
An Integrated Framework for Optimizing Automatic
Monitoring Systems in Large IT Infrastructures

Liang Tang Tao Li
School of Computer Science

Florida International University
11200 S.W. 8th Street
Miami, Florida, 33199

U.S.A
{ltang002,taoli}@cs.fiu.edu

Larisa Shwartz,
Florian Pinel

IBM Watson Research Center
1101 Kitchawan Rd

Yorktown Heights, NY, 10598
U.S.A

{lshwart,pinel}@us.ibm.com

Genady Ya. Grabarnik,
Dept. Math & Computer

Science
St. John’s University

Queens, NY
U.S.A

grabarng@stjohns.edu

ABSTRACT
The competitive business climate and the complexity of IT
environments dictate efficient and cost-effective service de-
livery and support of IT services. These are largely achieved
by automating routine maintenance procedures, including
problem detection, determination and resolution. System
monitoring provides an effective and reliable means for prob-
lem detection. Coupled with automated ticket creation, it
ensures that a degradation of the vital signs, defined by ac-
ceptable thresholds or monitoring conditions, is flagged as a
problem candidate and sent to supporting personnel as an
incident ticket. This paper describes an integrated frame-
work for minimizing false positive tickets and maximizing
the monitoring coverage for system faults.
In particular, the integrated framework defines monitor-

ing conditions and the optimal corresponding delay times
based on an off-line analysis of historical alerts and incident
tickets. Potential monitoring conditions are built on a set
of predictive rules which are automatically generated by a
rule-based learning algorithm with coverage, confidence and
rule complexity criteria. These conditions and delay times
are propagated as configurations into run-time monitoring
systems. Moreover, a part of misconfigured monitoring con-
ditions can be corrected according to false negative tickets
that are discovered by another text classification algorithm
in this framework. This paper also provides implementation
details of a program product that uses this framework and
shows some illustrative examples of successful results.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining
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1. INTRODUCTION
IT service providers are facing an increasingly intense com-

petitive landscape and growing industry requirements. In
their quest to maximize customer satisfaction, Service Provider-
s seek to employ business intelligence solutions, which pro-
vide deep analysis, orchestration of business processes and
capabilities for optimizing the level of service and cost. IT
Infrastructure Library (ITIL) addresses monitoring as a con-
tinual cycle of monitoring, reporting and subsequent action
that provides measurement and control of services [4].

Modern forms of distributed computing (e.g., cloud) pro-
vided some standardization of the initial configuration of the
hardware and software. In order to enable most enterprise
level applications, however, an individual infrastructure for
the given application must be created and maintained on
behalf of each outsourcing customer. This requirement cre-
ates great variability in the services provided by IT support
teams. The aforementioned issues largely contribute to the
fact that routine maintenance of the information systems
remains semi-automated and manually performed. System
monitoring is an automated reactive system that provides an
effective and reliable means of ensuring that degradation of
the vital signs, defined by acceptable thresholds or monitor-
ing conditions (situations), is flagged as a problem candidate
(monitoring event) and sent to the service delivery teams as
an incident ticket.

Defining monitoring conditions (situations) requires the
knowledge of a particular system and its relationships with
other hardware and software systems. It is a known practice
to define conservative conditions in nature, thus erring on
the side of caution. This practice leads to a large number
of tickets that require no action (false positives). Continu-
ous updating of modern IT infrastructures also leads to a
number of system faults that are not captured by system
monitoring (false negatives). To minimize the number of
false positives and false negatives, this paper presents an
integrated framework for optimizing automatic monitoring
systems in large and dynamic IT infrastructures. It utilizes
learning based approaches on historical monitoring events
and incident tickets to help system administrators improve
monitoring condition definitions. This framework is imple-
mented as an event and ticket analysis system, which be-
comes part of the IBM IT service management platform.
The system is deployed and maintained at several IBM ser-
vice centers. The end-users are the system administrators
who are working with IBM Tivoli monitoring [2]. The ana-
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lyzed results of the system have also been deployed at several
IBM customer accounts. A customer account stands for an
enterprise IT infrastructure which is often constructed by
over one thousand machines. The monitoring quality was
improved significantly after deployment for several months.

1.1 Contributions
This paper describes an integrated framework for optimiz-

ing automatic monitoring systems in large and dynamic IT
infrastructures. The innovations implemented through this
framework include:

• Investigation of the false positive alerts and false neg-
ative alerts of automatic monitoring in modern real IT
infrastructures.

• Development of an integrated system for minimizing
the number of false positives and false negatives based
on two learning-based approaches with historical mon-
itoring events and incident tickets.

• Deployment of experiments on real large IT environ-
ments and historical data. The experimental results
demonstrated the benefits of our improving the quali-
fy of the IT infrastructure monitoring.

The rest of the paper is organized as follows: Section 2
provides a description of the problem settings and introduces
the main notations used in the paper. Section 3 presents our
developed framework and system for minimizing false posi-
tive and false negative alerts. In Section 4, we present our
empirical studies on IBM Tivoli monitoring systems with
real IT incident tickets. Section 5 summarizes the related
work for text classification and system event mining for sys-
tem management. sSection 6 offers our paper’s conclusion.

2. BACKGROUND

Figure 1: Problem Detection, Determination and
Resolution

The typical workflow of problem detection, determination
and resolution for the IT service provider is prescribed by
the ITIL specification [4], and illustrated in Figure 1. De-
tection is usually provided by monitoring software running
on the servers of an account, which computes metrics for

the hardware and software performance at regular interval-
s. The metrics are then compared to acceptable thresholds,
known as monitoring situations, and any violation results in
an alert. If the alert persists beyond a certain delay spec-
ified in the situation, the monitor emits an event. Events
coming from an account’s entire IT environment are con-
solidated in an enterprise console. The console uses rule-,
case- or knowledge-based engines to analyze the monitoring
events and decide whether to open a service ticket in the In-
cident, Problem, Change (IPC) system. Additional tickets
are created upon customer request. The information accu-
mulated in the ticket is used by the System Administrators
(SAs) for problem determination and resolution. As part of
the service contracts between the customer and the service
provider, the SLA (Service Level Agreement) specifies the
maximum resolution times for various categories of tickets.

Performing a detailed analysis of IT system usage is time-
consuming, so SAs often rely on default monitoring situa-
tions. Furthermore, IT system usage is likely to change over
time. This often results in a large number of alerts and
tickets, which can be categorized in Table 1.

Table 1: Definitions for Alert, Event and Ticket
False Positive Alert An alert for which the system administrator

does not need to take any action.
False Negative Alert A missed alert that is not captured due to

inappropriate monitoring configuration.
False Alert False positive alert
Real Alert An alert that requires the system administra-

tor to fix the corresponding problem on the
server.

Alert Duration The length of time from an alert creation to
its clearing.

Transient Alert An alert that is automatically cleared before
the technician opens its corresponding ticket.

Event The notification of an alert to the Enterprise
Console.

False Positive Ticket A ticket created from a false positive alert.
False Negative Ticket A ticket created manually identifying a con-

dition that should have been capture by au-
tomatic monitoring.

False Ticket A ticket created from a false alert.
Real Ticket A ticket created from a real alert.

Whether a ticket is real or false is determined by the res-
olution message entered in the ticket tracking database by
the system administrator it was assigned to. It is not rare
to observe entire categories of alerts, such as CPU or pag-
ing utilization alerts, that are almost exclusively false posi-
tives. When reading the resolution messages one by one, it
can be simple to find an explanation: Anti-virus processes
cause prolonged CPU spikes at regular intervals; databases
may reserve large amount of disk space in advance, mak-
ing the monitors believe the system is running out of stor-
age. With only slightly more effort, one can also fine-tune
the thresholds of certain numerical monitored metrics, such
as the metrics involved in paging utilization measurement.
There are rarely enough human resources, however, to cor-
rect the monitoring situations one system at a time, and we
need an algorithm capable of discovering these usage-specific
rules. There has been a great deal of effort spent on develop-
ing the monitoring conditions (situations) that can identify
potentially unsafe functioning of the system [14] [24]. It is
understandably difficult, however, to recognize and quantify
influential factors in the malfunctioning of a complex sys-
tem. Therefore classical monitoring tends to rely on period-
ical probing of a system for conditions that could potential-
ly contribute to the system’s misbehavior. Upon detection
of the predefined conditions, the monitoring systems trig-

1250



ger events that automatically generate incident tickets. In
this paper, we study the problem of improving the quality
of monitoring systems based on the analysis for historical
monitoring events and incident tickets.

3. EVENT AND TICKET ANALYSIS
This section presents the integrated framework of our de-

veloped system. We first briefly describe the system overview
and then discuss its two main functionalities.

3.1 Overview
Figure 2 shows an overview architecture for the integrat-

ed framework. The framework is implemented as an event
and ticket analysis system ( called Event & Ticket Analy-
sis Portal in this figure), which becomes part of the IBM IT
service management platform. This system connects to mul-
tiple ticketing systems and multiple event data warehouses.
The ticketing system stores and manages incident ticket-
s. Each IBM IT service’s enterprise customer has its own
ticketing system, which is the data source of the historical
tickets. NetCool is the event data warehouse for storing and
analyzing the monitoring events at IBM IT service center-
s. A NetCool manages several enterprise IT infrastructures,
which is the data source of the historical events. Our sys-
tem integrates the ticket data and the event data from the
two systems to generate the analysis reports. Figure 3 is

Figure 2: the Architecture Overview

Figure 3: the Web Interface

a screenshot of the web user interface. By selecting differ-
ent data sources, the system generates analysis reports for
different customer accounts. A customer account stands for
an enterprise IT infrastructure. Most enterprise customers
of IBM have over one thousand machines in their infrastruc-
tures. The generated reports help the system administrators

define better monitoring situations to improve the quality
of system monitoring. The reports are delivered as spread-
sheets that can be downloaded or emailed to the end-users
(see Figure 3). Usually, for every customer account, the
system administrators import recent data and generate the
reports once a month. The configurations of the automat-
ic monitoring system are periodically updated based on the
generated reports. False positive alerts and false negative
alerts are two important components in the reports.

3.2 False Positive Alerts
Our goal is to eliminate as many false alerts as possible

while retaining all real alerts. A naive solution is to build
a predictive classifier and adjust the monitoring situation-
s according to the classifier. Unfortunately, no prediction
approach can guarantee 100% success for real alerts, but a
single missed one may cause serious problems, such as sys-
tem crashes or data loss.

The vast majority of the false positive alerts are transien-
t, such as temporary spikes in CPU and paging utilization,
service restarts, and server reboots. These transient alerts
automatically disappear after a while, but their tickets are
created in the ticketing system. When system administra-
tors open the tickets and log on the server, they cannot find
the problem described by those tickets. Figure 4 shows the
duration histogram of false positive alerts raised by one mon-
itoring situation. This particular situation checks the status
of a service and generates an alert without delay if the ser-
vice is stopped or shutdown. These false positive alerts are
collected from one server of a customer account for 3 months.
As shown by this figure, more than 75% of the alerts can be
cleared automatically by waiting 20 minutes. It is possible

Figure 4: False Positive Alert Duration

for a transient alert to be caused by a real system problem.
From the perspective of the system administrators, however,
if the problem cannot be found when logging on the serv-
er, there is nothing they can do with the alert, no matter
what happened before. Some transient alerts may be indi-
cations of future real alerts and may be useful. But if those
real alerts arise later on, the monitoring system will detect
them even if the transient alerts were ignored. Therefore,
all transient alerts are considered false negative.
Eliminating False Positive Alerts Safely
Our solution first predicts whether an alert is real or false.
If it is predicted as real, a ticket will be created. Otherwise,
the ticket creation will be postponed. Our solution also de-
termines how long is it to be postponed. Even if a real alert
is incorrectly classified as false, its ticket will eventually be
created before violating the SLA. Figure 5 shows a flowchart
of an incoming event. It reveals two key problems for this
approach: (1) How to predict whether an alert is false or
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Figure 5: Flowchart for Ticket Creation

real? (2) If an alert is identified as false, what waiting time
should be applied before ticket creation?
In our approach, the predictor is implemented by a rule-

based classifier based on the historical tickets and events.
The ground truth of the events is obtained from the asso-
ciated tickets. Each historical ticket has one column that
suggests this ticket is real or false. This column is manually
filled by the system administrators and stored in the ticket-
ing system. There are two reasons for choosing a rule-based
predictor. First, each monitoring situation is equivalent to a
quantitative rule. The predictor can be directly implement-
ed in the existing monitoring system. Other sophisticated
classification algorithms, such as support vector machine and
neural network, may have a higher precision in predicting.
Their classifiers, however, are very difficult to implement as
monitoring situations in real systems. Second, a rule-based
predictor is easily verifiable by the end users. Other compli-
cated classification models represented by linear/non-linear
equations or neural networks are very hard for end users to
verify. If the analyzed results could not be verified by the
system administrators, they would not be utilized in real
production servers.

Predictive Rule
The alert predictor roughly assigns a label to each alert,
“false”or“real.” It is built on a set of predictive rules that are
automatically generated by a rule-based learning algorithm
[27] based on historical events and alert tickets. Example 1
shows a predictive rule, where “PROC CPU TIME” is the
CPU usage of a process. Here “PROC NAME” is the name
of the process.

Example 1. if PROC CPU TIME> 50% and PROC NAME

= ‘Rtvscan’, then this alert is false.

A predictive rule consists of a rule condition and an alert
label. A rule condition is a conjunction of literals, where each
literal is composed of an event attribute, a relational opera-
tor and a constant value. In Example 1,“PROC CPU TIME
> 50%” and “PROC NAME = ‘Rtvscan’” are two literals,
where “PROC CPU TIME” and “PROC NAME” are event
attributes, “>” and “=” are relational operators, and “50%”
and “Rtvscan” are constant values. If an alert event satisfies
a rule condition, we call this alert covered by this rule. Since
we only need predictive rules for false alerts, the alert label
in our case is always “false.”

Predictive Rule Generation
The rule-based learning algorithm [27] first creates all liter-
als by scanning historical events. Then, it applies a breadth-
first search for enumerating all literals in finding predictive
rules, i.e., those rules having predictive power. This algo-
rithm has two criteria to quantify the minimum predictive
power: the minimum confidence minconf and the minimum
support minsup [27]. In our case, minconf is the minimum
ratio of the numbers of the covered false alerts and all alerts
covered by the rule, and minsup is the minimum ratio of the
number of alerts covered by the rule and the total number
of alerts. The two criteria govern the performance of our
method, defined as the total number of removed false alerts.
To achieve the best performance, we loop through the values
of minconf and minsup and compute their performances.

Predictive Rule Selection

Although the predictive rule learning algorithm can learn
many rules from the historical events with tickets, we on-
ly select those with strong predictive power. In our solu-
tion, Laplace accuracy [36] [20] [17] is used for estimating
the predictive power of a rule. According to the SLA, real
tickets must be acknowledged and resolved within a certain
time. The maximum allowed delay time is specified by a
user-oriented parameter delaymax for each rule. In the cal-
culation of Laplace accuracy, those false alerts are treated
as real alerts if their durations are greater than delaymax.
delaymax is given by the system administrators according to
the severity of system incidents and the SLA.

Another issue is rule redundancy. For example, let us
consider the two predictive rules:

X. PROC CPU TIME > 50% and PROC NAME = ‘Rtvscan’

Y. PROC CPU TIME > 60% and PROC NAME = ‘Rtvscan’

Clearly, if an alert satisfies Rule Y, then it must satisfy Rule
X as well. In other words, Rule Y is more specific than Rule
X. If Rule Y has a lower accuracy than Rule X, then Rule
Y is redundant given Rule X (but Rule X is not redundant
given Rule Y). In our solution, we perform redundant rule
pruning to discard the more specific rules with lower accu-
racies. The detailed algorithm is described in [31].

Calculating Waiting Time for Each Rule
Waiting time is the duration by which tickets should be post-
poned if their corresponding alerts are classified as false. It
is not unique for all monitoring situations. Since an alert
can be covered by multiple predictive rules, we set up dif-
ferent waiting times for each of them. The waiting time can
be transformed into two parameters in monitoring systems,
the length of the polling interval with the minimum polling
count [3]. For example, the situation described in Example
1 predicts false alerts about CPU utilization of ‘Rtvscan.’
We can also find another predictive rule as follows:

if PROC CPU TIME > 50% and PROC NAME =

‘perl logqueue.pl’, then this alert is false.

The job of ‘perl’, however, is different from that of ‘Rtvscan.’
Their durations are not the same, and the waiting time will
differ accordingly. In order to remove as many false alerts
as possible , we set the waiting time of a selected rule as the
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longest duration of the transient alerts covered by it. For a
selected predictive rule p, its waiting time is

waitp = max
e∈Fp

e.duration,

where Fp = {e|e ∈ F , isCovered(p, e) =′ true′}, and F is
the set of transient events. Clearly, for any rule p ∈ P, waitp
has a upper bound, waitp ≤ delaymax. Therefore, no ticket
can be postponed for more than delaymax.

3.3 False Negative Alerts
False negative alerts are the missing alerts that are not

captured by the monitoring system due to some miscon-
figuration. Real-world IT infrastructures are often over-
monitored. False negative alerts are much fewer than false
positive alerts. Since the number of false negative alerts is
quite small, we only focus on the methodologies for discov-
ering them with their corresponding monitoring situations.
The system administrators can easily correct the misconfigu-
ration by referring the results. The false negative tickets are
recorded by the system administrators in the manual tick-
ets. Each manual ticket consists of several textual messages
that describe the detailed problem. In addition to system
fault issues, manual tickets also track many other customer
requests such as asking for resetting database passwords, in-
stalling a new web server and so on. The customer request
is the majority of the manual tickets. In our system the
work for false negative alerts is to find out those monitor-
ing related tickets among all manual tickets. This problem
is formed as a binary text classification problem. Given an
incident ticket, our method classifies it into “1” or “0”, where
“1” indicates this ticket is a false negative ticket, otherwise
it is not. For each monitoring situation, we build a binary
text classifier.
There are two challenges for building the classification

model. First, the manual ticket data is highly imbalanced
since most of the manual tickets are customer requests and
only very few are false negative tickets. Figure 6 shows var-
ious system situation issues in two manual ticket sets. This
manual ticket set is collected from a large customer account
in IBM IT service centers. The first month has 9854 man-
ual tickets and the second month has 10109 manual tickets
overall. As shown in this figure, only about 1% manual tick-
ets are false negatives. Second, labeled data is very limited.

database table space

disk space

application service

router/switch

Number of Situation Issues in Manual Tickets

month2

month1

0 20 40 60 80 100 120 140

file system space

database log

database offline
month1

Figure 6: Number of Situation Tickets

Most system administrators are only working on some parts
of incident tickets. Only a few experts can label all tickets.

Selective Ticket Labeling
It is time-consuming for human experts to scan all manual
tickets and label their classes for training. In our approach,
we only select a small proportion of tickets for labeling. A

naive method is randomly selecting a subset of the manual
tickets as the training data. However, the selection is crucial
to the highly imbalanced data. Since the monitoring related
tickets are very rare, the randomly selected training data
would probably not contain any monitoring related ticket.
As a result, the classification model cannot be trained well.
On the other hand, we do not know which ticket is related to
monitoring or not before we obtain the tickets’ class labels.
To solve this problem, we utilize domain words in system
management for the training ticket selection. The domain
words are some proper nouns or verbs that indicate the scope
of the system issues. For example, everyone uses “DB2” to
indicate the concept of IBM DB2 database. If a ticket is
about the DB2 issue, it must contain the word“DB2”. “DB2”
is a domain word. There are not many variabilities for the
concepts described by the domain words. Therefore, those
domain words is helpful to reduce the ticket candidates for
labeling. Table 2 lists examples of the domain words with
their corresponding situations. The domain words can be
obtained from the experts or related documents.

Table 2: Domain Word Examples
Situation Issue Words
DB2 tablespace Utilization DB2, tablespace
File System Space Utilization space,file
Disk Space Capacity space,drive
Service Not Available service,down
Router/Switch Down router

In the training ticket selection, we first compute the rele-
vance score of each manual ticket and ranks all the tickets
based on the score, and then select the top k tickets in the
ranked list, where k is a predefined parameter. Given a
ticket T , the relevance score is computed as follows:

score(T ) = max{|w(T ) ∩M1|, ..., |w(T ) ∩Ml|},

where w(T ) is the word set of ticket T , l is the number
of predefined situations, Mi is the given domain word set
for the i-th situation, i = 1, ..., l. Intuitively, the score is the
largest number of the common words between the ticket and
the domain words.

In the evaluation section of this paper, we consider a base-
line method that only uses the domain words to identify sit-
uation tickets by simple word-matching. In dual supervision
learning[26], the domain words are seen as the labeled fea-
tures , which can also be used in active learning for selecting
unlabeled data instances. But in our application, we have
only the positive features but no negative features, and the
data is highly imbalanced. Therefore, the uncertainty-based
approach and the density-based approach in active learning
are not appropriate for our system.

Classification Model Building
The situation ticket is identified by applying a SVM clas-
sification model [28] on the ticket texts. For training this
model, we have two types of input data: 1) the selectively
labeled tickets, and 2) the domain words. To utilize the do-
main words, we treat each domain word as a pseudo-ticket
and put all pseudo-tickets into the training ticket set. To
deal with the imbalanced data, the minority class tickets are
over-sampled until the number of positive tickets is equal to
the number of the negative tickets [9]. Figure 7 shows the
flow chart for building the SVM classification model.
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Figure 7: Flow Chart of Classification Model

4. EVALUATION
This section presents empirical studies for our system.

The system and the analysis results have been deployed for
several customer accounts of IBM IT service. The empiri-
cal studies have two types of evaluation. The first type of
evaluation is on the collected historical data to validate the
performance of the algorithms. The second on is on the pro-
duction severs of IBM customers to validate the effectiveness
on real IT infrastructures.

4.1 Evaluation on Historical Data
Our system is developed by Java 1.6. This testing ma-

chine is Windows XP with Intel Core 2 Duo CPU 2.4GHz
and 3GB of RAM. Experimental monitoring events and tick-

Table 3: Data Summary
Data Set |D| Nnon # Attributes # Situations # Nodes
Account1 50,377 39,971 1082 320 1212

ets are collected from production servers of the IBM Tivoli
Monitoring system [2], summarized in Table 3. The data set
of each account covers a period of 3 months. |D| is the num-
ber of events that generated tickets in the ticketing systems.
Nnon is the number of false events in all ticketed events. #
Attributes is the total number of attributes of all events.
# Situations is the number of monitoring situations. # N-
odes is the number of monitored servers. In addition to the
auto-generated tickets, we also collect manual tickets from
two months. The first month has 9584 manual tickets. The
second month has 10109 manual tickets.

4.1.1 False Positive Alerts
Performance Measure
There are two performance measures:

• FP : The number of false tickets eliminated.

• FD: The number of real tickets postponed.

To achieve a better performance, a system should have a
larger FP with a smaller FD. We split each data set into
the training part and the testing part. “Testing Data Ratio”
is the fraction of the testing part in the data set, and the rest
is the training part. For example, “Testing Data Ratio=0.9”
means that 90% of the data is used for testing and 10% is
used for training. All FP and FD are only evaluated for
the testing part.

Overall Performance
Based on the experience of the system administrators, we
set delaymax = 360 minutes for all monitoring situation-
s. Figure 8 presents the experimental results. Our method
eliminates more than 75% of the false alerts and only post-
pones less than 3% of the real tickets.

Comparing with Revalidate
Since most alert detection methods cannot guarantee no
false negatives, we only compare our method with the idea
mentioned in [8], Revalidate, which revalidates the status
of events and postpones all tickets. Revalidate has only one
parameter, the postponement time, which is the maximum
allowed delay time delaymax. Figure 8c compares the re-
spective performance of our method and Revalidate, where
each point corresponds to a different test data ratio. While
Revalidate is clearly better in terms of elimination of false
alerts, it postpones all real tickets, the postponement vol-
ume being 1000 to 10000 times larger than our method.

Predictive Rules
Tables 4 lists several discovered predictive rules for false
alerts, where waitp is the delay time for a rule, FPp is the
number of false alerts eliminated by a rule in the testing
data, and FDp is the number of real tickets postponed by a
rule in the testing data.

4.1.2 False Negative Alerts
The effectiveness is evaluated by the accuracy of the sit-

uation discovery. The accuracy is measured by precision,
recall and F1score, which are the standard accuracy metrics
in classification problems [25]. We use one month’s tickets
as the training data, and the other month’s tickets as the
testing data. We first test the accuracy of the word-match
method. The words are predefined in Table 6.

Figure 9 shows the tested F1 scores [28] of four monitor-
ing situations about file system space issue, disk space issue,
service availability and router/swith issues. Our method is
denoted as “Selective”, the second baseline method is denot-
ed as “Random”. The “Random” method randomly selects
a subset of manual tickets as the training data for build-
ing the SVM model. The domain words for our “Selective”
method are shown in Table 6. As shown by those figures,
the “Random” method can only achieve the same accuracy
of our method when the number of training tickets is large
(above 5000). This is because the real situation tickets are
in the minority of the training data set. The training tickets
in “Random”cannot capture real situation tickets unless the
training data is large. If the training data is large, however,
labeling would be time-consuming for humans.

4.2 Evaluation on Production Servers
Our developed system and analytic results have been de-

ployed into several customer accounts of IBM IT services.
We track the changes on those customer accounts after the
deployment. Figure 10 shows the deployed results of one
account in three months. Account1 is the account that pro-
vides the historical data in the previous evaluation of this
paper. This customer account is a large financial company
in the United States. Its production servers are used main-
ly to support financial investments. The deployment of our
work is a step-by-step approach. In the first month, the
deployment is only on a small group of testing and devel-
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Figure 9: Accuracy for Situation Discovery

Figure 10: Ticket Volume Changes on Account1

Figure 11: Event Volume Changes on Account2

opment machines. Then it spreads to a wide area of its IT
environment. Hence, in Figure 10, the effect of our work
gradually appears in three months. Although this compa-
ny’s IT infrastructure changes every day, compared to the
changes of real tickets, the reduction for the false tickets is
still obvious. The total number of false positive tickets has
been reduced by 21%.
Figure 11 shows the evaluation results for another cus-

tomer account of IBM IT services. They compare the num-
ber of false alerts before deployment and after deployment.
Before the deployment, this account has many inappropri-

ate CPU and networking monitoring situations, which pro-
duce a large number of false alerts every day. By adjusting
those monitoring situations according to our analysis report-
s, more than 30% of the false alerts are eliminated.

Table 5 shows a sample list of discovered false negative
tickets with their monitoring situations on Account1. For
privacy issues, the administrators’ names and the server
names are replaced by“xxx”. Most of the false negative tick-
ets are caused by some new servers or new databases that
are not added into the configuration of monitoring system-
s. When the new servers and new databases incur system
faults or issues, only the database administrators or storage
administrators discover them and create the manual tickets.
The false negative tickets are quite few in real production
servers, so there is no obvious impact on the volume change
after the deployment.

5. RELATED WORK
This section reviews prior research studies related to our

work. System monitoring has become a significant research
area of the IT industry in the past few years. Commercial
products such as IBM Tivoli [2], HP OpenView [1] and S-
plunk [5] provide system monitoring. Numerous studies [15]
[6] [19] [34] [10] [23] focus on monitoring that is critical for
a distributed network. A number of studies focused on the
analysis of historical events with the goal of improving the
understanding of system behaviors. A significant amount of
work was done on analysis of system log files and monitoring
events. Another area of interest is the identification of ac-
tionable patterns of events and misses, or false negatives, by
the monitoring system. False negatives are indications of a
problem in the monitoring software configuration, wherein a
faulty state of the system does not cause monitoring alerts.
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Table 4: Sampled Rules for Account2 with Testing Data Ratio = 0.3
Situation Rule Condition waitp FPp FDp

cpu xuxw std N/A 355 min 7093 5
monlog 3ntw std current size 64 >= 0 and record count >= 737161 80 min 23 0
svc 3ntw vsa std binary path = R:\IBMTEMP\VSA\VSASvc Cli.exs 30 min 27 0
fss xuxw std inodes used <= 1616 and mount point u = /logs 285 min 12 2
fss xuxw std inodes used <= 1616 and sub origin = /logs 285 min 12 2

Table 5: False Negative Tickets
Situation Ticket
dsp 3ntc std Please clear space from E drive xxxx-fa-ntfwwfdb Please clear space from E drive xxxx-fa-ntfwwfdb.it is having 2 MB free...
fss rlzc std /opt file system is is almost full on us97udb010ampsb Hi Team@/opt file system is almost full. Please clear some space /home/dbasso>df -h

/optFilesystem...
svc 3ntc std RFS101681 E2 Frontier all RecAdmin services are down Frontier RecAdmin services are not running on the batch server Kindly logon to the server

: xxx.xxx.155.183/xxx ...
dboffln 3oqc std DB2 is not connectable from xxxxx Hi Team@Can you please look into why we are unable to connect to Porfolio XRef DB.Server : xxxx12DB

Instance : sec mastId : ipxrbtchWhile...
dboffln 3oqc std Unable to login to DB server Hi Team@We had raised a request 131443 for access on the E1 and E2 serversE1 - Full access@ to read/write/execute

programs Hostname Server xxxxx xxx.xxx.147.194

Table 6: Accuracy of the word-match method
Situation Words Precision Recall F1Score
File System Space space,file 0.0341 0.8 0.0654
Disk Space space,drive 0.1477 0.9565 0.2558
Service Not Avail-
able

service,down 0.1941 0.75 0.3084

Router/Switch
Down

router 0.6581 0.7404 0.6968

Network monitoring is used to check the “health” of com-
munications by inspecting data transmission flow, sniffing
data packets, analyzing bandwidth, etc. [15] [6] [19] [34] [10]
[23]. It is able to detect node failures, network intrusions,
or other abnormal situations in the distributed system. The
main difference between the network monitoring and frame-
work we consider is the monitored target, which can be any
component or subsystem of the system, hardware (such as
CPU, hard disk) or software (such as a database engine, or
web server). Only the system administrators, who are work-
ing the monitored server, can determine whether an alert is
real or false. This is why we incorporate ticket resolutions,
which record how system administrators resolve those alerts
using our solution.
A significant amount of work in data mining has been done

to identify actionable patterns of events. See example, [13],
[21], [16], [32]. Different types of patterns, such as (partial-
ly) periodic patterns, event bursts, and mutually dependent
patterns were introduced to describe system management
events. Efficient algorithms were developed to find and in-
terpret such patterns. Our work is based on the part of an
event processing workflow that takes into account the hu-
man processing of the tickets. This allowed us to identify
non-actionable patterns and misses of the monitoring system
configuration with significant precision. In the event pro-
cessing workflow, false positive events are transformed into
false positive tickets. Identification of false positive events
makes it possible to significantly reduce the number of false
positive tickets. The translation of the actionable patterns
to enterprise software rules is considered in [11] and [22]. We
implemented our findings as a component prototype for En-
terprise Console. The framework obtains information about
user preferences and SLA, mines events and suggests moni-
toring conditions as well as duration parameters. A new set
of rules is advised for mined false negatives.
Dealing with false negatives, or misses of the system, usu-

ally includes the consideration of additional source of data.
In our case, this additional source is ticketing data. As a
source of information, it is difficult data to process, because

there are no supporting standards or structure, and ticket-
ing records are usually byproducts of the SA work, which
are mainly incomplete and unfinished. An additional diffi-
culty is that false negatives are rare and unbalanced due to
the fact that historically tested and tuned configurations of
the monitoring systems are used. Methods of dealing with
unbalanced data was considered for example in [9].

To process the ticketing and logged data, specialized parser-
s were created to parse and transform applications and infor-
mation system operation logs. Usually, logs and tickets are
semi-structured, containing both structured (e.g., log entry
prefixes and timestamp) and unstructured text (e.g., excep-
tion, error or warning descriptions, and display of applica-
tion state). The parsers transform them into relational or
extensible (XML like semi-structured) formats and can oper-
ate in an offline (like [29], [30], [7], [35] ) or online, streaming
regime (like [12] ). In our work, parsers are used to translate
monitoring events and ticketing data into attribute-value
pairs convenient for further analysis. Unlike existing work,
however, we also include the analysis of ticket resolution
descriptions for identifying real tickets where a non-trivial
amount of work has been done. Such information was used
to tag monitoring events as real alerts or false alerts.

Parameter tuning in log pattern mining is studied in [15],
[6]. Usually mining parameters describe how strongly ele-
ments of the pattern are interconnected or correlated (e.g.,
confidence), and what percentage of the data stream should
be covered (e.g., support). Tuning up parameters is a del-
icate process. Parameters that we tune are the percentage
of false alerts covered and the number of events covered.

Discovering time-related patterns from system logs is con-
sidered in [18], [33]. In our study, the duration time of a
pattern depends on a couple of factors such as actual delay
time and acceptable SLA thresholds. While the distribution
of recognized non-actionable patterns depends only on his-
torical data, we take the delay tolerance of a customer as
additional input.

6. CONCLUSION
This paper presents an integrated framework to optimize

the automatic system monitoring in large IT infrastructures.
By combing the system event data and ticket data from
IT service centers, this framework reduces the number of
false positive (non-actionable) alerts and the number of false
negative (missing) alerts for the automatic monitoring sys-
tem. It minimizes the cost of providing effective and reliable
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means for problem detection. The integrated framework
has been implemented as a system in the IBM IT service
management platform and deployed in several IBM service
centers. This system is used periodically to refine and ad-
just monitoring situations after a system has gone through
a change, thus helping to enhance the overall reliability in
IT service management.
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