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ABSTRACT  
Road surface skid resistance has been shown to have a strong 
relationship to road crash risk, however, applying the current 
method of using investigatory levels to identify crash prone roads 
is problematic as they may fail in identifying risky roads outside 
of the norm. The proposed method analyses a complex and 
formerly impenetrable volume of data from roads and crashes 
using data mining. This method rapidly identifies roads with 
elevated crash-rate, potentially due to skid resistance deficit, for 
investigation. A hypothetical skid resistance/crash risk curve is 
developed for each road segment, driven by the model deployed 
in a novel regression tree extrapolation method. The method 
potentially solves the problem of missing skid resistance values 
which occurs during network-wide crash analysis, and allows risk 
assessment of the major proportion of roads without skid 
resistance values.  

Categories and Subject Descriptors 

G.1.1 [Mathematics of Computing]: NUMERICAL 
ANALYSIS: Interpolation –extrapolation,/ G.4:  
MATHEMATICAL SOFTWARE: Algorithm design and analysis 

Keywords 
Risk management; data mining; model deployment; road asset 
management; missing data; skid resistance. 

1. INTRODUCTION 
Road asset managers have huge and diverse volumes of data at 
their disposal, including results from the significant road surface 
friction measure surveys. Skid resistance is a standardized 
measure of the road surface friction between the road surface and 
a skidding tire, and is recognized as the best established link 
between road attributes and crash risk (Cairney 2008, [1]).  
General world-wide practice relies strongly on historically 
developed skid resistance heuristics to identify risky roads for 
decision support in budget decisions [2]. This traditional method 
of relating roadway demand categories and corresponding skid 
resistance investigatory levels has the potential for over or under 
engineering of roads not conforming to the norm, thus approving 
unnecessary expenditure or creating latent safety issues. 

 In the data available, the presence of missing values and data 
quality issues favoured a scope of analysis converging towards 
local, homogeneous roadway segments, which is the norm for 
current roadway research [3]. However to solve the problem of 
finding all skid resistance problem roads, a scope of analysis of 
the whole  road network was required. Thus a method was sought 
to overcome the limitations of the missing data. 

This paper proposes a two-part solution. Based on the premise 
that historical roadway data can predict future crash rates [4], a 
regression tree model was trained on those data from the crash 
locations with skid resistance surveys available (40% of all crash 
locations) to predict the aggregated crash rate of each 1 km road 
segment. The bagged M5 algorithm [5], fitted with roadway 
features, road wear, crash and traffic variables, returned a 
coefficient of determination (r-sq) above 0.9 and was able to 
predict the full range of values in the crash range when deployed 
over the network. With the models developed, a deployment 
solution was sought to identify risky roads, including the 60% of 
crash locations without the key skid resistance survey results. To 
manage this situation, a deployment of the model used a “what if” 
data table framework.  This method allowed the model to be 
deployed as a predictive engine in a crash /skid resistance profile 
for each crash location in the network.  To provide the x-axis of 
the profile, each crash location instance was replicated and 
collectively populated with skid resistance (F60) values between 
the maximum and minimum at a default increment. To provide 
the corresponding y-value of the skid resistance/crash rate point 
for each replicate, the model was applied in the novel 
extrapolation process called regression tree extrapolation, and the 
crash prediction made.  

The combined points from the replicates produced a curve 
showing a change in crash rate with increase in skid resistance. 
Each curve was independently interrogated to seek the existence 
of a skid resistance threshold where the rate dropped to a low 
crash rate plateau. In complying roads, comparison between the 
known crash rate of the roadway segment and the optimal 
predicted crash rate allowed identification of roads with elevated 
crash rate. Since the actual skid resistance of the road segment did 
not need to be known, the method could be applied to almost all 
roads. Thus the method provided a data-driven machine-learning 
method to identify risky roads from across the whole network. 

The crash curves showed three patterns: (1) the pattern outlined 
above; (2) non-skid resistance sensitive roads showing little or no 
change found generally in low crash roads; and (3) erroneous 
patterns. The data was “observational” in nature, being sourced 
from other projects, and had many aggregated values and known 
quality issues.  The emergence of the consistency of strong 
patterns of skid resistance thresholds in results reinforced the 
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appropriateness of both the modelling method and the “what if” 
approach. 

The method was evaluated by applying the principles of Coppi’s 
Informational Paradigm [6]. Coppi provides the precursor of a 
formal data mining framework that allows acceptance of 
inductively derived knowledge using non-statistical data and 
methods, e.g. databases and data mining algorithms, when applied 
compliantly within the methodology. The high-level of confluence 
found between the components of the study was an indicator of 
goodness. Agreement was found among the domain knowledge, 
the statistical models and data mining models evaluated in the 
study’s Strategy of Analysis.  

In summary, (1) the problem of complexity has been solved by 
combining an extrapolation method with a regression tree model 
to analyze road crash data, and (2) the generation of a skid 
resistance/ crash rate profile sidestepped the problem of the 
missing values in the experimental variable skid resistance, thus 
allowing the whole of the roadway dataset to be processed.  

The rest of the paper is as follows. Section 2 presents the related 
work. Section 3 introduces the dataset that we have for analysis.  
Section 4 discusses the proposed methodology. Section 5 
evaluates the results and provides the related discussion. 

2. PRIOR WORK 
Road crash studies initially used statistical methods such as 
Analysis of Variance, Linear Regression, Poisson Regression, 
Negative Binomial Regression and Log Linear in the examination 
of homogenous or near homogeneous road sections. Investigations 
have examined roadway features, prevailing conditions and traffic 
factors related to the causes of crashes or to predict crash rate 
[3,4]. Analyses generally compared limited classes of roadways, 
with further limitations such as data quality, distribution 
assumptions and experimental design imposed by statistical 
methods [3].  

A second wave of road and crash analysis, applying data mining 
(DM) on reasonably homogenous data, has shown skid resistance 
to be significant. A method, using Random Forest Trees to 
examine crash severity on arterial roads, concluded that high skid 
resistance has a correlation with severity of accident [7]. 
Outcomes from a study of skid resistance and texture depth on 
crash rate in an expressway tunnel found an inverse relationship 
between crash rate and skid resistance [8]. A similar inverse 
relationship between crash rate and skid resistance was recently 
described using clustering to evaluate the effects of skid resistance 
and texture depth in crash rates [9]. 

A third wave of road crash analysis progressed from historic 
aggregated crash rate to examination of conditions leading up to 
individual crashes, and fitted models with real-time traffic 
conditions to predict imminent crashes, thus allowing 
modification of traffic flow [3]. 

The commonality in most road-crash analysis, represented by 
these studies, is examination of homogeneous or near 
homogeneous roadway with above-mentioned limitations. This 
study extends the capability of the second wave by demonstrating 
a data-driven method of analysis for the heterogeneous data 
representing the whole network, and allowing the effect of all 
participating variables to be expressed. 

The debilitating problem in our scenario was missing skid 
resistance values.  With the analysis focused on assessing the skid 
resistance of all sealed roads, a solution was required to 

accommodate the 60% of crash locations without skid resistance 
values.  

Statistical imputation methods for replacing a small proportion of 
missing values with a value or set of values from a similar class 
have been in long usage. For a larger proportion of missing 
values, methods have applied data mining, and include 
deployments of association mining [10], decision tree [11], 
multilayer perceptron [12] and nearest neighbor [13].   

Recently, Kwak’s single replacement imputation method 
developed for a very large proportion of missing values, utilizing 
the multivariate DM environment [14], demonstrated that 
imputation of the proportion of missing values in our study was 
well within reach. The method, relying upon the intrinsic 
similarity between instances in like classes found in a small 
proportion of the population, selected the "optimal" value before 
data mining, and demonstrated the capability of managing 
between 50% and 90% of missing values in a given attribute.  

Our non-replacement method, also conducted in the multivariate 
DM environment, relies on the similarity of relationships within 
classes in a small but representative population. However the 
method benefits from non-rejection of any imputations, with the 
benefits including the presence of a powerful context for 
understanding the behavior of the predictions across the value 
range of the attribute of interest, skid resistance, and identification 
of aberrant predictions. 

Inspired by the “what if” DM deployment study [15], our testing 
of crash rate with the regression tree model across the full range 
of skid resistance solved both the missing value problem and 
provided a model deployment method to produce the skid 
resistance/crash rate curve.  

3. UNDERSTANDING THE DATA 
While road systems are evolutionary with a cyclic, unknown 
dynamic dependent on improvement, maintenance, degradation 
and weather, this study treats the four year period as a snapshot. 
The road data is evolutionary in the sense that crash locations 
were populated with the latest roadway data by crash date. 
However, because of natural variability and complexity, crash 
rates were averaged over the full four years and do not reflect the 
potential evolutionary change. Non-crash roads were excluded 
from the analysis because of the lack of detailed site data and 
lower significance. All available crashes were included because of 
their potential for traffic disruption [3], and the crash data set, 
while believed to be reasonably complete, suffers from being 
reported crashes only [4]. Extensive data imputation of the road 
data was required using comparative annual studies and 
transactional files, but with insufficient data, a small proportion of 
crashes was dropped.  

3.1 Representing the Crash Risk Target 
The fundamental premise accounting for roads with elevated crash 
rate is that crashes are caused by bad decisions made by drivers in 
an environment resulting from surrounding traffic conditions and 
the unforgiving geometric designs created by engineers (or 
wear/damage) [3]. Logic dictates that crash-prone roads [16] 
would maintain high crash-rate from year to year if road dynamics 
were a major contributor to crash. Thus the first role of the 
proposed Strategy of Analysis was to demonstrate that roads 
actually maintained their crash rate from year to year.  

The commonly used absolute road segment crash rate (crashes/km 
/yr) was selected as the target. With awareness of the increasing 
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randomness with reducing interval size, the industry 1km distance 
interval was selected [4] and a 4 year time span selected to 
moderate the fluctuations between individual years.  The road 
segment crash counts were calculated by counting the total 
number of crash instances per 1 km road segment.  

Crash counts ranged from 1 to 100 crashes for the four years, 
making the range of annual crash averages from 1 to 25 crashes, 
while annual totals ranged from 0 to 32 crashes. To investigate the 
annual variation in crashes, the average annual crash count of 
each road segment was plotted against the annual crash count. 
Examination of Figure 1 shows that roads at a given average crash 
count maintain a range distributed around the average value, and 
collectively yield a Poisson-like distribution.  

 
Figure 1 Poisson distribution of annual road segment crash 

counts for crash count averages  

Thus, roads did maintain a characteristic crash count range from 
year to year. While the population count of road segments of each 
average dropped exponentially as the crash count increased, each 
average had sufficient data elements to maintain its "normal like" 
distribution through to the average count of 15. Above a crash rate 
of 15 crashes/km/4 years, the distributions became random, but 
members of the range remained capable of discrimination. A 
careful examination of the median confidence levels in the 
quartile box of each average shows only minor overlapping, 
ascertaining that the averages are generally significantly different. 
Labels A, B and C show the quartile projections on to the annual 
crash count axis, showing quite distinct differences. 

Selecting Inputs 
The road and crash attributes are listed in Table 1. Skid resistance 
values were averaged from 100m averages to match the 1 km road 
segment values. The survey results were relatively scarce; having 
been performed on only about 25% of the road segments either 
prior to or during the data sampling period. When allocated to the 
crash locations, only 40% had skid resistance values available, 
either before or after the crash. The presence or absence of skid 
resistance effectively partitioned the crash location dataset into 
two discrete sections and the dataset with skid resistance values 
became the training set. The relationship between these data sets 
is represented by:  

DS = TR U NS where DS is the whole crash/road segment dataset, 
NS is the non-skid resistance data subset, and TR is the data subset 
with skid resistance values and is used as the training set.  

The modeling objective was developed to analyze the behavior of 
the one km road segments using the enhanced data at the crash 
sites, i.e. to predict the one kilometer road crash segment crash 

count at available crash sites using road characteristics at the 
crash sites and the general characteristics of the road segment 
itself. 

Table 1 Contributing Attributes  

Id Variable Class Name Type Range/example 
d Dependent  Crash count (4 year) interval 1-100 
 Independent     
a1 Design Roadway type class highway, main .. 
a2  Crash speed limit interval 10 to 110 
a3  Lane count interval 0 to 4.7 
a4  Divided road class yes/no 
a5  Has_intersection(s) class yes/no 
a6  Carriageway type class single, dual 
a7 Geometry Horizontal alignment class straight, curve .. 
a8  Vertical alignment class Level, grade, 

crest, dip 
a9 Roadway 

surface 
Avg Friction at 60 1km 
(skid resistance) 

interval 0.19 to 0.65 
ROAR Method  

a10  Texture depth interval 0.4 to  15.0 
a11  Seal age interval 0 to 20 
a12  Seal type interval Spray seal, DGA, 
a13 Wear /damage Roughness average interval 0 to 406 
a14  Rutting average interval -2 to 29 
a15 Roadway 

features 
Roadway features class intersection, 

bridge, rabout ….
a16  Traffic Control class none, give way ..
a17 Demography & 

settlement 
rural or urban class Urban/rural 

a18 Traffic Annualized average 
daily traffic(AADT) 

interval 1 to 84,232 

a19  Percent heavy vehicle interval 0 -95 
a20 Crash 

conditions 
Wet road surface  class yes/no 

a21  Atmospheric class Clear, raining, 
foggy, smoke .. 

a22 Crash details Crash severity(max) class 1-fatal-5 property
a23  Crash nature class Sideswipe, head 

on, read end etc. 

4. THE PROPOSED METHODOLOGY 
This section proposes the skid resistance/crash rate profiling 
method and outlines the method of evaluation.  

4.1 The Risk Profiling Method 
This method builds and applies the model in an extrapolated skid 
resistance/crash rate profile to produce a skid resistance/crash 
curve and queries the curve to identify road segments with 
elevated crash risk due to skid resistance deficit. The process is 
shown in Figure 2.  

Process A performs training of the model (M) on the data set (TR) 
with allocated skid resistance values (40% of the total road/crash 
dataset), using the algorithm bagged regression tree method M5 
[5].  Bayesian, decision trees, and random forests methods were 
inappropriate because of their inability to predict numerical 
values. The road crash regression tree model demonstrated that 
roadway features and traffic relationships can well describe crash 
count [17]; however a dynamic process was required to apply the 
model to identify the roads with skid resistance deficit. Haas, 
2011 [15] proposes applying data mining models in dynamic 
“what if” extrapolation frameworks for unlocking the deployment 
potential of the model. We propose a profiling method that is a 
simulated experiment and has all of the hallmarks of the statistical 
hypothesis testing scenario, with rules that are imbued with an 
understanding of the fundamental mechanisms that govern a 
system’s behavior [15].  
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Our method distinguishes itself from the normal scenario of 
extrapolation, which calculates predictions using a singular 
expression. This is achieved by deploying the regression tree 
method as the predictive engine. The set of expressions delivered 
by the regression tree model is expected to be more capable of 
accurate prediction than a single expression applied over the 
whole range.  As mentioned above, we coined the term regression 
tree extrapolation for this process.  

 

Figure 2 Model Deployment 

In Process B, the risk profile for each road segment was generated 
by populating the x-axis with a default range of skid resistance 
values (PR) between 0.15 and 0.65 with an increment of 0.05. 
Each instance present in the dataset DS was replicated by using 
the values of the PR range and stored in a data set (DP).  

Let ܦ ௜ܵ ൌ ሼܽଵ, . . , ܽ௡ሽ where ܽଵ	to	ܽ௡ିଵ are the input attributes 
including the skid resistance attribute, and ܽ௡	is the original target 
value. Instances in DS are replicated by replacing the skid-
resistance attribute value by constant values in the PR range: 

ܦ ௜ܲ ൌ ሼܽଵ, . . , 0.15, . . ,			ܽ௡ሽ 

……… 

ܦ ௜ܲାଵ଴ ൌ ሼܽଵ, . . , 0.65, . . ,			ܽ௡ሽ. 

In Process C, the dependent y-axis value was predicted for each 
replicate through our process of extrapolation, where the method 
processes each skid resistance value along the x-axis using a series 
of rules, depending on the skid resistance value of the replicate. 
Thus, based on the feature combination in the replicate under 

processing, the model selects the appropriate formula used to 
predict the crash rate (y-value).  

The predicted crash rate was added to the replicate records in the 
profile data set DP’. The prediction is represented by: 

ܦ ௜ܲሾܽ௡ሿ ൌ ܦሺܯ	 ௜ܲሾܽଵ, . . , ܴܲ, . . ,			ܽ௡ିଵሿሻ, 

where M is the model,  DP is profiled crash-road table, and each 
instance has n attributes, of which 1 to n-1 provided the input 
variables and nth variable provided the target value. The model M 
was applied on each instance of DP with (n-1) attributes values to 
predict crash rate, stored in the nth attribute, displacing the original 
target to the new position.  This process creates the populated 
profile instance represented by:   

ܦ ௜ܲ
ᇱ ൌ ܦ	 ௜ܲሾܽଵ, . . , ܴܲ, . . , ܽ௡ିଵ, ܽ௡, ܽ௡ାଵሿ, 

where attribute 	ܽ௡ denotes the predicted value by the model M 
and ܽ௡ାଵdenotes the original target value. 

With completion of the predictions, Process D creates 
visualizations of the crash risk curve (crash risk vs. skid 
resistance) for a given road segment to show the progression of 
crash risk with the increase in skid resistance for the road segment 
of the crash location. Process E identifies skid-resistance sensitive 
roads with elevated crash rates, performing below their potential 
best, that are subsequently tagged as 'investigatory' for 
prioritization. The investigatory flag is set when the crash rate of 
the roadway segment was higher that the predicted optimal crash 
rate. The optimal skid resistance value is read from the curve, 
without knowing or referring to the existing skid resistance value. 

4.2 Evaluating the method 
Quality and configuration checks, planned in the Strategy of 
Analysis, were performed throughout. In the modelling stage, 
assessment included; (1) a comparison of competing predictive 
algorithms; (2)  a configuration optimization of the selected 
algorithm, and (3) an investigation into the poor deployment 
performance and its consequence to the outcomes. Subsequently 
to model deployment, profiles were assessed for goodness of both 
individual profiles and the method. Firstly, profiles were 
compared to studies with measured changes [1] and probabilistic 
studies [18] for the expected form of the curve, i.e. a drop in 
crash rate with an increase in skid resistance. For roads with skid 
resistance values, the actual crash rate/skid resistance point was 
checked for its proximity to the curve.  Processes were developed 
to examine the global properties of the profile dataset (DP’), i.e., 
examining the collective set of profiles for the proportion of 
erroneous profiles, the shift in distribution of  skid resistance with 
optimization, and the shift in crash rates. Evaluations relied on 
finding the expected patterns as an assessment of goodness. 

5. RESULTS AND DISCUSSION 

5.1 Preliminary selection of algorithms 
selected on performance of test data 
In the first stage, algorithms capable of making numeric 
predictions were compared to find the best performing group. The 
algorithms, in default configuration, were trained on the data set 
TR, and fitted with an improved version of the attribute list. The 
performance criteria were (1) high predictive capability when 
deployed on the whole network and (2) capability of prediction 
through the full range of crash values (1-100).  The families tested 
included support vector machines, multilayer perceptron, nearest 
neighbor, regression and regression trees.  
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Results in Table 2 show the correlation coefficients (r) for both 
training and deployment over the whole network, and the 
capability of predicting the full  ranges of crashes between 1 and 
100 crashes in training in columns Min P.V. (minimum predicted 
value) and Max P.V. (maximum predicted value).  

Table 2 Comparative model testing 

Algorithm 
Training 
(on TR) 

Deployment
(on DS) 

Min 
P.V. 

Max 
P.V. 

LeastMedSq 0.5972 0.612 -1.2 21.85 
Lazy.Kstar 0.9774 0.67 1 100 
Decision Table 0.9598 0.674 -4.26 98.7 
Linear Regression 0.7332 0.6851 -20.5 53.9 
Lazy.Ibk 0.8991 0.6859 1 100 
Support Vector 
Machine 0.68 0.7 -8.4 42.9 
M5Rules 0.9226 0.7023 -15.82 97.67 
M5P 0.9556 0.7055 -0.46 86.9 
MultiLayer 
Perceptron 0.9221 0.712 -53.9 104.8 
Dagged M5Rules 0.8849 0.7705 -0.46 87 
Dagged REPTree 0.8553 0.775 2.2 88.6 
REPTree 0.9238 0.7848 1.01 100 
Bagged M5Rules 0.9569 0.8043 -4.26 98.7 
Bagged REPTtree 0.962 0.8136 1.27 100 
 

Some instances of Min P.V. show negitave values, indicating an 
erroneous outlier value below the lower range of 1. The 
deployment correlation coefficients (r) are ranged from 0.612 to 
0.816 with the highest returns and the capability to predict 
through the full range posted by bagged M5Rules (a variant of 
M5) and REPTree. Multilayer perceptron was found to produce 
excessive outliers. Of the models, Bagged M5Rules was selected 
over Bagged REPTree because of the compact readable rules.  

 
Figure 3 Crash range predicting ability of tested algorithms 

Examination of Figure 3 shows that the poorest performers 
included Least Mean Squares and linear regression, attempting to 
perform predictions with a single rule. Success of the regression 
tree was attributed to firstly classifying the road segments, then 
producing a rule for each class, rather than describing all 
relationships in a single rule. 

The results show that bagged M5Rules was among the best 
performers on training data, but all in deployment demonstrated a 
less than stellar correlation coefficient (r) of 0.8 (r-sq: 0.64). This 

degradation was thought to be caused by the high proportion of 
instances with null skid resistance values. 

5.2 Investigating the effect of null skid 
resistance values on the deployment accuracy 
To ascertain the effect of the missing skid resistance values on 
deployment classification accuracy, a model (M1) was trained 
with the same data (DS), except for the removal of the skid 
resistance attributes, making the data set (D1). In training, model 
M1 returned a correlation coefficient of 0.92, marginally below 
the model with skid resistance (0.95). But in deployment the order 
was reversed, with the model with non-skid resistance returning 
0.805 (r-sq 0.648), slightly above the skid resistance model 
deployed in the dataset degraded by the high proportion of skid 
resistance null values. Thus we conclude that the model (M) with 
skid resistance has the potential to perform much better than the 
model without skid resistance, should the skid resistance values be 
known. However, the important question is how the change in 
skid resistance affects crash rate and how the nulls impact on 
behaviors of predictions in the profiles data set (DP’) on the 
instance replicates, with each set having a range of F60 values. 

5.3 Further assessing the impact of the 
change in skid resistance on crash prediction 
To ascertain the effect of the changes in skid resistance on crash 
rate, a semi-random data subset was chosen from the training 
dataset (TR), and sorted on crash count during the selection 
process to ensure that a representation of all crash rates was 
present.  The chosen instances were replicated making three sets 
of each, and the skid resistance values 0.2, 0.34 and 0.5 were 
inserted, one in each replicate.  Modeling with the new data 
presented a shift into new territory, because the standard model 
statistics no longer applied since the value of a significant variable 
had been changed. 

With model (M) deployed, the results in Figure 4 show significant 
changes in crash count with an increase in the values of skid 
resistance.  

 

Figure 4 Change in predicted crash count with increasing 
values of skid resistance, values 0.2, 0.34 and 0.5 

Examination of the chart shows most instances experience a drop 
in crash rate with an increase in skid resistance, with the exception 
of some that increase (label A & B), suspected of producing the 
erroneous skid resistance/crash profiles, possibly due to a missing 
attribute. Further investigation is required. A third set show no 
crash rate response to skid resistance at all (label C). These results 
provide an excellent guide to the likely behaviors of predictions in 
the profiling method, and show that crash rate is very mobile, 
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exhibiting dramatic changes in some cases, with an increase in 
skid resistance. These results provide evidence for the strong 
inverse relationship between skid resistance and crash rate, with 
the magnitude depending on the class of roadway.  

Returning to the question unanswered in Section 5.2, this 
experiment shows that under the influence of the unknown but 
correct skid resistance value, crash rates are likely to move 
towards their “correct” value, and the deployment would be 
expected to be higher than 0.80 (R-sq 0.64), were the values 
known. Thus the model is better than indicated by the correlation 
coefficient. Further, the comparative model method in Section 5.2 
shows only a small difference between models with & without 
skid resistance, indicating that this method is relatively ineffective 
in judging the significance of an attribute. 

5.4 Configuring the candidate model 
Section 5.1 described the selection process in choosing the 
bagged M5Rules model (M). However, in an effort to improve the 
performance of the model, configuration testing was performed, 
changing the rule splitting criterion of “the minimum number of 
instances” required for a split (minNum), to find the optimal level 
of generalization for the model. Results are shown in Table 3. 

Testing was performed on the complete road/crash location 
dataset without skid resistance (NS), selected to remove the effect 
of the missing skid resistance values in deployment. The default 
settings were used for the M5Rules algorithm except the minNum 
parameter. The parameter build Regression Tree remained at false 
to build a model tree with a regression formula at each leaf node. 
The parameter unpruned was set at false to allow automatic tree 
branch pruning, and use unsmoothed set at false to deactivate the 
process to compensate for prior smoothing of data. The 
configuration variable minNum was the experimental variable.   

As stated above, minNum configures the minimum number of 
instances required before branching is allowed on a condition, and 
thus determines the number of classes and rules in the model. The 
initial value set to 4 produced an over-fitted model with slight 
degradation in deployment. The split count value in Table 3 
shows that the value of minNum was progressively doubled until a 
severely under-fitting model was produced at the value of 1024. 

Table 3 Training and testing of the whole dataset 

Model  M1 
Split  Count 
(minNum) 

Training 
Result onTR1 

Correl. Coeff.(r) 

Rule 
count 

Testing result on all 
instances on D1, 

Correl. Coeff.  (r) 
4 0.9471 136 0.7371 
8 0.9497 154 0.8079 
16 0.9437 119 0.7371 
32 0.9337 111 0.8039 
64 0.9220 80 0.7474 

128 0.9039 55 0.7710 
256 0.8699 36 0.6937 
512 0.8257 18 0.7183 
1024 0.7415 8 0.6861 

 

 With a progressive increase in minNum, the results show a 
successive reduction in rules/class count. Results from 
deployment show that the most generalized model with near-best 
deployment performance has the minNum value of 32, providing a 
deployment correlation coefficient (r) of 0.8039 (r-sq 0.64) with 
the model having 111 rules. The production model (M) for this 
deployment in the method was built on the training data with skid 
resistance (TR) with default parameters, except for the minimum 
Number of Instances (minNum) set to this value 32. A plot of the 

crash rate vs. the predicted crash rate produced by the model (M) 
is shown in Figure 5.  

 
Figure 5 Predictive capability of bagged M5Rules 

 This plot shows a reasonably narrow variance, endowing the 
model with the ability to predict crashes within an acceptable 
tolerance, thus having the ability to discriminate.  Examination of 
the vertical distribution of each prediction suggests them to be 
approximately Poisson distributed, with a region of highest 
density generally positioned centrally, with variation relative to 
the crash count. The variance is less of a problem than first 
appears, except in the lowest crash range, were below 10 
crashes/km/4yr, the variation is greater than the crashes being 
predicted, and thus the model loses its ability to successfully 
discriminate. 

5.5 Skid resistance/ crash profile results 
The selected model (M), when deployed on the skid resistance/ 
crash profile dataset (DP), was used to predict the crash count 
values for each of the replicated instances.  

Examination of the set of skid resistance/crash count values for a 
given crash location from the profile dataset (DP’) shows that the 
profiling process does operate as stated. Table 4 shows that with 
an increase in skid resistance (F60), a substantial decrease in the 
four-year crash rate values (CC) is predicted. This profile is 
represented by curve A in Figure 7. 

Table 4 Profile values of a sample crash site showing predicted  
4 year crash count by skid resistance. 

F60 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

cc 101.3 100.1 35.1 33 31.5 19.9 19.2 14.7 12.6 10.4 8.2

A comparison of the measured skid resistance/crash point for this 
crash location at (1.8, 100) and the curve shows that the point is 
almost directly on the curve, thus providing an absolute link 
between the real world and the profile: an instance of assessment 
contributing to the external validation process.  

As mentioned above, new metrics were needed to assess the result 
because the standard metrics were no longer relevant in a 
deployment where the data, skid resistance in each replicate, had 
been extensively modified. The first new method used a plot 
showing changes in predicted value (crash rate) in comparison to 
the target (original crash count).  The plot shows the change in the 
predicted crash rate caused by the change in independent variable 
of the experiment (skid resistance). As noted in Section 5.3, road 
sections can experience a large predicted change in crash count 
with a change in skid resistance, and the mobility is shown in 
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Figure 6, with some road sections traversing the full range of 
crash rate with a corresponding change in skid resistance.  

 

Figure 6 Actual crash vs. predicted crash from the populated 
profile (DP’) 

We can draw some generalizations from the plot, and foci of 
interest are highlighted by the labels A to D.  

 A: a high proportion of crash rates do not have high crash 
counts, showing the existence of roads with lower skid 
resistance sensitivity; 

 B: in the region of low crash rates, fewer road segments have 
extremely high predicted crash count rates compared to road 
segments with higher crash rates; 

 C: even in the higher range of crash rates, not all crash 
ranges have extreme crash rates;  

 D: instances with naturally high crash count  can experience 
a significant drop in crash rate with increased skid resistance. 

Representatives of the crash rate/skid resistance curves from the 
profiles for various crash sites are displayed in Figure 7.  

 

Figure 7 Sample profiles 

Each of the locations shows the potential to substantially reduce 
its crash rate with an increase in skid resistance, with the 
exception of sample C which is a low crash-rate road.  High 
crash-rate roads labeled A and G show the potential to 

substantially reduce their crash rate, with sample A experiencing a 
dramatic drop in crash rate with a skid resistance change from 
0.18 to 0.25, but not falling below the crash-prone level until the 
F60 value of 0.6. Samples D & E show a suspected erroneous 
trend requiring investigation in the lower skid resistance ranges 
where crash-rates rise with a rise in skid resistance. 

5.6 Assessing the profiling process  
A prototype application was developed to demonstrate the value 
of the method to road asset managers. The screenshot shown in 
Figure 8 shows an example of the skid resistance/ crash rate curve 
drawn by querying the model. Note that the model was developed 
using M5Rules (not bagged) with a more comprehensive dataset. 

 
Figure 8 Predicted crash rate curve as crash location  

This method utilized the model parameter of building the 
Regression Tree. With the parameter set to true, the model 
calculates an averaged results from all instances at the leaf nodes, 
rather than providing a rule. This configuration results in the flat 
plateau sections in the curve, each with a zero gradient for the F60 
extent of a given rule. 

The curve shows the expected pattern with a high average crash 
rate (20 crashes/km/4yrs) at lower skid resistance values, followed 
by a rapid drop in crash rate at the skid resistance (F60) threshold  
of 0.35, and subsequently reaching a low crash rate plateau of 9 
crashes/km/4-yr beyond the skid resistance threshold of 0.45.  

The change in skid resistance from 0.325 to 0.45 almost places the 
road into the target non-crash prone zone (Figure 8) [16]. The 
profile shows a level of consistency between the predicted curve 
and the real world measure with the actual skid resistance/crash 
rate point almost on the curve. 

To assess the predictions collectively for the whole network, an 
algorithm was developed to scan a potential profile error state 
found in profiles inconsistent with the curve, i.e., of the crash 
minimum preceding the crash maximum. The results showed a 
high level of consistency, with only around 5% of profiles being 
highly inconsistent with the curve shown in Figure 7. Further 
analysis shows that predictions become progressively more erratic 
with low crash roads, as the crash count successively drops below 
8 crashes/km/4yr, with this phenomenon thought to be a 
consequence of both the crash count dropping beyond the 
resolving power of the model and the natural unpredictability of 
low crash roads. However, examples of quality predictions are 
found in roads with uniformly low crash rates, as demonstrated by 
profile C in Figure 7.  
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Since the method is making prediction of improved crash rate by 
generally increasing the skid resistance, the range and distribution 
of skid resistance of optimized roads is expected to be above the 
existing range, and also be normally distributed. Data 
visualization shows this to be true. Examination of Figure 9 shows 
that the range of measured skid resistance ranges from 0.19 to 
0.65 in a near normal distribution. In the predicted optimal low 
crash model, the skid resistance ranges from 0.45 to 0.6 in a 
skewed normal distribution. This pattern indicates that the method 
is operating in a reasonable and expected way.  

 
Figure 9 Comparison of the road segment skid resistance 

range vs. the predicted values for optimal crash rates 

The goal of a prediction of an optimized skid resistance value in 
our context is the reduction in crash rate. The process is 
performed in stage F of the method (Figure 2) which predicts a 
consequential reduction in crash rate with the optimal skid 
resistance value. A comparison of the original crash count values 
and the potential improved crash count predicted by the process is 
shown in a distribution in Figure 10, with the predicted optimal 
crash rate generally below 20 crashes/km/4yr. 

 
Figure 10 Comparison of recorded crash rates and predicted, 

optimized crash rates 

The comparison between the distributions of recorded crash rates 
and predicted optimal rates shown in Figure 10 and Table 5, show 
a huge potential improvement throughout the network, with 
almost 75% of crash sites approaching or achieving crash rates 
below the crash-proneness level of 8 crashes/km/per 4 years. 

 

 

Table 5 Potential improvement in crash rate 

 min  Q1  mean Q3 max

measured crash rate 1  3  13.0 19 100

predicted optimal crash rate ‐1.3  3.3  7.4 10.3 30.8

In comparison, the probabilistically developed skid resistance 
profiles [18] show low-crash threshold ranges of skid resistance 
values lower than ours, with values between of 0.32 and 0.45, 
compared to the range from our model between 0.45 and 0.6. The 
difference is thought to be caused by modeling on low volume, 
wet roads where our method does not perform as well. In other 
comparisons, Cairney’s before and after resealing studies show 
crash rate drops of 23% for dry and 68% for wet road crashes [1], 
in range with improvements in this study.  

Since testing of the skid resistance/crash rate predictions is not yet 
an option, these assessments contribute to the requirement of  
Coppi’s Informational Paradigm for external validation. Comfort 
is taken from the fact that the probabilistic profiles [18] show a 
curve similar to the inductively produced curve in Figure 8. 

5.7 Discussion 
The regression tree method is powerful algorithm that enables 
analysis of a heterogeneous dataset. With the ability to sidestep 
the necessity of having specific distributions patterns that limit 
some statistical methods, regression trees can be applied across 
the full domain. In addition, being capable of making numerical 
predictions allows regression trees to be applied in a “what if” 
data set in our novel extrapolation method to produce a risk 
profile. The attribute of interest provides the range of values for 
the x-axis, and the predicted y-value calculates the risk, producing 
a risk curve across the values of the attribute of interest. Since 
each variable is controlled, except for the independent variable, 
the profile approximates a controlled experiment.  

In investigating the effect of a given attribute in a model, the 
method of modeling with and without the variable has been found 
to be ineffective, showing only a minor loss of predictive 
accuracy between the models. A more effective method creates 
replicates of instances and substitutes a range of values from the 
attribute of interest. When the model is applied, the corresponding 
change in value of the target indicates the magnitude of the 
significance of the variable of interest. 

Data mining models capable of analyzing large and complex 
datasets have been available since the early 1990s, however road 
research has focused on problems on homogenous road sets, 
resulting in a lack of understanding about the interrelationships 
between road crash and the full set of roadway characteristics. 
The presence of missing values has further hampered progress. 
Dynamic methods such as extrapolation have solved both big and 
small problems. However the regression tree and its inherent 
powers has not been formally matched with extrapolation, and  
thus the problem of performing a road scan in the presence of the 
large proportion of missing skid resistance values has never been 
successfully attempted. This study was able to overcome these 
issues by using data mining in this new context. 

6. CONCLUSIONS 
This data mining method demonstrates a decision support 
methodology to assist road asset managers in the task of 
identifying both measured high crash roads and potentially 
dangerous road segments from the whole network, where skid 
resistance upgrade will reduce the crash risk. 
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The current method of roadway assessment relies on a set of 
heuristics based on the skid resistance investigatory levels for the 
various classes of roads, whereas our method, based on the 
historic data, potentially allows each road to be individually 
assessed and optimally configured.  

The model, trained with available roadway data including skid 
resistance values, is subsequently deployed in a novel method 
combining extrapolation and the regression tree. A skid 
resistance/crash rate profile and crash rate curve is produced for 
each crash location, and interrogated to find the optimal skid 
resistance/crash rate for the road segment without knowing the 
skid resistance value of the road. Thus, the method provides a 
solution to the formerly-insurmountable problem of the high 
proportion of roads without skid resistance data. The internal 
measures of the method evaluate well, and the components and 
inductively deduced results generally agree well with external 
measures such as domain knowledge, observed phenomena and 
probabilistic studies.  

Future work is required to consolidate this evidence. New metrics 
are required to assess the individual skid resistance/crash rate 
profiles and document the method’s performance over the whole 
data set. The models and profiles describe many new relationships 
that could contribute to knowledge in the road crash domain, 
including covariate contributions to crash rate, sparking new areas 
of research. Work on data pre-processing and algorithm 
selection/configuration is required to improve the accuracy of 
outcomes, and the latest, improved data should be included. Issues 
associated with having road networks with predominantly high 
road surface friction for the various classes of roadway require 
investigation. The real test of success would be demonstrated 
value in the gradual integration of the method into road asset 
management practices to support decision making. 

 Potential exists for deployment in smart-vehicle technology for 
alerting the vehicle/driver to the crash type and risk level of the 
upcoming road segments. At a broader level, this risk profiling 
method may be explored to discover critical thresholds in other 
domains such as finance, insurance, engineering, and drug testing. 
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