
Improving Quality Control by Early Prediction of
Manufacturing Outcomes

Sholom M. Weiss
sholom@us.ibm.com

Mathematical Sciences Dept.
IBM T.J. Watson

1101 Kitchawan Road
Yorktown Heights, USA

Amit Dhurandhar
adhuran@us.ibm.com

Mathematical Sciences Dept.
IBM T.J. Watson

1101 Kitchawan Road
Yorktown Heights, USA

Robert J. Baseman
baseman@us.ibm.com

Mathematical Sciences Dept.
IBM T.J. Watson

1101 Kitchawan Road
Yorktown Heights, USA

ABSTRACT
We describe methods for continual prediction of manufac-
tured product quality prior to final testing. In our most ex-
pansive modeling approach, an estimated final characteristic
of a product is updated after each manufacturing operation.
Our initial application is for the manufacture of microproces-
sors, and we predict final microprocessor speed. Using these
predictions, early corrective manufacturing actions may be
taken to increase the speed of expected slow wafers (a collec-
tion of microprocessors) or reduce the speed of fast wafers.
Such predictions may also be used to initiate corrective sup-
ply chain management actions. Developing statistical learn-
ing models for this task has many complicating factors: (a)
a temporally unstable population (b) missing data that is a
result of sparsely sampled measurements and (c) relatively
few available measurements prior to corrective action op-
portunities. In a real manufacturing pilot application, our
automated models selected 125 fast wafers in real-time. As
predicted, those wafers were significantly faster than aver-
age. During manufacture, downstream corrective processing
restored 25 nominally unacceptable wafers to normal oper-
ation.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining

General Terms
Algorithms
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1. INTRODUCTION
Modern-day instrumented manufacturing is a complex pro-

cess, sometimes taking weeks to even months to produce the
final product. Starting from the initial crude state, the fi-
nal product is produced by the application of hundreds of
steps and tools. Typical examples of where we encounter
such heavily instrumented operations is the semiconductor
industry, the pharmaceutical industry, the (processed) food
industry. Given the complexity of these processes and the
time to manufacture, it is not surprising that extensive ef-
forts have been made to collect data and mine them looking
for patterns that can eventually lead to improved productiv-
ity [6], [7], [13], [17], [18]. Among the primary roles of data
mining in these domains are quality control and the detec-
tion of anomalies. When something goes wrong, such as a
significant reduction in final product quality, the data are
pulled and examined to find probable causes. Many of these
industries are extremely sensitive to such mishaps. Even a
meager (few percent) drop in quality could cost a corpora-
tion millions to even a few billions of dollars. Conversely, a
few percent increase in quality can be highly lucrative. From
a data collection perspective, tens or even hundreds of thou-
sands of measurements are taken and recorded to monitor
results at different stages of production. Since, the objective
is mostly to monitor quality of production, measurements
can be sparsely sampled, typically less than 10%.

In contrast to monitoring production for diagnostic appli-
cation, in this paper we consider prediction of final prod-
uct quality. In particular, we focus on the semiconductor
industry, where we predict the final microprocessor perfor-
mance. The challenges we face and the methods we employ
are largely applicable to other such domains mentioned be-
fore.

Each wafer, which is a collection of chips, has an incre-
mental history of activity and measurement accrued during
its manufacture. In its purest and most ambitious form,
our objective is to predict the final outcome of each wafer in
terms of critical functional characteristics. Months may pass
before a chip is completed, hence the great interest in min-
ing data prior to final testing [9], [1], [5]. Moreover, if such
an endeavor were to be successful, it would greatly enhance
manufacturing productivity.

While many alternative testing measurements are reason-
able to measure the health of a wafer, in our initial appli-
cations, we designate a proxy for microprocessor chip speed
as the predicted outcome. Thus during manufacture, the
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Figure 1: Overview of the applied methodology

average speed of the finished product is estimated at a time
far from completion.

Using the same data that are recorded to monitor indi-
vidual elements of the fab manufacturing process, the final
performance of a wafer is estimated. This exercise implic-
itly raises, and in part addresses the question of how much
power such a set of measurements, designed explicitly for
the purposes of monitoring unit and integrated process per-
formance, has for this very different prediction application.

Measures of speed are the final critical characteristics used
in this paper to measure outcome. A chip running too slow
is clearly a negative outcome, as is a chip running too fast,
since it may consume too much power. The advantages of ac-
curately predicting final performance are manifold. Among
the actions that might be taken are as follows:

• Correct wafers with expected poor performance.

• Queue wafers for key customers.

• Queue wafers based on expected performance and cur-
rent demand.

Predicting final performance based on incomplete mea-
surements is a difficult task. It implies having accurate and
highly predictive measurements. The benefits can poten-
tially be great in improving manufacturing efficiency and
yield and the early detection of potentially weak outcomes.
From a machine learning perspective, technical difficulties
abound: with time-varying populations to inherent insta-
bilities of massively missing data, to only a few measure-
ments being known before critical steps. To address these
difficulties, knowledge-based methods for filling in missing
values are developed, specialized sampling techniques are
employed, combined learning methods such as linear with
boosted trees are invoked, and customized schemes to ad-
just and optimize the predictions obtained from the learning

Figure 2: Stages of wafer/chip manufacturing. A
wafer moves from left to right.

methods are deployed. An overview of the applied method-
ology is shown in Figure 1.

In real microprocessor production experiments, our auto-
mated models selected 125 predicted fast wafers (5 lots) in
real-time. Wafers from these selected lots were split for post
prediction processing to allow corrective processing and as-
sessment of prediction accuracy. These selected wafers were
significantly faster than average, as predicted. Of the 5 lots,
one lot was fast enough that downstream corrective pro-
cessing restored nominally unacceptable wafers to normal
operation.

2. APPLICATION BACKGROUND
It takes a few months to manufacture a microprocessor,

during which a wafer undergoes incremental processing (nom-
inally value adding) and measurement (nominally non-value
adding) operations. During production, in total, thousands
of different measurements are taken, and while some rela-
tively small number of measurements are made on at least
one wafer in every lot, as few as only 5 to 10% of the wafers
may undergo any single measurement. Furthermore, there
may be varying degrees of coordination in the selection of
lots and wafers between measurements. Thus some lots and
wafers may have many measurements while other lots and
wafers have only a very few or no measurements beyond the
relatively small set of compulsory measurements.

Figure 2 illustrates the progression of a wafer through the
line for a mainframe microprocessor. Here, a wafer starts
at step 1, where a Pad Oxide operation is performed, and
proceeds to increasingly numbered steps. Wafers typically
travel in groups of 25, called a lot. Measurement steps
monitoring the quality of individual processing steps, or as-
sessing the quality of integrated processing progress, follow
many processing steps. These measurement steps may be
performed on randomly selected lots, with a lot sampling
frequency determined by quality control metrics, and most
commonly on 2 to 4 randomly selected wafers within each
sampled lot. The same wafers may not necessarily be mea-
sured on following steps, so that most wafers will have a
random collection of measurements, with many of them un-
known.

The target outcome for prediction is an electrical test
(PSRO) serving as a (inverse) proxy for microprocessor speed.
The higher the PSRO the slower the wafer and vice-versa.
This test is conducted on all wafers as one of the last set of
electrical tests (LT) conducted on test structures built in the
wafer kerfs. In an ideal implementation, we would update
a prediction of PSRO measured at LT for each wafer after
each processing and measurement step.

However, in these initial implementations, we established
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a limited number of landmarks in the production process
at which to provide and update predictions. These land-
mark steps are selected based on knowledge of the pro-
duction line. While the ideal implementation of continual
prediction covers all possibilities, a reasonable alternative is
to make the predictions after these critical landmark steps.
This coordinates the data collection for all wafers, so that
they are synchronized relative to completeness of data, and
more amenable to statistical modeling. Engineering knowl-
edge also plays an important role in defining the landmarks.
From the engineering perspective, landmarks may be se-
lected based on the potential actions that may be taken.
In our case, we can continue to model and predict after each
step, and predictions tend to get more accurate as more
steps are completed. However, corrective processing action
is only feasible during early stages of manufacture, that is,
with less than 50% of steps completed. In Figure 2, we
might establish landmarks at step 7 and 14, where predic-
tions after step 14 might be useful for customer triage, but
no corrective processing action can be taken.

For our primary application, the most critical prediction
of final speed was made at a landmark marking the last time
for corrective processing action. If a wafer’s predicted speed
was unacceptably high or low, its progress on the line was
halted until an engineering review and response, including
tailored remedial downstream processing. The basic unit for
sampling is a wafer and its historical record. Depending on
the application and manufacturing line operation policies, it
may be necessary to predict final mean or median speed by
individual wafer or by lot. In our initial implementation, we
predicted mean lot speed by averaging the predictions of the
individual wafers comprising those lots.

3. PROCEDURES FOR DATA PREPARATION
Our application has the following input and output char-

acteristics:

• Input: Control measurements on a wafer such as physi-
cal measurements, lithographic metrology, and electri-
cal measurements.

• Output: Performance indicators such as speed or power
consumption measurements.

Using these input measurements, the objective is to pre-
dict the output measure long before it is actually measured.
In the ideal application, a variety of engineering and man-
agement actions may be initiated based on the continuously
updated predictions of final wafer characteristics. Unwar-
ranted corrections to the wafers or supply-chain actions may
be very costly, in the worst case ruining nominally salable
products. This imposes a clear requirement that the predic-
tions be made with high precision. Thus, depending on the
expected precision, we restrict actions to those wafers that
are predicted to be most deviant. In our application these
are the estimated fastest and slowest wafers.

3.1 Data Preprocessing
The data are all real valued and can be posed in a standard

vector format. For any wafer, W(i), the target speed predic-
tion, can be made by mapping from the input vector X(i)
to the output, Y(i). The complete data for wafers that have
completed testing can be readily retrieved from a database.

Figure 3: Input data characteristics

However, the wafers of interest, for which actionable predic-
tions are to be made, have not completed even half of the
full processing flow. Thus the input data vector for those
wafers is highly censored. Any hope of making highly accu-
rate predictions with such a data set relies strongly on the
stability of the processes occurring downstream from that
last data collection step, or an assumption that the down-
stream operations have relatively little influence on speed.
This results in a standard data presentation with one prac-
tical deficiency: Most of the data items are missing. Figure
3 presents fraction of the missing data for each of the mea-
surements from a sample of 6435 completed wafers. Approx-
imately 90% of the nominally anticipated measurements are
missing. The missing values are not consistent for a select set
of measurements. Instead, the measurements are randomly
sampled, not corresponding to any particular requirement
for the feature. Thus the actual recorded data will vary in
the number of missing values from wafer to wafer.

The missing values reflect both the measurement sam-
pling policies as well as the censored nature of the data.
To estimate whether unit and integrated processes are op-
erating within specification, sampling of some measurement
values is adequate to collect mean values for quality control.
That has traditionally been the main goal in sampling the
measurements. When the goal is modified to use these same
measurements for prediction, the inadequacy of current data
collection standards is manifest. With 90% missing, predic-
tion is not feasible. How then do we transform an intractable
problem due to lack of data to a feasible application with
adequate data? Modifying the sampling procedures to full
data collection, at least for some key measurements, is a
potential long-term strategy. However, for immediate and
practical action, the current data samples must be used as
is. A related issue, that we do not address further here,
is whether the particular physical or chemical measurement
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designed for optimal quality control of a given unit process is
an optimal, or even adequate, measurement for the purposes
of prediction.

During manufacturing, wafers in a lot are generally pro-
cessed and measured together as a group, explicitly so in
batch processing tools, implicitly so in single wafer tools,
undergoing the same process essentially simultaneously, in
the same tools. We can take advantage of these relationships
to improve estimates of missing measurements. Consider the
following hierarchy of possibilities for estimating a missing
measurement for a wafer.

• Full sample measurement mean

• Lot measurement mean

• Split lot measurement mean

The simplest idea is to estimate missing measurements by
the global measurement mean, using the complete sample.
This approach would allow machine learning to function,
possibly succeeding when the most predictive measurements
are more fully sampled. In our application, over 90% of
measurements are missing, and this approach fails to predict
accurately.

The second idea is to use the wafer’s lot mean. Because
the wafers with a lot are generally processed identically, this
approach can improve results greatly over using a global
mean.

The next idea improves somewhat over the lot mean. In
the course of production, some wafers may temporarily be
split from their parent lots into child lots. The child lots may
undergo single or multiple processes at different times and
by different tools. In this case, at the expense of additional
record-keeping, the individual child lot means are used for
estimating each wafer’s missing values, based on each wafer’s
lot membership at each process, rather than using the full
lot means.

The variance of a measurement within a lot is usually
much less than between lots. That explains the rationale for
using within lot estimates for missing values. Of the three
alternatives cited here, in our application, the detailed child-
lot option yields the best predictive accuracy for reasons
mentioned earlier.

It is also important to note that other machine learning
methods for filling in missing values, such as expectation-
maximization based methods, were tested and resulted in
less accurate predictions than the suggested approach; pos-
sibly because they are agnostic to domain specific informa-
tion. Moreover, such methods are significantly more compu-
tationally expensive, which is undesirable in the anticipated
large-scale applications.

3.2 Sampling and Evaluation
In the previous section, we reviewed the sampling of mea-

surements. This is inherent in the operation of the fab, and
is something that is unlikely to be modified due to time and
cost constraints.

In this application, our data set is continually growing
due to the manufacture of additional chips. Under the as-
sumption that the data are stable and are from the identical
population, the complete sample would be used for learning.
Once the manufacturing process has stabilized, the physical
relationships among the measurements should also stabilize.

The largest sample in a high-dimensional feature space is
likely best for learning and most representative of the com-
plete population.

Here we see competing themes for learning. Depending on
the stability of the manufacturing processes, we are pulled
in different directions. If the population is stationary, the
standard train and test model can be applied on the full
sample. However, it is not unusual for the population to be
nonstationary in the complex manufacturing environment
for semiconductors. Yield or performance enhancing process
adjustments may continue over a significant portion of a
product’s life cycle, while nominally stable processes may
evolve within or in some cases temporarily outside of control
limits. In these environments, the population acts like a
time series, where the most recent data are more valuable
that older historical data.

To make predictions and measure performance, a sepa-
rate train and test set of prior results are essential. Clearly,
lots must be completely separated, given their underlying
relations among their wafers. Because results may change
over time, and the population is not stationary, independent
time-ordered sets are advantageous over randomly sampled
wafers or lots. This time-ordering corresponds to the real
manufacturing environment, where we look at recently man-
ufactured wafers to predict future wafer performance. This
application has thousands of wafers to sample, and ample
data are present for training and testing. If the populations
from these two time periods are very similar, some reason-
able percentage of the complete sample could be used for
training and testing, for example 70% training and 30% test-
ing. However, given the nonstationary nature of data, better
results can be achieved by restricting the training data to
a window of k days. This reflects the usual time-series ex-
pectation – for non-periodic data– that the more recently
completed wafers are most indicative of expected results for
current wafers that are still progressing. In our case, we use
the following constraints on data sampling:

• one year of data for complete sample of n wafers

• k wafers for training

• n - k wafers for testing

The value of k is typically much smaller than n, perhaps
3 months of data. However, the choice of k must also be
verified by testing, and several possibilities are examined.
The population may change, and that implies that these
values and experiments may be performed periodically to
verify previous choices. Yet, we know that even good per-
formance on test cases could change over time, so it is wise
to have a large test set taken over a longer time-frame that is
representative of varying conditions. In particular, we have
gone through periods where pessimism is more warranted in
predictions, especially when changes are being made to en-
hance the manufacturing processes. The expectation is that
updates to the manufacturing process are implemented with
an eventual return to stability. Thus we adopt an emphasis
on recent data for training, and more extensive historical
data for testing.

Figure 4 illustrates the evaluation procedure that is used
to estimate model predictive performance for the current
wafers and to determine sample and model characteristics.
In a static environment, one might simply choose those mod-
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Method Step 3 Step 7 Step 14

Boosted trees and linear 0.04 0.08 0.69
Boosted trees -0.01 0.05 0.62
Linear -0.13 0.03 0.59
SVM -0.02 0.04 0.60
HMML -0.22 0 0.16
BTM -0.25 -0.15 0.14

Table 1: Above is the comparison in terms of av-
erage R2 of different state-of-the-art learning meth-
ods at different steps in the processing (figure 2)
of a wafer based on weeks of daily experimenta-
tion. SVM stands for support vector machines [16].
HMML stands for a hidden markov model based
method with lasso regression in every state [12].
BTM stands for best of the time series methods us-
ing SPSS expert modeler.

eling characteristics that minimize error. However, the ap-
plication environment is dynamic–wafers enter and leave the
manufacturing line and processes and fab performance may
change. Directions in fab and model performance may also
change, but not on a daily basis. Therefore some overall
knowledge about the trends in model performance must be
applied. One reasonable strategy is to make major mod-
eling decisions in an experimental phase, and then watch
trends over time before making major revisions. However,
the estimates for individual wafers are critically important
for decisions made on a daily basis. Typically, only wafers
with the most extreme predictions will be selected for ac-
tions. The procedure of Figure 4 is used for our internal
estimates. Actual decisions are made about selecting wafers
for revision, and the consequences of those decisions are the
ultimate evaluation of predictive performance.

All aspects of this automatic machine learning application
are influenced by the requirement to deal effectively with a
complex manufacturing environment evolving through peri-
ods of relative stability and rapid change. The nature of
sampling of data and evaluation is essential to any predic-
tive analysis. We have seen how these dynamics influence
our sampling and evaluation techniques. Next, we exam-
ine our approach to learning. We see that once again, our
approaches and techniques to learn from training data are
influenced strongly by the need to operate in both periods
of relative stability and rapid change.

4. METHODS FOR LEARNING
From a machine learning perspective, the objective is to

predict the eventual outcome of product testing, PSRO mea-
sured at LT. Given a set of real-valued measurements in-
cluding the outcome, regression methods are applicable. We
could also view the task as classification, when well defined
speed thresholds can be specified. Our early experiments
demonstrated far better predictive value for regression anal-
ysis than classification. Predicting the continuous PSRO
provides a natural ordered ranking of the wafers. The most
likely candidates for correction are those with the most ex-
treme predictions or those outside a specified normal range.

Using the procedure in Figure 4, different learning meth-
ods can be compared, and the one with best results selected.
This is a standard approach to selecting learning algorithms

in a stationary population when predictive performance is
the primary goal. However, the fab population is not sta-
tionary, and periods of relative stability and periods of rapid
change are both anticipated.

To deal with these changes and also based on experimen-
tation over many weeks, two methods were combined and
used for modeling:

• linear regression

• forests (boosted trees) [14]

The results of testing several learning methods are shown
in table 1. The ensemble learning method which averages
the predictions of boosted trees and linear regression per-
forms the best overall. The reported results are R2 values
averaged over weeks of experimentation. R2 is a standard
measure in statistics used to evaluate regression algorithms.

It is defined as, R2 = 1 − mse(M)
mse(µt)

where mse(M) denotes

the mean squared error of a model M on the test set, while
mse(µt) denotes the mean squared error of the training-set
target mean on the test set. In our case, M would signify
the regression functions learned using the different learning
methods while µt would signify the mean PSRO computed
over the training set. Hence, R2 values closer to 1 imply
that M is much superior to µt. Negative R2 values imply
that using M is inferior to using the simple prediction of the
training set mean, and are highly suggestive of nonstation-
arity in the underlying input output relationships.

The classical linear model is a simplified model that as-
sumes a fixed representation. In our experiments, it usually
performed worse than the forests. However, in nonstation-
ary environments, i.e. fab performance is evolving, the linear
method could win. The reason is likely tied to its simplified
and restricted perspective that does not overfit the data and
is more robust.

The forests, numbering in the hundreds of decision trees,
are capable of modeling much more complex functions than
the single linear regression model. When the population
is stable, the forests will perform much better. When fab
behavior is evolving, the results can weaken because the fit
to the (stable) training data is too tight.

The predictions of these two methods can be averaged.
This is an effective strategy for dealing with evolving fab
dynamics. Combining two or more independent methods is
known to often give better results [2], [4], [3]. The methods
can be evaluated independently and in combination. In our
applications, they are retrained on the data every day, so
there is ample opportunity to examine which variation is
doing better. Besides the purely empirical evaluation, one
may have knowledge of the overall performance of the fab.
For example, just looking at the trend in mean speed over
several weeks can suggest whether the fab performance is
stable or not.

Figure 5 is a overview of a procedure for sampling, learn-
ing and evaluating the models induced from the current sam-
ple of wafer data.

5. OPTIMIZING PREDICTIONS
The overall mission is the early identification of wafers

or lots that will be unacceptably fast or slow, and the im-
plementation of effective countermeasures. The engineering
staff recognizes an acceptable range of speeds for each prod-
uct. If our predictions were completely accurate, we could
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1. Collect sample S1 of wafers with known completed measurements

2. Collect independent sample. S2, for testing.

3. Learn a prediction model from S1 and evaluate on S2.

4. For step 3, any learning model learned from S1 is acceptable, subject to fair performance evaluation on S2.

5. Example of a prediction model for step 3 is a linear model, where given n wafers in S1, each with j measurements find
the best set weights such that error is minimized as in this computation for the k-th wafer, wt(1)* M(1)+ ...+ wt(j)M(j)
= P(k).

6. Error is estimated by MSE or MAD (mean absolute deviation) for the difference in true value T(j) and predicted wafer
target measurement P(j).

Figure 4: Model Evaluation

• I. For all learning methods including trees:

1. Collect sample S1 of wafers with known completed measurements.

2. Collect independent sample. S2, for testing.

• II. For boosted decision trees and other multiple-sample leaning methods:

1. Randomly re-sample from sample S1 and create S3.

2. Learn a prediction model from S3.

3. Repeat steps 1 and 2, k times.

4. Average the results for all k trees For new wafer prediction, average all k predictions.

• III Customize boosted trees

1. Determine best sample period for creating S1 and S2. For example, 90 days of wafer production.

2. In step II-1, determine best random re-sample size. For example, randomly sample 100 wafers.

3. In step II-1, overweight most erroneously predicted wafers during resampling

• IV. Multiple models of different types (e.g. boosted trees and linear models)

1. Average predictions of forests and linear models on S2 sample.

Figure 5: Model Learning

simply report and act on all wafers predicted outside of that
acceptable range. We can see in table 1 that predictions are
far from completely accurate using data collected prior to
step 7, which is the last opportunity to implement down-
stream corrective processing.

Analogous to predictive sales applications where lift is
plotted, these predictions can be ordered and ranked. Wafers
in the extreme tails of the prediction distribution are usu-
ally much more likely to be out of range, and of interest in
our application. The test data are used to estimate expected
deviations from the mean. Given a specific threshold, for ex-
ample all wafers predicted above t, overall deviation of the
true values from the mean are measured. Additionally mea-
sured are deviation in the correct direction and deviation in
the negative direction. A measure of accuracy is provided,
where a prediction is scored as correct when it is in the same
direction as the true answer, i.e. above or below the mean.
The results for selected threshold, t, should surpass a min-
imum degree of accuracy for both direction and deviation.
An effective threshold must provide highly accurate predic-

tions and identify wafers with meaningfully large absolute
deviations from the desired range.

The selected wafers will undergo corrective processing to
increase or decrease their speed. In general we use correc-
tive processing strategies designed to adjust wafers slightly,
to move wafers from outside a desired range into the range,
rather than trying to move the wafers to the center of the
range. Assuming a modest increase in speed for a predicted
slow wafer, a mistake in prediction could put make it too
fast and actually degrade the wafer yield, a costly expense.
However, if the increase in speed maintains the wafer’s chips
within the upper bound, then the expense is minor. Thus,
a more detailed analysis of thresholds for prediction is war-
ranted to find an interval where prediction is most accurate.
In figure 6, procedures for optimizing the thresholds for de-
tecting high or low values based on predictions of the model
described in the Section 4.

Although we nominally focus on the early detection and
correction of aberrant wafers, other applications of our sys-
tem require early detection with high accuracy of ”normal”
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1. Build statistical prediction model for sample of completed wafers or lots.

2. Collect a separate test sample from either earlier or later completed wafers

3. Using the model in (1) and test sample in (2), predict the target measurement for each wafer

4. For each wafer, compute the prediction error by comparing to the true target measurement.

5. For the subset X of wafers above/below threshold x, compute mse (mean square error) [or mad (mean absolute deviation)]

6. Compute good mse (or mad) for wafers in (5) that are above/below the mean of the sample.

7. Compute an accuracy rate:
number of predicted wafers actually above/below mean

number of wafers predicted above/below sample test mean

8. Using these accuracy estimates, engineering staff selects high/low threshold for decision based on expected costs and
yields.

Figure 6: Detecting High/Low Values

wafers, i.e. not fast, not slow. For example, some machine
designs can only use chips with relatively tight power per-
formance specifications and customized wafer back-end pro-
cessing. Any chips tailored in the back end for that design,
not ultimately meeting those tight specifications, may be
unusable for another build. In such a case, improving the
likelihood that chips tailored for that design will meet those
tight specifications can reduce yield loss.

The task of early detection of normal wafers is not merely
a trivial complement to the prediction with high accuracy
of aberrant wafers: The absence of a prediction of aber-
rant wafers does not imply a prediction of normal. While
the models we have developed for detecting aberrant wafers
have high precision, their recall is limited and the applica-
tions exploiting those models are relatively forgiving of false
negatives. Thus the early detection of normal wafers is a
more difficult and complex problem from detecting fast or
slow alone.

One approach is to find an interval for an ordered set of
wafer speed estimates, where the true normal occurrence
rate is very high. Figure 7 describes a procedure for find-
ing an interval for normal wafers. In the absence of this
application, wafers would be chosen randomly for back end
customization, and a base fraction of chips will fail to meet
final specs. Thus for this application, we measure success
in terms of the reduction of the number of customized chips
failing to meet the spec.

Table 2 summarizes characteristics of wafers from several
intervals selected by the method of Figure 7. The reduc-
tion in loss shows the reduction in the number of failing
chips in a given interval from the default random selection
of chips, as a fraction of the number of chips failing with ran-
dom selection. For interval 1, it’s 100% - (2.3% / 15.4%) =
79%. We see clearly the expected tradeoff between fraction
of the population selected for customization and the likeli-
hood of failing to meet final specs. We anticipate use of our
system for normal finding applications to address relatively
low volume products. Thus the rate of yield loss can be
cut dramatically, by relatively modest (relative to required
product volumes) reductions in the population of candidate
customization wafers.

Choosing wafers fo Lr fi

Randomly 15.4%
Interval 1 3.2% 79% 13%
Interval 2 6.3% 59% 31%
Interval 3 7.5% 51% 45%

Table 2: Sample results for normal wafers. fo and
fi are fraction of wafers outside PSRO target range
and included in the prediction interval respectively.
Lr is reduction in loss relative to random.

6. RESULTS
The concepts presented here have been implemented in a

fully automated system that predicts the LT PSRO proxy for
final chip microprocessor speed. Data for training, testing,
and prediction are extracted from the Fab’s data warehouse,
which is updated within minutes of any newly completed
measurement for a wafer. In our current implementation,
samples, decision models, and estimates are updated once a
day.

A simple evaluation of predictive model performance on
test data sets is an inadequate characterization of overall
system performance. Rather, below, we describe two com-
prehensive evaluations. Retrospectively using complete his-
torical data, we performed a complete simulation of daily
resampling, model building and testing. In a smaller, more
expensive prospective study, we performed true real-world
testing in a manner similar to evaluating the efficacy of a
drug versus a placebo. In both studies, the application is
for remedial action to a wafer prior to the landmark step.

Retrospective Study: In Figure 2, the decision to hold a
wafer and commit to corrective downstream processing must
be made by the landmark step 7 (LS7). Thus the system
will compute predictions using only those measurements col-
lected prior to that landmark. Using data from all the wafers
that were completed through LT during a two month period,
we examined the daily estimation process for each wafer just
prior to LS7. Twenty-four lots of approximately 25 wafers
were completed during this time period. Of those 24 lots, 3
lots were predicted to be substantially fast and 3 substan-
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1. Build statistical prediction model for sample of completed wafers or lots.

2. Collect a separate test sample from either earlier or later completed wafers

3. Using the model in (1) and test sample in (2), predict the target measurement for each wafer

4. For each wafer, compute the prediction error by comparing to the true target measurement.

5. For the subset X of wafers below threshold x, compute mse (mean square error) [or mad (mean absolute deviation)]

6. Specify a normal range (x to y), i.e. an lower and upper bound on normal wafers

7. Examine an interval of wafer predictions on the test sample. Compute an accuracy ratio:
number of true normal wafers within the interval
number of predicted wafers within the interval

8. Examine all intervals where each upper or lower bound is considered in increments of j (example, normal range is 10 to
11 and increments are .1).

9. Choose the best accuracy such that a minimum of k wafers are covered.

Figure 7: Detecting normal wafers

Test 1 Test 2 Mystery Wafers

Predicted slow 174 51 77
Actually slow 150 46 70
Accuracy 86% 90% 94%
Mean PSRO > +0.78 +0.93 +1.33
train mean

Table 3: Results from retrospective study.

tially slow. All 6 of the identified lots had average speed
offsets in the predicted direction which is evidence of opera-
tionally high accuracy, especially given the potential impact
of downstream processes of uncertain impact and stability.

Table 3 is a summary of statistical results from a single
day’s model of the line. Two independent test set samples
were examined using different thresholds as described above.
We see that roughly 90% of the wafers predicted to be slow
in both test sets were actually slower than average, a highly
operationally accurate result. We also see the anticipated
tradeoff between the number of wafers exceeding a predicted
speed threshold and the accuracy of those predictions, al-
though relatively large reductions in the numbers of wafers
identified are required for relatively small improvements in
accuracy. This model was then applied to (mystery) wafers
outside of the train and test sets. The 94% accuracy of the
predictions on the mystery wafers was similar to that on
the test wafers. Deviations from the mean were larger for
the mystery set than the test set. The extent of deviation
from the mean is a critical factor in determining whether
corrective processing is warranted. In this system, learning
and optimizing methods are tailored to identify wafers with
extreme deviations, however no explicit controls are intro-
duced to assure any minimum absolute deviations.

Real Time Study: In a second, prospective study, we in-
tervened directly in the production process to correct nom-
inally fast wafers. A quota of 5 lots, about 125 wafers, was
allocated for intervention. We would notify an engineer to
hold a predicted fast lot prior to LS7, and then the lot would
be split. Half of the lot would continue in the regular fash-

ion, i.e. with business as usual processing, and half would be
processed in a fashion to introduce a small speed reduction.

From a macro-decision perspective, one of the 5 lots is
clearly a too-fast lot and is saved and corrected, while the
other 4 lots remain in the normal range when modest correc-
tions are applied. At the micro-decision level, the accuracy
of predictions in this pilot was less than in the retrospective
study. 21 of the 32 wafers identified were faster than target.
One likely explanation for the reduction in accuracy is the
fact that during the prospective study there was on going
active experimentation with downstream processes known
to influence PSRO.

7. DISCUSSION
We have described a fully functioning system that pre-

dicts mean wafer speed prior to final testing. Speed serves
as a proxy for estimating overall wafer health during man-
ufacture. The advantages of accurate prediction are mani-
fold including wafer correction and prioritization for differ-
ent customers. Although the current implementation does
not accurately predict future performance of all wafers, we
have shown promising results for identifying some outliers.

Clearly, this is a difficult prediction problem. The mea-
surements are sampled in small quantities and the utility
of these measurements is uncertain, especially when applied
to individual wafer estimation. Processes may evolve over
time as described above, and manufacturing tool perfor-
mance may evolve over time reflecting a dynamic mix of
products in a multi-purpose fab such as IBM’s 300mm line.

From a modeling perspective, the nonstationary nature of
the manufacturing processes along with overwhelming miss-
ing data makes for a complex analysis. Despite all these
complications, we have shown that estimation significantly
beyond chance is feasible and in some cases reasonable pre-
dictions can be made at the wafer and lot level.

It is important to note that the strategies employed here
could be adapted to other manufacturing environments men-
tioned before, that share similar concepts like distinct man-
ufacturing steps and recorded intermediate measurements.
Products in these other domains also tend to move in groups
through the manufacturing steps and hence, the ideas for fill-
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ing in missing values could be easily applied. The sampling,
learning and adjustment of predictions methodologies de-
scribed in this paper to choose faulty products also naturally
extend to these other domains. In fact, we have already ex-
plored such possibilities with the manufacture of consumer
products, snack products and pharmaceuticals, with some
initial promise.

There are many opportunities for future improvements
in the performance of the system. We anticipate improve-
ments in accuracy with applications to increasingly stable
manufacturing environments, where a fab is dedicated to
a particular product, rather than a potpourri of products
as is the case with the IBM fab. Another direction that
could lead to further enhancement is by improving the qual-
ity of measurements, or by increasing the sampling rate
of wafer measurements. Data input for learning, testing
and prediction in these implementations was aggregated by
wafer. Many unit manufacturing processes exhibit signifi-
cant across-wafer non-uniformities. In a related but differ-
ent problem of monitoring yield, it was reported that some
semiconductor yield models show improvements with spa-
tially resolved estimates, e.g. by individual chip or by region
[10]. Yield monitoring has been a heavily studied problem
in semiconductor literature [15, 11, 19, 8], where defect data
is the primary driver in estimating yield, usually of mem-
ory chips. In our case however, we had only electrical and
physical measurements taken early on in the manufacturing
process to estimate microprocessor speed. Moreover, we de-
scribed an online system which runs daily in the fab and
adapts to changing dynamics as opposed to a static yield
model.

From a machine learning perspective, models could be
incrementally updated as new measurements are recorded.
Specialized algorithms would be needed for incremental learn-
ing because not only are new wafers incrementally observed,
but also older wafers have additional information. Our cur-
rent algorithms make a fresh start every day with the lat-
est sample and complete batch learning. Those procedures
are adequate when the system is not stressed by time con-
straints. Both knowledge from chip-making and possibly
improved machine learning techniques could produce a new
class of methods for estimating chip performance.
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