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ABSTRACT
With the explosion of mobile devices with cameras, online search
has moved beyond text to other modalities like images, voice, and
writing. For many applications like Fashion, image-based search
offers a compelling interface as compared to text forms by better
capturing the visual attributes. In this paper we present a simple
and fast search algorithm that uses color as the main feature for
building visual search. We show that low level cues such as color
can be used to quantify image similarity and also to discriminate
among products with different visual appearances. We demonstrate
the effectiveness of our approach through a mobile shopping appli-
cation1. Our approach outperforms several other state-of-the-art
image retrieval algorithms for large scale image data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

Keywords
Search Engine, Image Search, Visual Search, e-Commerce

1. INTRODUCTION
Recent advances in mobile devices, especially smartphones and

tablets, has redefined the dynamics of commerce. The ability to
shop anywhere and anytime has allowed users to bridge the gap
between offline and online stores. It has also led to newer shop-
ping trends where users browse for goods in offline stores and use
online stores to find the best deals [23, 1]. Recent statistics sug-
gest that among the top online shopping categories, 58% of smart-
phone users research electronic goods in-store but purchase them
online [1, 6]. A similar trend has been observed in other categories
such as shoes (41%) and apparel (39%). However, searching for
a product among the massive collection of items remains a major

1eBay Fashion App available at
https://itunes.apple.com/us/app/ebay-fashion/id378358380?mt=8
and eBay image swatch is the feature indexing millions of real
world fashion images
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bottleneck for this shopping experience. Although recent work in
text retrieval has addressed some of these issues, categories such as
fashion continue to present a huge challenge. This is particularly
contributed by the following:
• Most of the items in such categories lack useful product speci-

fications that can be used for indexing.
• The notion of relevance in these categories is mostly visual

which exposes the limitation of textual queries.
• Mobile shopping experience requires a fast and low memory

solution both for indexing and search.
Many product categories sold online can be described exactly by a
limited set of well-defined attributes. For instance, digital cameras
can be described accurately by their model name, frame size, and
pixel count. On the other hand, it is difficult to describe women’s
dresses in terms of such textual attributes. Although basic visual
properties, such as color, can be specified by the sellers, a cursory
data analysis shows that a large fraction of fashion items listed
online lack this information. For example, Figure 1 shows the
color and pattern distribution of men’s neck tie collections on an
e-commerce website where this metadata is un-specified for around
50% of the items. Also, for some of the visually complex patterns
(such as 19.8% items tagged as multi-color), there is not much tex-
tual information about the color content of the items. We believe
this reinforces our aforementioned observation regarding the diffi-
culty of using text to describe items that are fundamentally defined
by their visual attributes, and highlights the importance of using
their image information to index them more accurately.

Consider the history of web search as well. While text based
features played a crucial role in the early days, in the form of tf-idf
scores, now increasing importance is associated with several other
kinds of signals and features that are more semantic and percep-
tual in nature. In similar vain, image search is also going through a
transition where it becomes more important than ever to really un-
derstand the perception of users and try to capture the same in any
visual task such as image matching, search, or retrieval. As is to be
expected, one of the first things that attracts a viewer’s attention is
the color distribution. Features such as patterns, textures, or styles
are only secondary in nature. To this end, the goal of our work is to
really focus on color as the primary feature and see how far we can
take image search.

In a way, the goal of this work is to see how far something ex-
tremely simple can be taken, rather than try to benefit from more
complex features. Surprisingly, simplicity actually goes a long
way, reinforcing our hypothesis that in the context of images, per-
ceptual features should be the starting point, rather than just a com-
ponent. To this end, our paper focuses on the image search and re-
trieval application and is constrained to only capturing an image’s
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features in color, and specifically a bag-of-color - i.e. just the color
distribution. A dual goal, however, is for us to build an application
that actually is practical and usable at a large scale; to this end, the
concern that a lot of images, specifically for shopping, are taken
with low-end cameras on cell phones is an additional difficulty.

Using image information to index items for a mobile shopping
experience is challenging for two main reasons. The quality of
these images can have a lot of variance, especially since most of
them are captured by amateur users. Secondly, being an online
experience, the indexing and retrieval system must be computa-
tionally very fast, with a low memory foot-print. These constraints
limit the types of information that can be extracted from product
images, and the algorithms that can be used to analyze this infor-
mation. In this paper we address some of these issues by describ-
ing a simple and fast visual search algorithm that demonstrates the
power of low-level features, specially color, for online shopping of
fashion related items.

This paper presents our techniques that go into the fully devel-
oped and live system at eBay being used on mobile devices under
eBay Fashion. The app is live and functional and is accessible to
everyone in the US and can be used to search and shop for fash-
ion clothing inventory on eBay. The app can be found on the Ap-
ple app store through eBay Fashion App2; the feature indexing real
world fashion images is called eBay Image Swatch; it indexes and
searches a large number of images, in the order of millions. The
process starts with a user taking a picture (from their cell phone
camera), or using a stored image on the phone, of any color combi-
nation desired (and typically of a dress, or tshirt or piece of cloth-
ing); this is then searched for using our algorithm, on the millions
of images indexed by our system, and the best matches are returned.

The remainder of the paper is organized as follows: Section 2
discusses related work on image search. Section 3 describes the
main insights drawn from our data and the high-level algorithm for
our color based search engine. Section 4 highlights the distance
measure used in the algorithm, while Section 5 talks about the in-
dexing scheme used for scalability. Section 6 discusses in detail
our evaluation and experimental validation. Finally, Section 7 con-
cludes the paper and discusses future work.

Figure 1: (L) Color and (R) pattern distribution of men’s neck-tie; Nearly
50% of items do not have these attributes specified for textual indexing.

2. RELATED WORK
The task of visual search has been studied in great detail in Com-

puter Vision community. Most of the existing techniques can be
2Available at https://itunes.apple.com/us/app/ebay-
fashion/id378358380?mt=8

Figure 2: Sample color spaces; Comparing the shape of decision regions
for different colors, only HSV color space has a uniform color distribution
which is best suited for uniform sampling.

broadly categorized into “Feature Based Approaches" and “Bag-
of-Words Based Approaches". Feature Based approaches employ
traditional paradigm of extracting low-level image features and use
techniques such as histogram distance, euclidean distance etc. to
compute image similarity. The most commonly used features are:
• Color Features: Most systems using color features utilize color

spaces such as Hue-Saturation-Value (HSV) [24] and generate
a color-histogram representation of the image. To effectively
match histograms, “cross-talk" between color bins is reduced
by using weighted distance based metrics [10]. This technique
can be further extended by modeling spatial correlation of color
pixels in form of Spatial Chromatic Histogram (SCH) [4]. To
address varying image illumination in real-world images, color
constancy based algorithms are used [7].
• Texture Features: Haralick et al. [11] proposed elementary tex-

ture features in form of gray level co-occurence matrix (GLCM)
for extracting second-order statistics from image such as en-
ergy, entropy, contrast and homogeneity. Finer features mod-
eling human perception include coarseness, contrast, direction-
ality, line-likeness, regularity and roughness [25] . Statistical
texture features in form of Gabor Wavelets [19] are also used to
enable filtering in spatial as well as frequency domain.
• Shape Features: One of the earliest systems using shape fea-

tures for image retrieval include IBM’s QBIC system [20] that
use shape area, eccentricity and major axis orientation. Higher
level shape invariants such as angle between two color edges
and the cross-ratio between four color edges are also used [8].
However, most of these features have been shown to perform
poorly as opposed to using only color and texture information.
Shape Contexts [3] overcome some of these limitations by mea-
suring shape similarity through point correspondences recov-
ered in uniform log-polar space.

Bag-of-Word (BoW) Based Approaches: This technique refers
to representing an image by an orderless collection of local fea-
tures [9]. A basic BoW method clusters local features into dif-
ferent vocabulary groups to generate a “CodeBook". Each image
is represented over this codebook using a histogram of vocabulary
counts. Finally, histogram distances are used to compute similarity
score between two images. Several different types of local fea-
tures that utilize this particular image representation include Scale
Invariant Feature Transform (SIFT) [18], Speeded Up Robust Fea-
tures (SURF) [2] or Histogram of Oriented Gradients (HOG) [5].
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Figure 3: Lighting Variation induces high variance in RGB values even
for single color (shown in red box), thus the histogram of maximum value
of R, G, B shows a wide variation, instead of having a single peak.

Spatial Pyramid matching techniques [17] have also been proposed
that define a fixed hierarchy of rectangular windows for capturing
“perceptually salient features" of the image. However, one of the
major drawbacks of these approaches is the long training time to
learn a visual vocabulary. Since online products usually have short
life-span and continuous high volume of inventory updates, such
long training times cannot be afforded.

Such advances in image search techniques have also enabled
several consumer facing applications. Some of the most promi-
nent technologies known today are Google Goggles [13], Bing Vi-
sual Search [15]. However, these technologies provide generic im-
age search capabilities which may not be useful for a specific do-
main such as fashion. There are also customized vertical based
image search techniques for fashion such as GILT Groupe’s app
for iPhone [14] but they only use dominant color information for
matching and hence cannot effectively support multi-colored query
images. The objective of this work is to thoroughly analyze one
specific vertical that is fashion and design a search algorithm geared
towards solving fashion-specific image matching problems.

3. INSIGHTS FROM DATA
Designing a visual or image search engine involves multiple steps

such as finding salient regions in images (i.e. object localization),
computing representative visual properties (feature extraction) and
searching the entire repository for similar images (matching). A
number of factors affect the performance of system including color
distribution, texture, pattern, and shape information that may reveal
the clothing style. Each of these phases present a new challenge in
terms of scalability and efficiency. To understand the bottleneck
of each component and find a possible solution, we choose images
of the fashion product family from one of the largest e-commerce
marketplaces, and analyze them for possible solutions. Following
sub-sections describe insights learned from this data analysis.

3.1 Spatial Prior for Object Localization
Online user-generated image content for commerce often vary

in quality. In a peer-to-peer commerce marketplace, casual sellers
may not be motivated or skilled to take professional quality pictures
as opposed to professional sellers dealing with large sales volume.
Most of such low-quality images suffer from poor lighting, low
contrast, and cluttered background that makes the task of image
matching more difficult (Figure 4). Therefore finding the relevant
region in the image (object localization) becomes a very important
task. One approach would be to apply a State-of-the-art image seg-
mentation algorithm to remove the background. However, typical
image segmentation algorithms operate at pixel levels and may take
several seconds to process a good resolution query image which is
unacceptable in our constrained settings.

(a) (b)

(c) (d)

Figure 4: Sample images with challenging background; Figures (a) and
(c) exhibit low contrast between background and foreground as Figure (a)
has a red tone in both while figure (c) has a white/cream color for both.
Figures (b) and (d) are very cluttered images making it difficult to isolate
the foreground object based on color.

To solve this problem, we take insights from our data and build
an offline spatial prior for foreground (dress) and background (clut-
ter) pixels. Firstly, a black-box segmentation algorithm is used
(GrabCut [22]) to automatically remove the background for im-
ages in the women’s dress category. Images with poor confidence
for background removal are ignored. The segmentation provides
a mask or an outline of foreground pixels. We take the sample
mean of RGB pixel values at corresponding mask locations and
visualize this for each style of dress in our inventory (Figure 5).
As shown, the mask outlines have a close resemblance to the dress
style shown on the right (Off-Shoulder, Long Sleeve, Halter, Cap
Sleeve, 3/4 Sleeve) illustrating that a large number of dresses re-
spond well to the segmentation algorithm. Further, the mean RGB
image in all the styles occupy the center of the image which pro-
vides a strong clue as to how users tend to center the dress before
they take pictures. We use this insight to design a segmentation
mask that samples the center of the image for foreground pixels
and assumes pixels falling outside of center-window to be back-
ground. One obvious failure case of this technique is shown in
figure 6, where the image consists of multiple views of the dress
and hence such a sampling would lead to false segmentation. How-
ever, since most of these images occur in our online inventory and
tend to have simpler background, we can afford to apply black-box
segmentation algorithms to find dress regions. Moreover, a smaller
portion of such images allows us to keep a good indexing rate.

3.2 Choosing right Color Space
We emphasize the use of color for image retrieval. Therefore

the choice of color representation is important for extraction of
color distribution. Typically, images can be represented by differ-
ent color spaces such as HSV, HSL, HSI, Lab, LUV, YCbCr. Each
color space has its own set of strengths and weaknesses. These
color spaces map pixel values to 2-dimensional chrominance space,
and a single luminance/brightness channel that captures most of the
lighting variations.
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Figure 5: Spatial prior for various women’s dress styles. We segment the
image such that a mask or outline is produced for the foreground pixels. We
then take the sample mean of RGB pixel values for the mask locations and
use it to obtain the dress style from our inventory.

Figure 6: (Left) Spatial prior failure case, (Right) Addressed using Back-
ground Segmentation. The segmentation mask helps sample pixels from the
center of the image for foreground extraction.

Visualization of some of these color spaces are shown in Fig-
ure 2. Once color space is chosen, it needs to be sampled in or-
der to get the color histogram. The simplest form of sampling is
uniform sampling, forming a rectangular grid, where each axis is
divided equally. Each axis may have different number of bins, but
along each axis, the bins have equal width. As shown in Figure 2
only HSV color space has a uniform color distribution which is
best suited for uniform sampling. Choosing any other color space
with such a sampling scheme will lead to color bias. For e.g. Uni-
form sampling with YCbCr will lead to good matching for red and
pink but fewer matches for other colors since these colors domi-
nate the color space. Even in cases with single color, there may
be variations due to illumination changes Figure 3 shows an ex-
ample, whereas even though the sampled region (shown in red) is
perceived as a single color, multiple shades appear due to lighting
variations (examples: shadows, attenuation of strength of illumi-
nation over space). The histogram of maximum value of R, G, B
shows a wide variation, instead of having a single peak. These sub-
tle changes can be easily perceived by humans but are difficult for
RGB based color models. Using HSV color space provides us with
an added advantage as it mirrors the human perception of color,
thereby providing a better way to handle illumination variations.

Another important aspect of color matching is color confusion
which increases as saturation decreases. To understand this, let us

Figure 7: We use a binning scheme for the Hue-Saturation-Value (HSV)
space with 8 bins each along the saturation and value axes and 24 uniform
bins along the hue axis.

Figure 8: Illustration of stacked 1D histogram for multi-colored dress:
We see that the dress results in higher concentration in certain bins along
the axis and this is then used for indexing and matching.

look at the mathematical formulae for hue, saturation and value
channels of HSV space as shown below:

V = max(R,G,B)

S =

{
V−min(R,G,B)

V
, if V > 0

0, Otherwise

H =


60(G−B)

S
, if V = R

120 + 60(B−R)
S

, if V = G

240 + 60(R−G)
S

, if V = B

(1)

This formula lets us visualize HSV space in an alternative form
as shown in Figure 7. Notice that for small values of V, all three
values R, G, B will be similar. The same is true for small values of
saturation, since maximum value and minimum values of R, G, and
B will be similar. This means that, due to noise, each of R, G, and
B may be dominant spuriously. Thus, hue will have discontinuous
values (note the conditional assignment for hue). In other words,
hue is not reliable when saturation is low. When saturation is low,
the color will lack vividness and look grayish. To overcome this
issue, we consider all pixels with saturation less than 6% as “gray"
pixels and bin them separately along with rest of the H, S,V com-
ponents. Figure 8 shows an example of a stacked 1D histogram
containing all the bins along with their respective weights.

4. COLOR BASED DISTANCE MEASURE
Given an RGB swatch, we first convert it into HSV space and

build a color histogram in each dimension. Since sampling in full
3D space as cross-product will create a sparse histogram matrix, we
treat each channel (Hue, Saturation, Value) separately. Uniformly
spaced bins along Hue(nH), Saturation(nS) and Value(nV ) axes
are stacked to form 1D histograms. This produces relatively dense
and more reliable histogram, which is much smaller than the full
3D sample scheme (nH + nS + nV vs. nH ∗ nS ∗ nV ). This
has an added advantage of having smaller memory requirement and
faster matching. Weights that emphasize the Hue channel are ap-
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Figure 9: The figure shows our overall system overview. The indexing
proceeds by first incorporating a spatial prior on the image and then ob-
taining a color histogram. This is then indexed using the k-center scheme
and stored as distributed indices. During the matching phase, the query im-
age’s color histogram is extracted in a similar manner and the index selec-
tion is performed by reading into the distributed indices. From the searched
results, the images that match best on the histogram spectrum are returned.

plied. For example, in our fashion inventory, 24, 8, 8 and 8 are
chosen as the number of bins for H, S, V and Gray channels re-
spectively. Their respective weights are set to 0.4, 0.2, 0.1, 0.3.
Finally, we normalize the entire bin such that the ratio of color pix-
els to gray pixels is encoded in the stacked histogram. A similar
process is repeated for an input query image. To compute similari-
ties between query and candidate histograms, Hellinger distance is
utilized (Equation 2).

S(H1, H2) =

√√√√1−
N∑
i=1

√
(
∑

H1i

∑
H2i) (2)

where N is the number of bins, H1 and H2 represent the query
image histogram and index image histogram respectively. Figure 9
outlines the overall system architecture of our proposed method.

Given the scale of images we deal with, and the fact that image
query search results need to be returned in the order of millisec-
onds, it is impractical to assume the backend algorithm can perform
a flat search at runtime. With tens of millions of images to compare
the query image against, it is necessary to design efficient retrieval
techniques for online processing.

5. INDEXING SCHEME TAILORED FOR IM-
AGE SEARCH

Indexing schemes have been heavily researched in a variety of
different contexts such as traditional search engines. The scale at
which we wish to admit image searches has grown rapidly in the
past couple of years. Notice, in our context both the query and the
result sets are images. We contrast the vocabulary and intent in a
few kinds of search tasks:
• Keyword-Document search: This is the most widely researched

area with indexing schemes such as inverted index forming the
basis of several industry standards. Notice that the indexing
scheme heavily relies on the fact that the query is only a few
keywords.
• Document-Document search: While in the case of retrieving

similar documents as the query, the vocabulary of both query
and results is text, and they are of similar sizes, the challenge
here is in reconciling a good distance function on the space of
all documents.
• Keyword-Image search: The dictionary of query and results

are different here, and so any distance function imposed on the

query and the result space is over dissimilar types. An example
of such a setting is Google Image Search.
• Image-Image search: The challenges here are different from

any of the previous settings and unfortunately it is unclear how
any of them can be adapted to our context. However, the main
observation that can be exploited for images or swatched im-
ages is that the query space and the document space look sim-
ilar (unlike text search) and therefore can leverage the same
distance function for indexing as well as retrieval. The chal-
lenges therefore lie in designing a distance function and effi-
cient search/retrieval scheme based on the suitably chosen fea-
ture spaces.

Parallel this with traditional and very well-studied text search,
where efficient techniques have been developed for retrieving rele-
vant documents corresponding to keyword queries. Unfortunately,
though, the same techniques do not directly adapt to image search
given that their indexing schemes are largely text-based. In the
following section, we describe a methodology that scales well for
image search and retrieval.

We now present a backend clustering and indexing scheme that
admits efficient image similarity retrieval for online queries. This
helps us overcome the naive linear scan look-up and obtain a tun-
able parameter that can trade-off time complexity without much
loss in retrieval accuracy.

We begin by describing the simple clustering based approach
that helps significantly speed up query run time complexity for im-
age retrieval. The algorithm is based on computing and storing a
backend k-center clustering, and then at query time. At run time,
the query’s distance is computed to each of the k centers of the k
clusters. Subsequently, the query is compared with all points in
the cluster corresponding to the nearest cluster center, and the top
matches are returned. While this approach has potentially several
benefits, for the purposes of this paper, the focus is entirely on ob-
taining nearly results as good as the naive approach, but with a
significantly enhanced time complexity. Below we describe the no-
tion of k-center clustering objective, a 2-approximation algorithm
(which is folklore) and present the proof and time complexity for
completeness. This is followed by experimental validation of this
method for our context.

k-center objective. The goal of the k-center clustering algo-
rithm, given a set S of n points in a metric space, is identify a set
of k centers (and an allocation of each of the remaining points to
its nearest center) in order to minimize the maximum diameter of
the clusters. Specifically the diameter of a cluster is measured as
the maximum inter-point distance, over all points in a cluster.

Let us use d(a, b) to denote the distance between any two points
a and b. Mathematically stated, the goal is to find a set C of centers,
with |C| = k, in order to minimize maxc∈C maxs1,s2∈c d(s1, s2).
Here we slightly abuse notation to use c as a set as well (including
all points in the cluster corresponding to this center). Optimizing
this objective is a well-known NP-hard problem [12] but there is
a very simple greedy algorithm that achieves a constant factor ap-
proximation and runs in O(nk) time.

Algorithm description (GREEDY-ALGORITHM). The algorithm
proceeds by greedily picking k centers as follows. The first center
is picked arbitrarily, call this c1. The second center, c2, is picked as
the farthest point from the remaining n− 1 points. After, i centers
have been picked, the next center ci+1 is picked as the point (from
among the remaining (n− i) points) as the one farthest from the al-
ready picked centers - here the distance of a point to a set of points
(or a set of centers) is measured as the distance to the nearest of
the points. Therefore, let Ci denote the set of first i centers picked,
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the next center ci+1 is picked as argmaxci+1∈S d(ci+1, Ci) =

argmaxci+1∈S maxi
j=1 d(ci+1, cj). All the k centers are picked

in this manner. Finally, the allocation of all n points to their respec-
tive centers is done by picking the nearest center independently for
each point.

THEOREM 5.1 ([12]). GREEDY-ALGORITHM achieves a 2-
factor approximation for the k-center objective.

PROOF. Let D be the objective cost generated by the greedy al-
gorithm. I.e. D = maxc∈C maxs1,s2∈c d(s1, s2). Now consider
the optimal set of cluster centers say C∗, and let the associated
objective cost be D∗. Consider a hypothetical scenario where the
algorithm generated (k+ 1) center points instead of k by the same
greedy process, and call the last center ck+1. Then by pigeonhole
principle, at least two of c1, c2, ...., ck, ck+1 would fall in the same
cluster in optimal clustering C∗. Let these two centers be ci and cj .
Therefore, the optimal cost D∗ is at least d(ci, cj). However, note
that the distance from any point in S to its nearest center in C is at
most d(ck+1, C) because of the greedy process, which is at most
d(ci, cj) since ck+1 was the last hypothetical center to be picked.
Further, by triangle inequality (given it is a metric space), the di-
ameter of any cluster in C is at most twice d(ci, cj). Combining
these two bounds, it follows that D ≤ 2 ∗D∗ which completes the
proof.

Retrieval. Once the k-center clustering has been pre-computed,
given a query image, the retrieval algorithm is really simple: rather
than compute the distance of the query to all n points, we compute
the distance to each of the k centers. Subsequently, we pick the
nearest center, and only consider points allocated to this center. The
distance of the query is then computed to each point corresponding
to this center’s cluster, and the top results are returned.

Time Complexity. The time complexity of the clustering phase
is O(nk2). This is easy to see as to choose i-th center, one consid-
ers the distance of each of the (n − i + 1) remaining points to the
(i − 1) already picked centers. Therefore, the time complexity is
of the order of n+ 2n+ 3n+ ....+ kn which is O(nk2).

The time complexity of the retrieval phase varies depending on
the size and distribution of all clusters, but is expected to be of
the order of O(k + n

k
). This is because the distance of the query

point is first computed with each of the k centers. Then, assuming
a roughly equal distribution of points to centers, the query point
is subsequently compared with O(n

k
) points. Notice that for k ≈√

n, the query complexity is only O(
√
n). This is a substantial

improvement over the naive query complexity of O(n).
As a comment, the above approach is intuitive and may work

well even when using a distance that is not necessarily a metric.
The theoretical approximation guarantees however hold only for a
metric space. Also one can incorporate several additional heuristics
to improve performance, such as comparing with points in a small
constant number of clusters rather than just one cluster (depending
on the center distances). Further, it is possible to explore other
clustering algorithms such as k-means. We pick k-center for its
simplicity and as it scales efficiently to a large number of points,
and present experimental results in the next section as a validation
of its performance.

6. EXPERIMENTS AND DISCUSSION

6.1 Experiments - Fashion Dataset
One of the main motivations of our work is to improve the search

experience for online fashion shopping which is predominantly vi-
sual in nature. For our experiments, we created a dataset of nearly

Figure 10: Precision@k evaluation for different distance metrics at rank
k. x-axis shows k varying between 2 and 10 and we see that across all the
Hellinger distance metric performs best uniformly across the spectrum.

Figure 11: Two query examples where matched pattens found in the Top-4
results. The first image in each row shows the query image and the remain-
ing four images in the row are the returned results from our inventory.

1 million images by taking a set of random snapshots from a large
e-commerce website. In this data collection, we focus only on 6
major categories for women’s clothing: Dresses, Tops & Blouses,
Coats & Jackets, Skirts, Sweaters, and T-Shirts. For evaluating the
system performance, we developed it as a mobile application and
deployed it for 15 users who scanned 1600 query images over a pe-
riod of 30 days. Since annotating such a large number of queries,
each for 1 million images was infeasible, we randomly sampled 40
query images for our evaluation. 3 human judges were shown the
top-10 matches for every query image and were asked to rate it on
a scale of 0-4 (0 marking non-relevant matches). Finally, judge-
ments from all human judges was collated and average rating per
query-match pair was recorded as the final relevance.

We use this human judgement to compare different distance met-
rics for histogram matching. 4 distance metrics: Hellinger, Corre-
lation, Intersection and Chi-Square were evaluated. Figure 10 il-
lustrates the relative performance of each of these metrics and as
shown, Hellinger Distance outperforms all other distance metrics
which supports our use of this metric in our matching algorithm.

We also show how our proposed algorithm fares in retrieving
fashion images containing distinct pattern. Figure 11 shows two
such examples of plaid pattern as query and top-4 results returned
by our system. As shown, even without any explicit pattern infor-
mation encoded, our algorithm is able to retrieve matching patterns
from the inventory.

6.2 Experiments - k-center Based Indexing
In this section, we describe our experimental evaluation of k-

center based indexing technique. For a large scale inventory, flat
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Figure 12: Plot of % overlap between indexed and non-indexed results
for k = 50 clusters. The x-axis shows the range of similarity varying in
bucket sizes of 0.2 and the y-axis shows the fraction of queries for which
the corresponding similarity was observed. As can be seen, the histogram
corresponding to the bucket of [0.6, 0.8] has the maximum height suggest-
ing that for many queries, the overlap between the returned top-50 results
in either approach (indexing or not indexing) was between 60 and 80 per-
cent. Therefore the indexing scheme is able to obtain almost as good results
as the non-indexing approach.

Figure 13: Plot of speedup distribution using indexed approach for
k = 50 clusters. The x-axis shows the speedup factor obtained by the
indexing scheme compared to the non-indexing scheme. The y-axis shows
the fraction of queries that obtained a speedup in the specified range. The
factor varies from 10-20 times faster all the way up to 500 times faster. This
is the obtained speed up for k = 50. Contrasting this with the plot of over-
lap shown above, we notice that the indexing scheme obtains substantial
speed up without much loss in result quality.

matching across millions of images can be prohibitively expensive.
Our results in this section show that the suggested indexing and
retrieval approach not only provides substantial speedups over flat
matching but also ensures high overlap with results from flat match-
ing approach. Due to space constraints, we only outline a sampling
of the plots here.

Figure 12 and 13 show % overlap with flat matching results and
speedup against flat matching results respectively when using k-
center based indexing strategy for cluster size k = 50. As can be
seen, our proposed approach obtains a minimum of 10x speedup
for all queries in our database while maintaining an average overlap
of around 60% for top-20 matches.

We also study the effect of varying the cluster size. Figure 14
and 15 illustrate the trade-off that can be obtained between the
speedup and overlap ratio as k scales. Specifically, we observe a
linear speedup in matching time at almost no performance degra-
dation.

6.3 Experiments - Generic e-commerce Dataset
Though our system is primarily designed for matching soft goods

such as fashion, we also experimented to benchmark its generaliza-
tion to other commerce categories containing rigid goods such as
Camera, Toys and Sports. Examples of this dataset is shown in
Figure 17. For each query image, approximately 15 true match-
ing images are collected. 5 are transformed versions of the query

Figure 14: Plot of median % overlap between indexed and non-indexed
results for varying cluster sizes. In this plot we show that even as k is
increased, the percentage overlap between the result sets does not degrade
much. This suggests that we can obtain higher speedups without little loss
in accuracy by tuning k appropriately.

Figure 15: Plot of median speedup using indexed results for varying clus-
ter sizes. We see that as k is increased, the median speed up also increases
steadily compared to the non-indexed approach.

image with randomly chosen transformation parameters for Gaus-
sian Blur, Perspective Distortion, Rotation etc. Figure 18 shows the
sizes of each categories of this dataset.

For comparison, we baseline our results with State-of-the-art de-
scriptors SIFT [2] and SURF [18]. Figure 19 shows the perfor-
mance of each category in the dataset, where our method outper-
forms both SIFT and SURF for all three categories in terms of
Mean Average Precision (mAP) [21].

Figure 16 and Figure 20 show examples of matching results for
Toys, Camera and Sports respectively. Figure 16(a) and Figure
20(b) show that our system successfully retrieves images with dif-
ferent transformations, such as shape, view angle and blurring. Be-
sides, as shown in (b) of both figures, due to the center spatial prior,
our algorithm successfully avoids the noisy information either from
the complex background or from the image headers, which may be
commonly seen in online shopping images.

6.4 Experiments - Public Image Search Dataset
We further extend our quantitative evaluation to a more gen-

eral INRIA Holidays dataset. This dataset [16] consists of images
from different categories such as natural scenes, monuments, build-
ings with varying resolutions and perspective. Each category con-
tains 500 unique images where the first image is used as query and
the rest as matching. We compared our results with the state-of-
art bag-of-words (BOF) based method [9]. Figure 21 shows the
comparison between our proposed algorithm and the BoW base-
line algorithm. We show the baseline performance for two dif-
ferent vocabulary sizes: k = 2000 (BOF2000) and k = 20000
(BOF20000) that were reported in [16]. For the proposed algo-
rithm we discard the spatial prior and use all pixels for computing
the histogram since the dataset does not contain any strong spa-
tial prior. We also experiment with different number of bins and
set the size of Hue histogram to nH = 36. Weights are also ad-
justed accordingly to be 0.5, 0.25, 0.15, 0.1 for H, S, V for color
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(a)

(b)

Figure 16: Toy examples of retrieved results.

(a) Toys

(b) Sports

(c) Camera

Figure 17: Examples of one collection of the online commerce data that
contain three different categories.

pixels and V for gray pixels, respectively. This is done to account
for larger color variation obtained by sampling from the whole im-
age instead of center. The mAP result of our algorithm is denoted
as color-A in Figure 21. To utilize spatial information, we further
divide each image into 5 patches (left, right, top, bottom, center)
and compute their individual similarity. These similarities are av-
eraged to generate a final matching score. The mAP result of this
extension is denoted as color-B in Figure 21. Note that by only
using 60 features(36+8+8+8=60), our algorithm outperforms the
baseline result BOF2000. By dividing the entire image into sev-
eral small patches to include some spatial information, our result
(color-B) even outperforms the result by using 200000 visual words
(BOF200000).

6.5 Computational Costs
Using 24GB RAM, Intel Xeon E5630, 2.53GHz, the average

feature extraction costs 10ms per image, and retrieval about 80ms,
(i.e. average time required for matching the a query image with
all the images in the 1 million online commerce image dataset).
Each feature vector consists of 49 float values totaling to 196 bytes
of memory. Matching server for 1 million items takes 190MB of
RAM to load feature indices and return query results in real-time.

Figure 18: Data distribution of one collection of the online commerce
data that contain three different categories.

Figure 19: mAP (Mean Average Precision) comparison between the pro-
posed method with SIFT and SURF.

Figure 22 shows the average time used for indexing and matching
each image for different categories. Our speed metrics show that
our system is at par with the leading online search engines. Fur-
thermore, our low memory footprint indicates the scalability of the
system to a larger number of categories.

7. CONCLUSIONS
In this paper, we presented a color based visual search engine for

fashion. Text-based search has been extensively studied in the lit-
erature over the last two decades. As the web evolves from text to
more sophisticated content including billions of images, it is cru-
cial to re-evaluate and design new systems robust enough to deal
with modern applications such as image search. Take for example
the application of searching for clothing items in an online search
engine. The task at hand is of a visual nature where users would
like or even expect engines to be able to return results from their
inventory very similar to a dress that they have a picture to. This
happens often when someone takes a picture of a dress from a cell
phone, either of another person, or in a store, and would like to be
able to look up prices or stock availability from online stores im-
mediately in seconds. We design a massive system specific to this
application and introduce techniques of computer vision that may
go beyond this domain. Our system is live and open to use by any-
one under the eBay Fashion App and leverages the eBay inventory
using techniques presented in this paper.

Our algorithm is motivated from insights into real-world fashion
data that enables us to design simple yet efficient object localization
and color matching technique. Our main findings from this work
are as follows:
• Spatial priors can be extremely useful in localizing objects in

the images taken by amateur sellers. This is because intuitively
most of the sellers tend to place the product at a certain location
in the image that be learned from the data.
• By using only color information, we can also get a reasonable

handle on the textures and patterns of fashion items without
explicitly modeling them.
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(a)

(b)

Figure 20: Camera and Sports examples of retrieval result for online
commerce dataset. The top results are for a query image camera and one
can notice several similar camera images are returned. The bottom results
are for a sports equipment.

Figure 21: mAP (Mean Average Precision) comparison for the proposed
algorithm and BOF baseline algorithm on INRIA holidays data.

• It is important to separate the chromatic (color) content of the
image from its achromatic (grayscale) content. This is because
most of the product images uploaded by amateur sellers have
low saturation which makes it difficult to differentiate among
them by only using their color content.
• We present an indexing scheme that is particularly suited for

image based query search and is able to exploit the similar
query and result spaces of images or swatched images, unlike
traditional text search engines. This helps scale our techniques
to millions of images and obtain efficient yet accurate searches.

Using these insights as designing principals of our visual search en-
gine, we compare the results of our system to other approaches. We

Figure 22: Averaged computing time for each image used for online com-
merce dataset. Our algorithm is computationally light and requires small
memory.

also illustrate successful matching results for distinctive clothing
patterns. Furthermore, we baseline our performance with state-of-
art image retrieval methods such as SIFT, SURF and Bag-of-Words
techniques and illustrate our low computational cost advantages.

Our future work focuses on extending the proposed method to
incorporate non-uniform bins and explore tf-idf based vector space
models for matching. It would also be very interesting to design
and implement image based search applications for other genres
beyond fashion and understand the technical challenges specific to
these domains.
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