiologic study designs that aim to control con-
founding by seeking to ensure that the two groups of sub-
jects used to study an association (e.g., exposed/unexposed,
cases/controls) are comparable with respect to potential
confounding factors, which therefore cannot be the reason
for an association. Another key distinguishing feature of this
class of methods is their systematic use of temporal infor-
mation, which is generally unavailable in SRS. The temporal
information is used to establish various time frames, known
as surveillance windows, drug/condition eras, or hazard pe-
riods, which are used to identify and count drug and out-
come co-occurrences used in subsequent calculations, e.g.,
number of outcomes recorded within 30 days of drug expo-
sure. Each method belonging to this class follows a different
analytic paradigm and has multiple parameter settings cor-
responding to various study design choices, such as: length
of surveillance window, type of comparator group, counting
strategy, and confounding adjustment strategy.
Observational Screening (OS)[4] is a method developed by

the OMOP that was used in this work to compute signals
from healthcare data. Its preference over other methods will
be made clear in Section 4.2 (greater signal detection accu-
racy). Under the parameter setting used in this work, OS
represents a ’self-controlled’ study design, wherein subjects
serve as their own controls by comparing outcome rates for
periods when a subject is exposed to a drug to periods when
the subject is unexposed to the drug. Therefore, implicitly

controlling for all time-invariant and subject-invariant con-
founders (e.g., comorbidities, smoking status, and chronic
use of drugs) without the need for the confounders to be
identified and measured. The core measure calculated by
OS is a Screening Rate (SR) defined as

SR =
# of outcomes

Total Time at Risk

The ‘Time at Risk’ for a drug is the length of exposure to
the drug and an additional time period added to the end
of the exposure (in this work Time at Risk=length of expo-
sure+30 days). The ‘Total Time at Risk’ is an accumulated
Time at Risk over all exposures. The number of outcomes
counted towards SR is a count of outcomes occurring during
the Time at Risk. The association statistic output by OS is
a Screening Rate Ratio (SRR), defined as

SRR =
SR of exposed group

SR of unexposed group

In this case (self-controlled design) the SR of the un-
exposed group is calculated by specifying a Time at
Risk period prior to each drug exposure, whose length is
the same as for the exposure period, and counting out-
comes during that period. Fig. 1 provides an illus-
tration of the components used in the calculation per-
formed by OS for a specific drug-outcome pair and a pop-
ulation consisting of two patients. In this example ‘SR
of exposed group’=(1+1+2)/(2+3+5), ‘SR of unexposed
group’=(0+1+1)/(2+3+5), and SRR=(4/10)/(2/10)=2.

Figure 1: Illustration of the components used in the
calculation performed by the Observation Screening
signal detection method.

Regardless of the method or data source used, the out-
put of a signal detection method for a specific drug-outcome
pair is an association statistic (e.g., SRR, EBGM), and its
lower and upper bound confidence interval (or alternatively
its variance). The lower bound association statistic is often
used as a signal-score instead of the point estimate as a sug-
gested adjustment to reduce false signaling. A more detailed
overview of pharmacovigilance data mining approaches can
be found in ref. [14].

3. COMBINING ADR SIGNALS

3.1 Empirical Bayes
The empirical Bayes approach (EB) is often viewed

as a compromise between classical (frequentist) and fully
Bayesian approaches to statistical inference, borrowing ideas

1341



from each. EB starts by specifying a hierarchical model as
do all Bayesian techniques. Hierarchical models in turn de-
pend on a sequence of priors that must stop at some point
with the remaining prior parameters assumed known. This
is where EB separates from the fully Bayesian approach.
Rather than assuming and specifying these final-stage prior
parameters, the EB approach uses the observed data to es-
timate these parameters, and then proceeds as though they
were known substituting them into the original Bayes quan-
tities. This attribute was the main reason for employing EB
in the current application. Namely, enjoying the flexibility
and benefits of Bayesian modeling, but not having to spec-
ify prior parameters, which in the current application would
have been based on nothing other than a “good guess”.

3.2 The Bayes Model to Combine Signals
Suppose we have J pairs of signal-scores, where each pair

corresponds to a unique drug-outcome association and each
element in the pair corresponds to a signal originating from
a different data source (e.g., AERS or healthcare data) that
is computed by a possibly different signal detection method.
The signals need not be based on the same statistic but
are on approximately the same scale, and are assumed log-
normally distributed.
Let yjk denote the log of the jth signal-score computed

from the kth data source, where j = 1, . . . , J and k =
1, . . . ,K. Further, let s2jk = Var(yjk) be the accompany-
ing observed variance of each signal-score, computed along
with the signal. The goal is to estimate the unknown pa-
rameter µj denoting the combined (composite or pooled)
signal-score of the jth drug-outcome association, by observ-
ing Y = { yjk } and S = { s2jk }. In the current application
K = 2, but we use a more general formulation to emphasize
that the framework allows for more than just two sources to
be considered without a need to modify the methodology.
The two-stage hierarchical model describing Y and used

to estimate µj is given by

yjk ∼ N(µj , s
2
jk) (1a)

µj ∼ N(θ, τ2) (1b)

where θ, τ2 are hyper-parameters to be estimated from the
data (discussed below). The model assumes that each tuple
of observed signal-scores (yj1, . . . , yjK) are random mani-
festations of normal process centered around the true but
unknown combined signal-score µj , which itself is normally
distributed (prior) around θ—a grand mean allowing for J
related signals (e.g., signals related to the same clinical out-
come) to borrow statistical support from one another.
Based on Eq. 1 the goal can be stated as com-

puting the posterior distribution µj |Y, S, θ, τ2 and using
E[µj |Y, S, θ, τ2] as the estimate of µj . Further, according
to Eq. 1 the joint density (data likelihood) is given by

f(Y,µ|θ, τ2, S) =

J∏
j=1

K∏
k=1

N(yjk|µj , s
2
jk)

J∏
j=1

N(µj |θ, τ2) (2)

We denote by ȳj a statistic that is meant to summarize the
information (signal-scores) provided by each data source for
a given drug-outcome association, and consider two common

possibilities

ȳj =
K∑

k=1

yjk/K with s2j = Var(ȳj) =
K∑

k=1

s2jk/K
2 (3a)

ȳj =

∑K
k=1 yjk/s

2
jk∑K

k=1 1/s
2
jk

with s2j = Var(ȳj) =

∏
k s

2
jk∑

k s
2
jk

(3b)

The summary statistic provided in Eq. 3(a) assumes that
the information contributed by each data source is weighted
equally, whereas 3(b) assumes that the contribution is pro-
portional to the uncertainty (variance) associated with the
signal-score supplied by each data source, i.e., more weight
is assigned to a signal whose variance is smaller.

Having defined ȳj (whether based on Eq. 3(a) or Eq.
3(b)) we approximate the joint density given in Eq. 2 by

f(Y,µ|θ, τ2, S) =

J∏
j=1

N(ȳj |µj , s
2
j )N(µj |θ, τ2) (4)

Based on Eq. 4 it can be shown[13] that the posterior
distribution of interest is

µj |Y, S, θ, τ2 ∼ N(Bj ȳj + (1−Bj)θ,Bjs
2
j ) (5)

where

Bj =
τ2

τ2 + s2j

Therefore, our estimate of µj is given by

µ̂j = E[µj |Y, S, θ, τ2] = Bj ȳj + (1−Bj)θ (6)

Eq. 6 shows that the estimated combined signal-score of
the jth drug-outcome association equals a weighted average
of the prior mean θ and the statistic ȳj summarizing the
signal-scores (yj1, . . . , yjK). The weights Bj and (1 − Bj)
are functions of the uncertainty (variance) associated with
the two weighted extremes. That is, when the summary
statistic ȳj has smaller variance (s2j ) more weight will be put
on ȳj . Conversely, larger uncertainly will shrink ȳj towards
the prior mean θ . In this way, we are not only pooling
associations across data sources, but are also allowing for
the pooled signals µj to “borrow strength” from each other
within similar groups to provide potentially more accurate
estimates. This borrowing of strength is especially useful,
as discussed later, when estimating ADR signals related to
the same outcome or drug class.

3.3 Estimating the Hyper-parameters
To apply Eq. 6 we need to estimate the hyper-parameters

θ and τ2. Conditioned on µj the observations ȳj are inde-
pendently distributed. Based on this, the empirical Bayes
approach uses the marginal likelihood in Eq. 7 to estimate
the hyper-parameters θ, τ2 of the model.

J∏
j=1

f(ȳj |θ, τ2, s2j ) =

J∏
j=1

∫
N(ȳj |µj , s

2
j )N(µj |θ, τ2)dµj

=

J∏
j=1

N(ȳj |θ, τ2 + s2j ) (7)

Because a closed form solution does not exist, we use the
EM algorithm to obtain the maximum likelihood estimates
of θ, τ2 in Eq. 7. The EM algorithm, which in this situation
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offers a relatively simple alternative to other optimization
techniques, can be applied by considering µj as a latent or
missing variable, Eq. 7 as a missing-data likelihood, and
Eq. 4 as the complete-data likelihood. Dempster et al. [11]
showed that when the distribution of the complete-data
(e.g., Eq. 4) belongs to an exponential family, or alter-
natively when the complete-data log-likelihood is linear in
some sufficient statistic T (as in this case), then the E-step
in the EM algorithm reduces to computing the posterior
conditional expectation of T given the observed data,
and the M-step reduces to substituting the expectation
computed in the E-step in the expression for the complete-
data maximum likelihood of the parameters to estimate.
Therefore, given that T1 =

∑
j µj and T2 =

∑
j µ

2
j are

sufficient statistics for θ and τ2 respectively, and using t
to index the current iteration, the EM steps can be stated as:

E-step:

T
(t)
1 = E

[
J∑

j=1

µj |Y, S, θ(t), τ (t)

]
(8a)

=
J∑

j=1

[
B

(t)
j ȳj + (1−B

(t)
j )θ(t)

]

T
(t)
2 = E

[
J∑

j=1

µ2
j |Y, S, θ(t), τ (t)

]
(8b)

=
J∑

j=1

[
B

(t)
j ȳj + (1−B

(t)
j )θ(t)

]2
+

J∑
j=1

B
(t)
j s2j

M-step:

θ(t+1) =
T

(t)
1

J
(9a)

τ2(t+1)

=
T

(t)
2

J
− θ(t+1)2 (9b)

To summarize, the whole process for estimating the com-
bined signal-scores µ̂j , j = 1, . . . , J , requires iteratively com-
puting Eqs. 8–9 until convergence, and substituting the final
estimates θ̂, τ̂2 into Eq. 6. Crude estimates for θ and τ that
can be used to seed/initialize the EM algorithm are given
by:

θ̂ =
1

J

J∑
j=1

ȳj (10a)

τ̂2 =
1

J

J∑
j=1

[
(ȳj − θ̂)2 − s2j

]
(10b)

Having estimated µ̂j , lower bound signal-scores can be com-
puted using the posterior variance Bjs

2
j given in Eq. 5, e.g.,

µ̂j − Zα

√
Bjs2j .

Table 2: Distribution of OMOP test cases used in
the evaluation

Positive Negative
Outcome Cases Cases Total
Acute Renal Failure 22 58 80
Upper GI Bleed 24 66 90
Acute Liver Injury 77 36 113
Acute Myocardial Infarction 34 63 97
Total 157 223 380

4. EMPIRICAL ASSESSMENT

4.1 Gold Standard
The proposed methodology was evaluated on the basis of

its ability to correctly signal (classify) a total of 380 posi-
tive and negative test cases (drug-outcome pairs), which are
part of a gold standard created and thoroughly validated
by the OMOP, and for which both AERS and healthcare
data was available. Positive test cases are true ADR asso-
ciation asserted from drug labeling (mention of an outcome
as an adverse reaction) and/or prior published research sug-
gesting an association. Conversely, negative test cases are
associations that lack this level of evidence in their label-
ing or the literature. The entire gold standard includes
181 drugs and is divided into four sets each associated with
a unique outcome—acute myocardial infarction, acute
renal failure, acute liver injury, and upper gastroin-
testinal bleeding, which represent four of the most signif-
icant and actively monitored drug safety outcomes[21]. A
cross tabulation of the test cases by outcome is provided in
Table 2.

4.2 Healthcare Data
The ‘OMOP results set’ is based on five medical databases

comprised of administrative claims and electronic health
records, which reflect the healthcare experience of about 74
million patients. To each of these databases the OMOP ap-
plied seven unique and commonly used methods to compute
signal-scores of each drug-outcome pair in their gold stan-
dard. Each method follows a different analytic paradigm
and has multiple parameter settings, as described in Sec-
tion 2.2. In total, the OMOP results set contains ∼6 million
signal-scores (and associated statistics) representing every
combination of database, method, parameter setting, and
drug-event pair in the gold standard. The result set is pub-
licly available at http://omop.fnih.org/research.

As the set of signal-scores used in our evaluation, we
selected from the OMOP results set signal-scores corre-
sponding to the largest database—‘MarketScan Commercial
Claims and Encounters’, which contains claims data corre-
sponding ∼46 million patients and is abbreviated–CCAE.
The signals were computed by the OS method (parameter
setting referenced by Analysis-ID: 403002), which uniformly
provided the best diagnostic accuracy across the four out-
comes given data from CCAE, and explains the preference
of the OS method over other methods (Section 2.2).

4.3 AERS Data
Using the public-release version of AERS we extracted

a total of 4,784,337 spontaneous reports covering the pe-
riod from 1968 through 2011Q3. The data was preprocessed
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(as suggested in the literature) to remove duplicate reports
and correct terminological errors. To facilitate interoper-
ability of terms and definitions used to describe drugs and
outcomes in AERS and the OMOP results set, we mapped
drug names in AERS to their ingredient level specification.
MedDRA preferred terms used to specify outcomes in AERS
were mapped to the four outcomes in the gold standard us-
ing broad MedDRA group definitions supplied by OMOP.
The preprocessed AERS data was then loaded into the Em-
pirica Signal V7.3 system (ESS)—a drug safety data mining
application from Oracle Health Sciences[5].
Within ESS we applied the Multi-item Gamma Poisson

Shrinker (Section 2.1) based on its standard parameter set-
tings to generate signal-scores for each of the 380 tests cases
in the gold standard.

4.4 Evaluation
Given pre-computed AERS and healthcare signal-scores

corresponding to each of the 380 test cases, the proposed
methodology to combine the signal-scores was applied in-
dependently to each of the four outcome sets of test cases.
That is, each outcome was modeled separately—assuming
that signals associated with the same outcome are statis-
tically related and can therefore borrow support from each
other, but are unrelated to signals associated with other out-
comes and should not borrow support from them.
Based on OMOP’s set of test cases, the performance (sig-

nal detection accuracy) of the resulting system (combined
signal-scores) was compared against the performance of sig-
nals generated by each data source independently. Per-
formance was measured using the threshold-independent
measure—area under the receiver operating characteristic
(ROC) curve (AUC), which is the most widely used index
for measuring diagnostic accuracy.
The methodology was also compared against linear and

non-linear supervised classification/prediction algorithms as
potential competing approaches to combine signals. These
can be applied by treating the signal-scores y1, y2 as two
features/predictors, interpreting the decision/predicted val-
ues as combined signal-scores, and by using subsets of the
OMOP test cases as training and testing samples. In this ap-
plication, a linear classifier will have the form f(w0+w1y1+
w2y2), where f is a strictly monotonic function that maps
a linear combination of signal-scores to a decision/predicted
value. Since a ROC curve is invariant to monotonic trans-
formations,

AUC (f(w0 + w1y1 + w2y2))

=AUC(w0 + w1y1 + w2y2)

=AUC(w1y1 + w2y2)

=AUC(y1 + wy2)

Therefore,

max
−∞<w<∞

AUC(y1 + wy2) (11)

is an upper bound to the AUC attainable by any specific
linear classifier. So instead of evaluating a specific set of
linear classifiers (e.g., logistic regression, LDA, perceptron,
linear SVM) we cast our evaluation to computing the AUC
in Eq. 11, and refer to the hypothetical method producing
this AUC as the“Optimal Linear Classifier”. The maximiza-
tion of Eq. 11 was performed using a 1D grid search (in-
tervals=0.01, -10<w<10). Because the same generalization

does not hold for non-linear classifiers we used the radial ba-
sis kernel SVM (in the e1701 R package) as a representative.
Both approaches were evaluated using 5-fold cross-validation
based on class-stratified samples. The results were averaged
to produce a single AUC.

5. RESULTS & DISCUSSION
The main results of our evaluation are summarized in Ta-

ble 3, which displays a comparison of AUC-based signal de-
tection accuracy across the data sources/methods evaluated.
We define ‘Relative Improvement’ as

AUC(Combined)−max(AUC(AERS),AUC(Healthcare))

1−max(AUC(AERS),AUC(Healthcare))
(12)

i.e, the proportion of error reduction gained by using the
combined signal-scores over the better performing individual
data source signal-scores.

Overall, Table 3 demonstrates that combining signals
across AERS and healthcare data using the proposed
methodology leads to an overall substantial improvement.
The results also demonstrate that the improvement is repli-
cated across analysis of different outcomes. Since the
method is unlikely to transform two strong signals into a
weak signal, nor is it expected to transform two weak signals
into a strong composite signal, the success of the method can
be linked to cases where the two data sources provide incon-
sistent or conflicting statistical information that is resolved
by the method’s ability to consolidate statistical informa-
tion. The table also shows that the performance of signal
detection varies across outcomes—supporting the design and
modeling decision to treat each outcome separately. The rel-
ative improvement ranges from 20% for the outcome–acute
myocardial infarction, to an improvement of 56% for acute
renal failure, with an average improvement of 40%. Signal
detection accuracy ranges from AUC=0.76 for acute myocar-
dial infarction to AUC=0.94 for acute renal failure, with an
average AUC=0.87—a level of accuracy considered sufficient
in other widely used clinical diagnostic tests (e.g., prostate
cancer, and breast cancer)[18]. Similar performance pat-
terns were observed (not displayed) when using the lower
bound signal-scores (Section 2), with performance ranging
from AUC=0.78 (myocardial infarction) to AUC=0.96 (re-
nal failure), and an improvement ranging from 9% (myocar-
dial infarction) to 62% (acute renal failure).

The summary statistic ȳj underlying the results displayed
in Table 3 is the one proposed in Eq. 3(b) (inverse-variance
weighting), as it resulted in greater signal detection accuracy
than the alternative possibility (equal weighting of the data
sources), which averaged a 35% improvement over each data
source . We note however that this type of weighting (Eq.
3(b)) could pose a problem when one of the data sources be-
ing considered is much larger than the others, in which case
it may dominate the weighting for certain associations. We
also note that using µ̂j as the combined signal-score resulted
in greater accuracy by an average of 5% over using just ȳj
(also a possibility), showing that the modeling approach, the
notion of Bayesian shrinkage and that of allowing signals to
borrow support from each other, is beneficial.

To test if the improvements were statistically significant
we computed a one-sided p-value for the hypothesis that
the difference between the performance (AUC) of the com-
bined signals and those of the individual data sources was is
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Table 3: Comparison of signal detection accuracy based on AUC
Optimal Non-

Relative Linear Linear
Outcome AERS Healthcare Combined Improvement Classifier SVM
Acute Renal Failure 0.86 0.81 0.94 56% 0.96 0.95
Upper GI Bleed 0.89 0.73 0.94 49% 0.95 0.86
Acute Liver Injury 0.70 0.76 0.85 37% 0.83 0.76
Acute Myocardial Infarction 0.64 0.70 0.76 20% 0.68 0.64
Average 0.77 0.75 0.87 40% 0.85 0.81

AERS, Healthcare: AUC of signal-scores generated from AERS and healthcare data independently. Combined: AUC of the combined

signal-scores generated using the proposed method. Last two columns: AUC of two potentially competing methods to generate

combined signal-scores.

greater than 0. The tests were computed using the R pack-
age pROC[17], which uses a non-parametric test for corre-
lated ROCs or bootstrapping. To ensure the p-values were
computed based on a large enough sample of signal-scores,
and to get a single answer representing all outcomes, we
pooled the signal associated with each outcome into a single
set of signal-scores, producing three sets of signals-scores
for the three signal detection approaches that were tested
against each other. The p-value for the difference between
the combined signals and those of AERS was 0.001, and
for healthcare was 5.9e-08, demonstrating that the improve-
ments were statistically significant at the standard levels
commonly used (e.g. p-value<0.05).
Given that there are currently no pharmacovigilance

guidelines recommending appropriate thresholds or appro-
priate sensitivity-specificity tradeoffs, we do not provide
threshold-dependent performance metrics, as those would
currently carry little value. Nonetheless, the information
provided through Fig. 2—a comparison of ROC curves—
may be used as a substitute from which point-wise perfor-
mance values may be extracted. Importantly, Fig. 2 depicts
a general pattern of containment between the ROC curves
of the combined signal-scores and those of the individual
sources (with the exclusion of acute myocardial infarction),
suggesting that the combined signal-scores provide greater
accuracy at any single point of sensitivity, specificity, or
signal-threshold that may be chosen in practice. It appears
that for the case of myocardial infarction a lower tolerance
for false positives will lead at a certain point to no improve-
ment over the healthcare-based signal-scores. However, for
the region of false positive rates likely to be tolerated in
practice (discussed next) the performance of the combined
signal-scores for acute myocardial infarction is still greater.
The partial-AUC is often used as an alternative measure

to the full AUC when the goal is to consider only certain
ranges of sensitivity or specificity which are deemed clini-
cally relevant. The partial-AUC is simply the area under a
portion of the ROC curve, often defined as the area between
two false positive rates. A partial-AUC at 0.3 false positive
rate (PAUC30), i.e., partial-AUC when specificity>0.7, has
been previously suggested as a potential region of clinical rel-
evancy for signal detection assessment[18]. Table 4 provides
a comparison of signal detection accuracy among the indi-
vidual and combined signal-scores based on PAUC30. The
table shows that also in this restricted ROC space the pro-
posed method provides greater accuracy across all outcomes,
and similar levels of improvement, averaging 33%. The rel-
ative improvement is defined as for the full AUC, but in this
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Figure 2: ROC curves of signal-scores generated
from AERS, healthcare data, and the combined
methodology.

case the largest possible AUC is 0.3 so the denominator in
Eq. 12 is changed accordingly (0.3 replaces the value 1).
The p-values for the partial-AUC improvement (computed
as for the full AUC) over AERS and healthcare were 0.001
and 2.171e-09 respectively.

Another important finding demonstrated through Table
3 is that the performance of the proposed methodology is
comparable and on average slightly better than the poten-
tially competing classification/prediction algorithms evalu-
ated, which unlike the proposed methodology require labeled
examples to train (fit) a model. Given the difficulty associ-
ated with identifying large sets of drug-outcome pairs with
validated causative relationships that would be necessary to
apply these alternative methods, we argue that approaches
such as the proposed, that may be perceived as unsupervised
learning, would be advantageous.

Similar to other applications that require optimization,
the success of the proposed methodology depends on the
ability of the EM algorithm to identify the correct solu-
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Table 4: Comparison of signal detection accuracy
based on partial-AUC at 0.3 false positive rate

Relative
Outcome AERS Healthcare Combined Improv.
ARF 0.17 0.17 0.24 51%
GIB 0.22 0.07 0.25 39%
ALI 0.12 0.16 0.20 34%
AMI 0.09 0.06 0.11 10%
Avg. 0.15 0.11 0.20 33%

ARF: acute renal failure, GIB: upper gastrointestinal bleeding

ALI: acute liver failure, AMI: acute myocardial infarction.

tions (hyper-parameters of the model) and on its conver-
gence properties. Fig. 3 displays the solution spaces (sur-
face plots) of the hyper-parameters θ, τ to be estimated
by the EM algorithm for each outcome. The figure sug-
gests that the solution space is concave across all outcomes,
and therefore that the solutions identified by the EM al-
gorithm should correspond to a global maxima, and also
should not be sensitive to the initial EM values (the concav-
ity of the solution space is data dependent and cannot be
proved analytically). Using arbitrary initial EM values set
to θ = 0, τ = 1, Fig. 4 demonstrates that convergence is
rapid, with at most 11 steps required to arrive at a solution
(convergence tolerance=10−9). Although convergence does
not appear to be an issue with the current data, using the
initial EM values suggested in Eq. 10 resulted in a faster
convergence by a factor of almost 2.

−2 −1 0 1 2

1

2

3

Acute Renal Failure

−2 −1 0 1 2

1

2

3

GI Bleed

−2 −1 0 1 2

1

2

3

Acute Liver Injury

−2 −1 0 1 2

1

2

3

Acute Myocardial Infarction

Figure 3: Surface plots of the hyper-parameters’
(θ, τ) solution space, estimated by the EM algorithm.
The color pallet and contours reflect varying values
of log likelihood with ‘hotter’ colors corresponding
to larger likelihood.
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Figure 4: Convergence of the EM algorithm used to
estimate the hyper-parameters θ, τ for each outcome.

6. CONCLUSION
The synthesis of evidence from multiple streams of infor-

mation has been an integral part of pharmacovigilance. Yet,
it is currently carried out by human experts on an ad hoc
basis, in a rather qualitative manner, and usually after a
signal is generated. Most signal detection strategies are cur-
rently based on data associated with a single source. Given
the relative maturity of surveillance based on spontaneous
reporting, the recent progress made in the use of healthcare
data, and the expectation that the two sources may com-
plement each other along different dimensions, it appears
that the time is ripe to consider computational approaches
to combine information from these two types of information
sources and possibly other sources.

This paper presents the first effort to explicitly and com-
putationally combine ADR signals from spontaneous report-
ing systems and healthcare data to improve the accuracy of
uninformed hypothesis-free signal detection. Improving the
accuracy of ADR signal detection is paramount to data min-
ing for pharamcovigilance.

The methodology was applied to signals generated by es-
tablished methods from two large databases of high qual-
ity, and is evaluated using a large thoroughly validated gold
standard; thus minimizing concerns related to the reliability
of data and resources used in this work. Through different
analyses we demonstrated that the proposed methodology
leads to a statistically significant and substantial improve-
ment of signal detection accuracy over the use of each source
independently. We also showed that the improvement is
replicated over analysis of different outcomes, and therefore
may generalize to other clinical outcomes. The methodology
is relatively simple and efficient to compute, and is gener-
alizable to the inclusion of additional data sources with no
modification. Its performance was shown to be compara-
ble to alternative approaches based on supervised learning,
which unlike our approach, have the limitation of requiring
labeled training samples, whose availability is limited. The
methodology can be used to analyze specific outcomes, or it
can be used as an add-on to routine data mining runs cur-
rently performed by various organizations that have access
to both types of data sources, e.g., the FDA through the sen-
tinel network. The public availability of SRS such as AERS
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also make this methodology available to a wider range of
entities that specialize in, and process, large quantities of
healthcare data.
Finally, it is possible that the use of different combina-

tions of data and signal generation algorithms will lead to
different performance characteristics or possibly a different
conclusion. Therefore further research is needed to fully un-
derstand the dependence of the performance, and the suc-
cess of the paradigm, on the variety of data and methods
that can be used. Likewise, additional research is required
to investigate methodological extensions and the potential
inclusion of other healthcare databases into the framework.
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