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ABSTRACT

Recent advances in smart metering technology enable util-
ity companies to have access to tremendous amount of smart
meter data, from which the utility companies are eager to
gain more insight about their customers. In this paper, we
aim to detect electric heat pumps from coarse grained smart
meter data for a heat pump marketing campaign. However,
appliance detection is a challenging task, especially given a
very low granularity and partial labeled even unlabeled data.
Traditional methods install either a high granularity smart
meter or sensors at every appliance, which is either too ex-
pensive or requires technical expertise. We propose a novel
approach to detect heat pumps that utilizes low granularity
smart meter data, prior sales data and weather data. In par-
ticular, motivated by the characteristics of heat pump con-
sumption pattern, we extract novel features that are highly
relevant to heat pump usage from smart meter data and
weather data. Under the constraint that only a subset of
heat pump users are available, we formalize the problem into
a positive and unlabeled data classification and apply biased
Support Vector Machine (BSVM) to our extracted features.
Our empirical study on a real-world data set demonstrates
the effectiveness of our method. Furthermore, our method
has been deployed in a real-life setting where the partner
electric company runs a targeted campaign for 292,496 cus-
tomers. Based on the initial feedback, our detection algo-
rithm can successfully detect substantial number of non-heat
pump users who were identified heat pump users with the
prior algorithm the company had used.
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1. INTRODUCTION

Recently smart metering infrastructure is being rapidly
deployed in the United States and elsewhere. Smart meter
data mining and related data management system have been
popular in data management [13, 21, 26, 31] and data mining
communities [14, 7, 28], e.g., energy disaggregation [14, 24],
power theft detection [3, 20], etc. The smart meter data
investigated therein is typically fine grained with a relatively
small scale.

Unlike the studies in research communities, utility com-
panies are the major entities that have access to tremendous
amount of smart meter data. They are eager to utilize the
data to know more about their customers. A typical exam-
ple originates from marketing perspective, in which utility
companies aim to detect a particular appliance. The reason
is that many electric companies run various energy efficient
marketing campaigns and try to encourage their customers
replace inefficient appliances with more efficient alternatives.
In general, marketing departments of the electric companies
are required to run these campaigns through various com-
munication channels such as bulk mail, direct phone calls,
and so forth. However, the cost of reaching out to their large
customer pool is significant. For instance, there are over 3
million household in Los Angeles, California. A rough cost
per a bulk mail campaign is close to 1 USD (0.60 USD for
a bulk mail and 0.40 USD for printing, sorting, and other
labor cost), which costs more than 3 million USD for each
marketing campaign. This type of campaign can run more
efficiently if the electric companies could identify target cus-
tomers who own and operate targeted appliances.

A fundamental functional block for the above example is
an effective appliance detection algorithm. There are numer-
ous methods that have been introduced by research commu-
nities [21, 28, 31]. However, the existing algorithms and
approaches rely on special sensors at every device or a sin-
gle sensor at power outlet [21]. For example, Weiss et al.
[31] designed a system in which smart meter data sampled



at high frequency (1 hz), an appliance signature database
and a single sensor monitoring the state of household cur-
rent are integrated to disaggregate the total consumption
into appliance level. Srinivasan et al. [28] applied several
classifiers, e.g. Neural network and support vector machine
to uniquely identify various types of devices using their dis-
tinct harmonic “signatures”. All these works require data
with a high sampling rate and prior domain knowledge of
appliance signatures.

Unfortunately, it is nontrivial to adopt the existing ap-
proaches to solve the emerging appliance detection prob-
lem that the utility companies encounter. On one hand,
they may not have fine grained data and appliance signa-
tures. Given fine grained data, a simple clustering based
approach can achieve very good performance [10]. However,
given very coarse grained data such as daily consumption,
it is very challenging to extract relevant features for build-
ing high quality and meaningful clusters hence utility com-
panies have to design a more sophisticated approach. On
the other, fully labeled data and/or controlled experimental
setting may not be available in real-world applications. In
other words, the available data to the utility companies is
mostly partially labeled, which prevents them from adopting
the state-of-the-art supervised algorithms, such as support
vector machine (SVM) [30] and random forest [5].

To alleviate the requirement of high sampling frequency,
Kolter et al. [14] used hourly consumption data and utilized
discriminative sparse coding to model each device’s power
consumption over one week, then combine learned models
to predict the power consumption at device level to unseen
households. Therefore, the device categories, such as TV, re-
frigerators and electrical water heaters, can be inferred from
different consumption level. But this approach assumes the
individual device readings are available in the training phase,
which is impractical in most cases. Besides, the granular-
ity of data is still relatively high compared with daily data,
which is available to vast population.

In this paper, we propose a novel approach to detect a par-
ticular appliance: “heat pump”’ from coarse grained data
with daily consumption and partial labeling information.
More specifically, we utilize low granularity smart meter
data, prior sales data and weather data to extract relevant
features related with heat pump usage. Our approach does
not have any assumption about the access to individual de-
vice consumption or the prior knowledge of any appliance
signature, but correlates the daily consumption with tem-
perature and extracts features specific to heat pump usage.
Given the fact that only a small portion of heat pump users
are available from prior sales record (a.k.a partially positive
labeled data), such a problem is characterized by positive
and unlabeled data learning, in which “positive” represents
the small portion of users with heat pumps and “unlabel”
means the rest large population that may or may not have
heat pumps. We applied the state-of-the-art learning al-
gorithm, biased SVM [18] that is designed specifically for
positive and unlabeled data classification to our extracted
features and achieved very competitive performance.

To summarize, our contributions in this paper are mul-
tifaced. At the conceptual level, we take the first step to
detect a particular appliance from coarse grained data com-
pared with other methods which depend on fine grained

!This is one particular campaign that we partnered with an
electric company in the United States.
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data. At the system level, we integrate different data sets
from different sources, including smart meter data, prior
sales record and weather data, to perform feature extraction
and heat pump detection. At the modeling level, we formu-
late the problem as a positive and unlabeled data classifica-
tion problem and apply the state-of-the-art method to our
extracted features, including temperature dependent fea-
tures related with heating and wavelet features from heating
period (typically from November to February). To our best
knowledge, we present the first case of performing a partic-
ular appliance detection at a very coarse granularity smart
meter data by integrating data sets from different sources.
Experimental results show that our approach significantly
improves prediction accuracy using real world data sets.

The rest of the paper is organized as follows: we first intro-
duce related works in Section 2. We formalize the problem,
and describe the details of our solution in Section 3. We
present the experimental results in Section 4, and finally
conclude the paper.

2. RELATED WORK

There are two research areas which are closely related to
our work: appliance deteciton/recognition and positive and
unlabeled learning.

2.1 Appliance Detection

The research topics on appliance detection problem can be
classified into two categories based on the difference of hard-
ware and software deployment. One is using single sensor
to monitor the power outlet [21] or multiple sensor to mea-
sure the electrical information of individual appliance [27].
The major problem is that it requires special technical ex-
pertise for single sensor deployment or incurs huge expense
for multiple sensor installation and maintenance.

The other utilizes data mining techniques to disaggregate
overall consumption data into individual device level and
associate different levels of consumption to existing appli-
ance feature database [14, 24, 28]. The consumption data
is typically sampled at high frequency, e.g. 1 second and 15
minutes. For example, Srinivasan et al. [28] extracted fea-
tures from the input current waveform and applied several
classifiers, such as Neural network and support vector ma-
chine to uniquely identify various types of devices. Kolter
et al. [14] developed discriminative sparse coding to learn a
model for the power consumption of each device. Therefore,
the device categories, such as TV, refrigerators and electrical
water heaters, were inferred from different power consump-
tion level. However, the prior knowledge about appliance
consumption is difficult to obtain due to the rapid chang-
ing world. In addition, hidden factors such as weather that
affect energy consumption were ignored.

Our work is different from previous researches in the fol-
lowing sense. First, instead of detecting all appliances from a
very fine granularity data, we detect a particular appliance:
“heat pump”, which is a major energy consuming appliance
in residential household. Second, we do not assume any
prior knowledge about the appliance signature, e.g. power
consumption, on or off state current et al. Hence our method
is totally data driven without incurring extra cost. Finally,
we integrate different data sources into a unique system, in
which sales record and weather data are utilized to guide
more effect heat pump detection.



2.2 Positive and Unlabeled Learning

Positive and unlabeled learning (PUL) is extensively stud-
ied in data mining and machine learning communities from
different perspectives, e.g. text categorization [18], Bioinfor-
matics [9], Cheminformatics [34], collaborative filtering [22]
et al.

Different from traditional supervised and semi-supervised
learning where both positive and negative data are specified,
the training data of PUL are composed of a set of positive
data and a large amount of unlabeled data which can be
positive or negative. Considering the heat pump detection
problem, we only know a small portion of users having heat
pumps from sales record data. For the rest large amount of
users, they may or may not have heat pumps. Hence PUL
is suitable tool since it aims to fully exploit the unlabeled
data together with the limited positive data to learn more
precise predictive models.

Two general approaches of PUL have been proposed. One
is a two-step approach [19, 32], in which a certain reliable
negative samples are iteratively identified from the unlabeled
data first and then traditional classifiers (e.g. SVM, Naive
Bayes) are applied to the reliable negative set and positive
set. However, the performance of such a two-step approach
highly depends on the quality of the identified negative sam-
ples. The other is a one-step approach [9, 18], in which all
the unlabeled samples are treated as negative and the model
is trained only once. For example, biased SVM [18] is ob-
tained by introducing different misclassification cost of the
positive and negative samples to ordinary SVM [30]. The
underlying principle is that if the sample size is large enough,
minimizing the number of unlabeled examples classified as
positive while constraining the positive examples to be cor-
rectly classified will give a good classifier. Another exam-
ple is logistic regression for positive and unlabeled learning
(LRPU) [9], which estimates the conditional probability of
the positive class given input samples directly. Though the
marginal probability of the positive class and the conditional
probability of the labeled positive samples have to be esti-
mated as an intermediate step [35], it provides competitive
performance as biased SVM as studied in [9].

In this paper, we adopt biased SVM (BSVM) [18] for
heat pump detection after extracting features from daily
consumption and weather data. Our experimental studies
shows that BSVM outperforms LRPU on a real-world data
set.

3. METHODOLOGY

In this section, we describe the proposed heat pump de-
tection framework. As mentioned earlier, our framework
can be divided into two phases: feature extraction and heat
pump classification. Before introducing them in detail, we
first outline the notation of this paper.

We use lowercase letters to represent scalar values, lower-
case letters with bold font to represent vectors (e.g. f),
uppercase letters to represent matrices, and uppercase cal-
ligraphic letters to represent sets. Unless stated otherwise,
all vectors in this paper are column vectors.

3.1 Problem Statement

Given a smart meter data set P with daily consumption
from known heat pump users? as well as another set of daily

2either from prior sales record or other reliable sources
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consumption data U from unknown users over the same time
period, our aim is to build a predictive model that detects
heat pump users.

3.2 Feature Extraction

The energy consumption data over a time period can be
naturally modeled as a one-dimensional time series. With-
out loss of generality, assume x € {PUU} is the consumption
over discrete time stamps t1,t2,--- ,t, for one particular
user, then x; is the consumption at time ¢;.

A naive way to learn with time series data is to treat the
value at each time point as a feature. However, a major
problem of such a way is that the dimensionality of feature
space is very high. The high dimensionality will introduce
the curse of dimensionality and cause problems in distance
metrics [4]. Fortunately, consecutive values of a time series
are usually dependent, highly correlated and contain a lot
of redundancy. Therefore we seek a good feature represen-
tation of time series that not only speeds up the learning
algorithm, but has better performance.

First of all, we seek to choose some key empirical fea-
tures that can capture key characteristics of the heat pump
detection problem. The key underlying assumption is as fol-
lows. If there is an electric heating and cooling system in
a building, daily average electric energy consumption will
be higher if the outdoor temperature is low, or the indoor
set temperature is high, or the building has high heat loss,
and so forth. Our potential empirical feature candidates are:
temperature dependent heating parameter, temperature de-
pendent cooling parameter, the ratio between the average
energy consumption during the cooling period * and the
average energy consumption during non-cooling and non-
heating period, and the average energy consumption during
the heating period * and the average energy consumption
during non-cooling and non-heating period. We will discuss
how to calculate them empirically based on energy consump-
tion in the next subsection.

In addition, we use generic features of time-series data to
capture additional characteristics between heat pump and
non-heat pump users. Popular feature extraction techniques
for time series include the Discrete Wavelet Transform (DWT)
and the Discrete Fourier Transform (DFT). Both transfor-
mation methods divide up time series data into different
frequency components and then study each component with
a resolution matched to its scale [17]. The main difference
is that wavelets are localized in both time and frequency
whereas the standard Fourier Transform is only localized in
frequency. Another difference is that DWT is less computa-
tionally complex with O(n) time as compared to O(nlogn)
for the fast Fourier transform, where N is the length of time
series. In this paper, we adopt the DWT not only because
DWT is fast, but DWT has produced competitive or better
results in a bunch of time series data mining tasks, such as
clustering [12, 33], classification [8, 29] and similarity search
[23, 16]. A more comprehensive survey can be found in [17].

3.2.1 Temperature Dependent Heating Features
Temperature dependent heating features include average

consumption in the heating period, ratio between the aver-

age energy consumption during the heating period and the

3June to September
4November to February



average energy consumption during non-cooling and non-
heating period and temperature dependent heating param-
eter. The first two are obvious hence we introduce the third
term and explain why we focus on heating related features
rather than cooling.

Space heating and cooling systems run to maintain in-
door temperature at desired temperature levels. An electric
heat pump system heats up and cools down a space with a
bi-modal heat exchange mechanism. When outdoor temper-
ature is lower than indoor temperature, heat travels through
the building envelop, walls, windows, and ceilings to outside.
This heat is lost by conduction. Also, heat travels through
leaks, which is called infiltration. When outdoor tempera-
ture is higher than indoor temperature, heat travels into the
building by conduction, infiltration, radiation, people activ-
ities, and appliances activities. Roughly speaking, indoor
temperature is settled when (1) heat gain and transferred
heat from indoor to outdoor are balanced in summer during
summer and (2) heat loss and supplied heat are balanced
during winter.

Once a building is built, building characteristics such as
building envelop, walls, windows, ceilings, and openings do
not change significantly over time. Only the outdoor tem-
perature changes significantly day-by-day. Both conductive
and infiltrative heat loss and gain are proportional to tem-
perature difference between two thermal mass, which means
that the space heating and cooling system consumes more
energy when outdoor temperature is lower during winter and
outdoor temperature is higher during summer.

Figure 1 illustrates the drybulb temperature 5 v.s. elec-
tric energy consumption of a building where an electric heat
pump is installed. As we can see that there is a clear cor-
relation between the outdoor temperature and electric en-
ergy consumption. In Figure 1, a and b are the heating and
cooling slopes, which represent cooling and heating energy
requirement per temperature drop (kWh/degree).

This correlation is used to quantify heating and cooling
efficiency of a building and to predict heating and cooling
energy consumption. One of the widely used model to iden-
tify this correlation is a piece-wise linear regression model
[2, 25], which can be written as follows:

J al 4+ Jon +v when T < Ty
Jp + v when T, < T < T,

o'+ Joe +v when T, <T

)

where J is a daily energy consumption in kWh, T is dry-
bulb outdoor temperature, Jpp, is nominal energy consump-
tion during heating required days, Jy. is nominal energy
consumption during cooling required days, J is nominal en-
ergy consumption during heating required days, 7y is a ran-
dom variable that has a certain probability distribution with
bounded second moment, a and b are heating and cooling
consumption slopes.

In buildings where there is no electric heating nor cooling
system, a and b are close to zero whereas in buildings with
electric heat pump systems, a is a noticeable negative slope
and b is a positive slope. In this paper, we also call the

Sdrybulb temperature is the temperature measured freely in
the air without radiation and moisture, which is considered
to be the most important variable for building energy loss
and gain
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Figure 1: Energy Consumption in a House with an
Electric Heat Pump System
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Figure 2: Histogram of Heating Slopes: Customers

with electric heat pump and others

heating slope a as temperature dependent heating parameter
and b as temperature dependent cooling parameter.

A natural question is whether we should use both a and
b for prediction. Intuitively, high consumption in summer
or winter may not be from heat pump only. Other appli-
ances, such as windows AC unit and electric heater, can
have correlation between temperature and energy consump-
tion, though the slope may not be steep. To validate the
effectiveness of them, we plot the distribution of a and b in
Figures 2 and 3 with two sets of customers who own elec-
tric heat pumps and other systems. Figure 2 shows a clear
distinction between the electric heat pump customers and
other customers. One possible reason is that majority of
space heating systems use gas or heating oil, thus the cus-
tomers who do not own an electric heat pump system tend
to consume more gas or oil other than electricity.

It is worthwhile to inspect whether the temperature de-
pendent cooling parameter b has similar characteristics to
a. Figure 3 shows the histograms of the temperature de-
pendent cooling parameter. As we can see, two groups have
similar distributions. One possible reason is that majority of

90



Distribution of Temperature Dependent Consumption for Space Cooling
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non-heat pump users use electricity based cooling systems,
e.g. windows AC unit. Though without heat pump us-
age, the total energy consumption still have high correlation
with drybuld temperature, which makes the temperature de-
pendent cooling parameter b useless to distinguish between
heat pump users and non-heat pump users. Based on the
comparison between Figure 2 and 3, we conclude that the
temperature dependent heating parameter a is more useful.
Hence, we only extract heating related features.

In addition to the temperature dependent heating param-
eter a, we also collect the average consumption in the heating
period, the ratio between the average energy consumption
during the heating period and during non-cooling and non-
heating period. These two parameters are added to deal
with electric heat pump users who have high variability in
energy consumption during the heating period.

3.2.2 Wavelet Features

Though these temperature dependent heating features have
a certain discriminative power to differentiate between heat
pump and non-heat pump users, we argue that they can not
capture all the characteristics of heat pump usage, especially
in the time and frequency domain. Therefore, we still need
to extract a set of generic features from energy consumption
time series.

As discussed previously, we utilize discrete wavelet trans-
form (DWT) to extract generic features. In this paper, we
use Haar transform, which is a simple but powerful mother
wavelet functions. Haar transform can be viewed as a series
of averaging and differencing operations on the time series.
The averaging part captures the trend of time series called
approximation, and the differencing part depicts the sur-
prise named detail coefficients. To illustrate the procedure,
we compute the averages and differences between every two
adjacent values of x = (8,6,2,10)7 as shown in Table 1. The
level 0 gives the original time series. In level 1, (7, 6) are ob-
tained by taking the average of (8,6) and (2, 10) respectively.
(—1,4) are the differences of (8,6) and (2,10) divided by 2
respectively. This process is repeated until level 2 (only one
approximation coefficient left) is reached. The final Haar
transform H(z) = (6.5,—0.5,—1,4) is obtained. From the
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Table 1: Haar wavelet transform on a four element

time series with different levels.

Level | Approximations | Detail coefficients
0 8,6,2,10
1 7,6 -1,4
2 6.5 -0.5

Haar transformation, one can fully recover the original signal

[17).

VanN

1

Figure 4: Tree structure of two-level Haar transfor-
mation. x is the input time series, AX; is the ith level
approximation and DX; is the detail coefficients.

The multi-level decomposition can be conveniently mod-
eled as a tree shown in Figure 4, in which the root mode
represents the original time series, and left/right child rep-
resents approximations/detail coefficients respectively. Note
that we just show two-level decomposition, there may be
even more deeper decomposition for high dimension time
series. Suppose kth level DWT produces the best perfor-
mance on validation set, then the transformed feature vector
from x is given by (AXk, DXy, DXy_1, - ,DX1). k can be
tuned by cross-validation and we fix kK = 2 throughout the
paper. Our empirical study shows that k = 2 gives the best
performance.

Instead of applying DWT on the whole time period in-
cluding four seasons, we specifically consider two specific
seasons: summer and winter. The reason is that the two
seasons require heating or cooling, which triggers a lot of
consumption as a result of heat pump usage. As discussed
beforehand, there may be a lot of consumption in cooling pe-
riod, but it may be as a result of central AC or window AC
unit. Therefore, the consumption in cooling period is not
quite useful for determining heat pump usage. Similarly, for
the time period without cooling or heating, there is no or
seldom heat pump usage and the consumption is useless as
well. Considering the above factors, we only extract wavelet
features from heating period, e.g. November to February.

3.3 Heat Pump Classification

Once features are extracted from heat pump users and
unknown users, the problem is converted to a classifica-
tion problem with positive and unlabeled data. To tackle
the problem, we utilize the state-of-the-art algorithm biased
SVM [18].

Followed the convention in [18], suppose training sets are
{(Xh yl)v (x27 y2)7

-, (Xn,yn)}, where x; is the ith input vector and y; is



its class label, y; € {1,—1}. Assume that the first | — 1
examples are positive examples (labeled 1), while the rest
are unlabeled examples, which we label as -1. It was shown
in [19] that if the sample size is large enough, minimizing
the number of unlabeled examples classified as positive while
constraining the positive examples to be correctly classified
will give a good classifier [18]. In particular, consider the
following objective:

-1 n
%wTerCpZ& + C’uz&
=1 =1

y(wixi+b)>=1-¢, i=1,2,---,n
§>=0,i=12-,n

min
w,b

s.t.

()

where C}, and C, are regularization parameters to control
the fitness for positive and unlabeled samples. We can vary
C, and C, to enforce which part to be correctly classified.
Intuitively, we give a big value for C, and a small value
for C, because the unlabeled set, which is assumed to be
negative, also contains positive data. The objective (2) is
convex and a unique global solution exists. In this paper,
we use the standard convex optimization package cvx [11]
to solve the objective.

To choose C}, and Cy, a typical approach is to use a sep-
arate validation set or cross validation to verify the perfor-
mance of the resulting classifier with the selected values for
Cp and Cy. A widely used metric is the F; score defined as
F1 = 2pr/(p+r) where p is the precision and r is the recall.

Unfortunately, it is impossible to evaluate precision with-
out knowing negative examples. Hence we follow the psudo-
F1 metric:

psudoF, = rQ/Pr(f(x) =1) (3)

which is proposed in [15], where Pr(f(x) = 1) is the prob-
ability that a user is classified as heat pump user. r can be
estimated using the positive examples in the validation set
and Pr(f(x) = 1]) can be estimated from the whole valida-
tion set. As explained in [18], this criteria works because it
behaves similarly to the Fi score in the sense that it is large
when both p and r are large and is small if either p or r is
small.

4. EXPERIMENT

We have conducted a rigorous evaluation of our method
in terms of detection accuracy using a set of real-world data,
including smart meter consumption data, prior sales record
data and local weather data collected from an anonymous
utility company ®. We implemented a prototype of our
method in Matlab and compared our method with other
two state-of-art models including ordinary Support Vector
Machine (OSVM) [30], logistic regression for positive and
unlabeled data classification (LRPU) [9].

4.1 Data sets

To evaluate our method, we utilized a smart meter data
set (daily consumption from 01/01/2011 to 09/23/2012) and
a heat pump sales data set from an anonymous utility com-
pany. In the data set, there are around 300k users residing
in 6 regions. Based on the sales record, we single out 4565
electrical heat pump users who purchased heat pump in 2009

5Due to the confidentiality agreement, the company’s infor-
mation is anonymized.
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or 2010 and 1821 non-heat pump users before March 2012
7. We also obtained the weather data for each region in the
same time period as smart meter data. For evaluation pur-
pose, we treat all 1821 non-heat pump users as unlabeled
samples and randomly sample 10% (456) heat pump users
named @ as additional unlabeled samples. Let P be positive
samples and U be the unlabel samples and N be the nega-
tive samples, it is clear that P has the cardinality of 4100
and U = N U @ has the cardinality of 2277.

As described in Section 3, our method extracts features
specific to heating. The features include temperature depen-
dent heating parameter, average daily consumption during
heating period, the ratio between average consumption dur-
ing heating period and other time periods other than heat-
ing or cooling period and 2-level wavelet transform coeffi-
cients from the time series of consumption in heating period.
There are two heating periods given the time span, including
01/01/2011-02/28/2011 and 11/01/2011-02/28/2012. We
ignore the consumption after March 2012 since the nega-
tive set is valid only before that time and the total number
of features is 139.

Besides the small data set with ground truth that can be
used for model evaluation, we also have a large smart meter
data set with 292,496 users without labels. Since there is no
ground truth, we only provide prediction result and match
any existing knowledge about heat pump sales or market
share.

4.2 Experimental Protocol

We use standard 10 fold cross validation to generate train-
ing and testing data sets. For ordinary SVM, we use the
libsvm [6] package with linear kernel. The C parameter
is tuned from 1,10,20,30---,100. For biased SVM, there
are two parameters C, and Cp,. The first parameter, Cy,
is to control the fitness of unlabeled set. The second pa-
rameter, Cp, is to control the fitness on positive labeled
set. As suggested by [18], we choose C, from a set of
larger numbers than C',,. More specifically, we tune C), from
20,25, 30,---,50 and C,, from 1,3,5,--- ,17. Below we sum-
marize the model construction and model evaluation.

Model Construction and Selection. For each data
set, we partition the data set into 10-folds to perform 10-fold
cross-validation (CV) with 9 folds for training and 1 fold for
testing. We use an internal 5-fold CV on the training data
set to select the optimal parameters for ordinary SVM and
biased SVM based on the pseudo-F1 score defined in 3. We
then generate a single model from the entire training set with
the selected parameters and apply the model to the testing
data set for prediction. For logistic regression proposed in
[9], there is no additional parameter to tune hence the model
is obtained from entire training data without interval cross
validation. Furthermore, all methods treat positive labeled
samples as positive and unlabeled data as negative.

Model Evaluation. For model evaluation, we collect the
precision: (T'P/(TP + FN)), recall: (I'N/(TP + FP)), Fy
score: (2*precision*recall/(precision+recall)) and accuracy:
((TP+ TN)/S) of the trained model. Note that since the
“real positives” are positive samples and a few unlabeled
samples in test set, the confusion matrix is a little different
from binary classification. For each trial i, ¢ = 1,2,--- , 30,
a classifier is applied to the test set and yield the following

"They purchased heat pumps not for replacement after
March 2012
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Figure 5: Performance comparison over three methods. Top left: precision; top right: recall; lower left: F'1 score;

lower right: accuracy.

confusion matrix: where TP stands for true positive, F'P

Table 2: The confusion matrix for one cross valida-
tion trial. P;, Q; and N, are subsets from P, Q and
N respectively.

Predicted
positive | negative
P UQ; TP N
Actual N P TN

stands for false positive, TN stands for true negative, F'IN
stands for false negative, and S stands for the total number
of samples.

All the values reported are collected from the testing data
set only and are averaged across 3 replicates of the 10-fold
cross validation in a total of 30 experiments.

4.3 C(lassification Performance

In this subsection, we show the performance of biased
SVM (BSVM) compared with ordinary SVM (OSVM) and
logistic regression for positive and unlabeled data mining
(LRPU) [9]. The precision, recall, F'1 score and accuracy is
shown in Figure 5. Since the standard deviation is around
1%-2% for each method, we omit them for simplicity.

From the lower right subfigure in Fig 5, we observe that
the accuracy of ordinary SVM with linear kernel performs
the worst. It is understandable since ordinary SVM imposes
the same penalty on both positive and “negative” data set
but the “negative” data set is not purely negative. Com-
paring BSVM with LRPU, BSVM performs slightly better
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than LRPU. The possible reason is that biased SVM focuses
predicting positive samples correctly while controlling the
number of samples classified as negative. When the data
set has many more positive samples, BSVM outperforms
LRPU, though the latter approach has one step of proba-
bility adjustment in training phase. To the contrary, LRPU
performs slightly better when the data set has more under-
lying negative samples. More detailed comparison between
BSVM and LRPU can be found in [9].

To better understand the accuracy differences, we plot
the average precision, average recall and average F} score of
all methods in Fig 5. Similar to accuracy, OSVM performs
worst in terms of precision, recall and F} score. The perfor-
mance of LRPU is a little inferior to BSVM for precision and
F score, though the performance gap is not that significant.
BSVM has a very high recall (a.k.a. the algorithm predicts
most positive samples correctly) and a reasonable precision,
which is supportive to the analysis beforehand. Such a per-
formance of BSVM is desirable in a few applications such as
heat pump marketing campaigns, because utility companies
may not want to target too many customers who have heat
pumps already.

4.4 Feature Extraction Evaluation

We have demonstrated the classification performance of
three classifiers on our extracted features. A natural ques-
tion is how useful of the heating specific features. To validate
the usefulness of extracted features, we apply biased SVM
(BSVM) classifier to our features (HFeature) and general
wavelet features (GFeature) extracted from all time period
up to March 12.



In Table 3, it is clear that BSVM with our extracted fea-
tures (HFeature) is superior to general wavelet coefficient
features. For simplicity, we do not report standard deviation
since it is around 1%-2% for each feature set. The general
features (GFeature) that are extracted from all time periods
not only contain the heating period, but encompass cooling
and no cooling/heating period, in which the consumption
is either from AC system for cooling or regular appliance
without heat pump usage. Therefore, it is difficult to obtain
an accurate classifier from such a feature set.

Table 3: Performance comparison between our ex-
tracted features (HFeature) and general features
(GFeature).

FF Precision | Recall | Accuracy
HFeature | 0.864 0.811 0.923 0.852
GFeature | 0.785 0.758 0.813 0.716

4.5 Prediction on the large data set

As discussed before, the large data set with 292,496 users
has no labeling information. The best result that we can
deliver with this data set is to run our algorithm on it and
match the result with existing knowledge of heat pump sales
or market share. We trained a BSVM model from all the
4565 users applied it to the large data set.

Although rigorous assessment of the performance of pro-
posed algorithm cannot be conducted on this data set, two
evidences show the proposed algorithm work reasonably well.
First, the proposed algorithm identified 129,238 (44.2%) as
heat pump users from the 292,496 users. The result is con-
sistent with the market share of heat pump in that region
[1]. In addition, the classification result has been used by
the partner electric company which had an existing algo-
rithm to identify electric heat pump users. During the pre-
campaign phase, the partner company randomly singled out
20 customers who are predicted as non-heat pump users by
our algorithm for evaluation purpose. Among the 20 cus-
tomers, 12 customers were identified as heat pump users by
their algorithm, which is simply based on the overall energy
consumption and the correlation with temperature. To val-
idate the effectiveness of two models, We went through a
validation process and found that the result of our method
was indeed more accurate than the existing algorithm of our
partner company. All the 12 customers are “real” non-heat
pump users.

S. CONCLUSION AND FUTURE WORK

In this paper, we propose a heat pump detection method
for a targeted energy efficient marketing campaign. This
simple yet practical problem has two unique challenges: (1)
the input data is only partially labeled with only a subset of
positive samples; and (2) only the extremely coarser grained
energy consumption data is available for the detection algo-
rithm due to the current smart meter reading infrastructure.

To tackle the two challenges, we formulate the detection
problem as a positive and unlabeled data learning prob-
lem and adopt biased SVM to solve it. Besides, we ex-
tract both empirical features and generic features relevant
to heat pump usage in heating period for classification. We

1337

have evaluated the performance against 4565 users’ data and
showed our approach achieves better accuracy than other
competitive methods.

Our method has been implemented and deployed in a real-
life setting where the partner electric company runs this tar-
geted campaign for 292,496 customers without prior sales
record. Based on the initial feedback, our detection algo-
rithm can successfully detect substantial number of non-heat
pump users who were identified as heat pump users with the
prior algorithm the marketing department had used.

The future work will focus on two directions: (1) create
a good user interface to make the analytics easier for util-
ity companies; (2) improve the scalability of the method.
For example, for this simple task, the analytics needed to
process approximately 970 million data points for approxi-
mately 300k customers and run a couple of hours in a sin-
gle machine. This number can be easily over multi-million
customers served by a single grid operator. Therefore, the
scalability and latency consideration of the algorithm need
to be improved.
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