
Analysis of Advanced Meter Infrastructure Data of Water
Consumption in Apartment Buildings

Einat Kermany, Hanna Mazzawi, Dorit
Baras, Yehuda Naveh

Analytics Department, IBM Research
Haifa University Campus, Israel

einatke@il.ibm.com,
hannam@il.ibm.com, doritb@il.ibm.com,

naveh@il.ibm.com

Hagai Michaelis
Arad Technologies

Yokneam Elite, Israel
Hagai.Michaelis@aradtec.com

ABSTRACT
We present our experience of using machine learning tech-
niques over data originating from advanced meter infrastruc-
ture (AMI) systems for water consumption in a medium-size
city. We focus on two new use cases that are of special im-
portance to city authorities. One use case is the automatic
identification of malfunctioning meters, with a focus on dis-
tinguishing them from legitimate non-consumption such as
during periods when the household residents are on vaca-
tion. The other use case is the identification of leaks or
theft in the unmetered common areas of apartment build-
ings. These two use cases are highly important to city au-
thorities both because of the lost revenue they imply and
because of the hassle to the residents in cases of delayed iden-
tification. Both cases are inherently complex to analyze and
require advanced data mining techniques in order to achieve
high levels of correct identification. Our results provide for
faster and more accurate detection of malfunctioning meters
as well as leaks in the common areas. This results in signifi-
cant tangible value to the authorities in terms of increase in
technician efficiency and a decrease in the amount of wasted,
non-revenue, water.

Categories and Subject Descriptors
G.4 [Mathematics of Computing]: MATHEMATICAL
SOFTWARE—Algorithm design and analysis

Keywords
Machine Learning, Advanced Meter Infrastructure, Water,
Leaks, Malfunction

1. INTRODUCTION
In recent years, water has become an increasingly scarce

resource in many parts of the world. This trend, driven
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by the increase of water use in developing countries, the
pollution of water sources, and desertification, is of utmost
importance from both environmental and societal perspec-
tives. In addition, it has led to a steep increase of water
prices and thus forms a new business problem in many parts
of the world that previously did not regard water supply as
a significant business challenge.

Both the environmental and business aspects of the prob-
lem are currently at the forefront of concerns faced by local
or municipal governments, and by the local water authori-
ties responsible for actual distribution and supply of water to
residents and to commercial consumers. Given the current
level of environmental awareness, any significant leak of wa-
ter, or other mishandling of this perceived scarce resource,
is likely to result in bad public relations and could become a
political nightmare for the authorities. In addition, with the
frequent hikes in water prices, customers are becoming much
more aware of their water bills and are much less likely to
tolerate over-charges due to leaks within and outside their
properties. On the other hand, so called non-revenue water
(NRW), i.e., water that is supplied but is not billed for, has
a large effect on the bottom line profitability of the water
distribution companies. Common sources of NRW are non-
metered supplies of water, leaks from pipes, theft, fraudu-
lent tempering of meters, and malfunctions or inaccuracies
of meters. It is estimated1 that NRW ranges from less then
5% of the total water production in places like Copenhagen
and Singapore, 20% in the UK and France, 50% in Mexico,
to more than 70% in sub-Saharan Africa. The World Bank
estimates that the total annual NRW reaches 48 billion cu-
bic meters, with an accompanied loss of revenue of 14 billion
USD [14].

All this has created strong pressure on government and
private authorities in charge of handling water to more closely
analyze their entire operations and to find novel ways to re-
duce water waste and losses. One of the many ways to re-
duce NRW and increase customer care is by implementing
advanced metering infrastructure (AMI) systems. In such
systems, all meters in a municipality are read at short time
intervals, and the current reading at each interval is trans-
mitted electronically (typically by wireless means) to a data
center. Then, in the most naive usage, a strong leak (e.g.,
a burst of a large pipe), can be identified as an abrupt and
abnormal increase in the water consumption as measured by

1See multiple references within en.wikipedia.org/wiki/Non-
revenue water.
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the meter. In this work, we report on much more delicate
scenarios, which can be identified only by deep analysis of
AMI data, but nevertheless have a similarly large impact on
the business of water distributers, as well as on the environ-
ment.

We focus on two major aspects of municipal water op-
erations: reduction of NRW, and better utilization of the
authority’s resources, both human (e.g., technicians) and
machinery. Obviously, minimizing NRW reflects directly on
the authorities’ revenues and cost balances. Similarly, better
resource utilization means less wasted time of technicians,
ultimate cost reduction to the authorities, and better ser-
vice to the public. While several works have dealt with
NRW [2, 10, 17, 18] and resource utilization [8] in the pub-
lic infrastructure outside the building domain, this is the
first time that such a work is done on issues related to the
individual building property. As we will see, those issues
are of high stakes to the authorities, while posing unique
challenges which do not appear in the public infrastructure
case.

The rest of the paper is organized as follows: In Section 2
we provide a detailed description of the AMI data and the
challenges related to it. Section 3 summarizes previous re-
lated work. Section 4 describes a preprocessing phase which
we claim is generic to AMI data. In Section 5 we describe
the machine learning algorithms we used and the design de-
cisions leading up to them. In Section 6 we present our
results, and in Section 7 we conclude and discuss this work.

2. PROBLEM AND DATA SPECIFICATION
In this work, we are interested in the analysis of AMI data

originating at apartment buildings. An apartment building
setting introduces unique complexities due to the large num-
ber of independent meters in each building, the correlations
between them, the interaction and tensions among the resi-
dents in the building, and the shared resources (and shared
bills) of the building. For example, misreadings or deliber-
ate fraud in one of the residential meters may affect all other
residents in the form of higher bills for their own properties
or for the shared properties.

2.1 Leaks and Theft in the Common Area
A typical apartment building consists of any number of

apartments and a common area that includes a relatively
large garden, staircases, the building roof, and similar shared
spaces. We refer to water consumption in the common area
of a building as common consumption. The total consump-
tion of the building is measured by a large meter at the entry
to the building, known as the main meter. In addition, the
residential consumption is measured by smaller meters at the
entry to each apartment. The common consumption is not
directly measured, because it consists of multitude of pipes
built at different times and connected to the main pipelines
at different, sometimes chaotic or even piratic, places in the
building. Therefore, the common consumption needs to be
computed by subtracting the amount of water measured by
all individual meters from the total amount of water that
passes through the main meter. However, this calculation
is not necessarily as straightforward as it may appear, due
to several reasons. First, as the data from each meter are
inherently noisy and incomplete, the arithmetic calculation
that involves all meters only amplifies the uncertainty. Sec-
ond, the calculated common consumption is composed of

several elements: legitimate consumption (e.g., cleaning the
stairs, watering the common garden); malfunctions in indi-
vidual apartments (e.g., stopped meters, sabotage, or fraud);
inaccuracies of any of the meters; and real losses of water
that may be due to leaks or theft of water in the common
area. All of these reasons cause the calculated common con-
sumption to be extremely noisy. For example, the calculated
common consumption frequently results in negative values,
which are of no use2.

Detecting losses in the common area is of particular im-
portance compared to losses in the residential areas. First,
the pipes in the common area are larger, and losses can
be much more significant. Second, transferring the cost of
the loss to the residents may result in frustration and ob-
jections, as none of the residents feel responsible for losses
outside their own apartment meters. Lastly, losses in the
common area may indicate criminal behavior of any of the
residents or of an outside party, which is in the interest of
the community to identify quickly.

To illustrate the significance of the problem, Figure 1a
shows a histogram of the consumption3 in the common area
of 590 buildings in January 2012. A crude estimate deter-
mined by regular usage suggests that the normal monthly
consumption should be several cubic meters, but we can
see that in most of the buildings, the consumption is much
higher. Figure 1b shows an example of a leak; in this case
the leakage continued almost 40 days before fixed and the
lost water was more then 470 cubic meters.
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Figure 1: (a) Common consumption histogram and (b) a leakage ex-
ample.

The current practice for detecting water loss in common
consumption is to define a threshold consumption beyond
which the authority suspects a problem. However, fixed-
threshold setting is problematic, because inherent differences
exist among buildings. Moreover, the common consumption
of any building varies greatly with time. This means that
either the threshold is large enough to detect only the most
severe losses or that it is bound to create many false alarms
due to legitimate uses of water in the common area. There-
fore, our first goal was to identify leaks or theft of water in
common areas of buildings in a more accurate and reliable
way.

2.2 Identification of Faulty Meters
As with any mechanical element, water meters are prone

to malfunction and may measure and report less water than

2Negative values can indicate occurrence of one of the prob-
lems described, but it can also be an artifact of the quanti-
zation of meter readings, see Section 2.5.
3Common consumption is measured by subtracting individ-
ual apartment meter readings from the main meter readings.
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actually consumed. In addition, a common way to defraud
the water authority is by tampering with the meter such that
not all water is measured. Whether due to malfunction or
fraud, such faulty meters are obvious sources of NRW. The
authority may react by either taking the loss on itself or
by billing the resident with a presumed consumption value,
a practice that invariably results in a conflict between the
resident and the authority. Hence, identifying and fixing
faulty meters as soon as possible is of utmost priority to
water authorities.

Many of the faulty meters, either malfunctioning or fraud-
ulent, do not report any consumption. Therefore, a naive
procedure could be to send a technician to examine and
possibly replace any zero-consumption meter in the munici-
pality, where a zero-consumption meter is defined as a meter
that reports the same reading for a predefined length of time.
However, some meters report the same readings for legiti-
mate reasons, most often in cases in which all household res-
idents are on vacation away from home. Empty properties
and storehouses also result in zero-consumption over a long
period of time. With this in mind, sending a technician to
all zero-consumption meters after short periods would lead
to much wasted technician time. Conversely, waiting for
longer periods would reduce the number of false alarms, but
would dramatically increase the time for which water is not
billed in cases of illegitimate zero-consumption meters, re-
sulting in larger losses to the authority and more unpleasant
interactions with the residents.

Our goal regarding the identification of faulty meters is
therefore to statistically distinguish between illegitimate and
legitimate zero-consumption meters. Being able to do so
shortens the period necessary before sending a technician to
illegitimate zero-consumption meters. It also increases the
technician pool efficiency by decreasing the number of visits
to legitimate zero-consumption meters.

2.3 Consumption Prediction
The ability to predict consumption is useful for planning

water distribution systems and new neighborhoods. In ad-
dition, it can be useful as another technique to detect leaks
and faulty meters. When a predicted consumption value is
significantly higher (or lower) than the actual metered value,
the probability of either a faulty meter or a leak increases.
Our goal in this regard is to predict the consumption for
each meter on a daily basis, focusing on building main me-
ters. The prediction can be performed in both on-line and
off-line settings, depends on the exact need.

2.4 AMI Data
AMI data were the main source of data we analyzed for

this work. Each meter in the AMI system can provide up
to one data point every 15 minutes4. Each such data point
consists of: (1) a unique identification number, (2) a current
meter value, (3) a current meter status, and (4) a timestamp.
The meter status is a set of flags identifying the state of the
meter, reporting indications about tampering attempts, sus-
pected leakages, etc. The transmitted data are received by
local devices and almost immediately transferred to central
data servers.

4We had access only to daily consumption during the course
of this work.

Our analysis is based on consumption data from a medium-
size city of around 100,000 residents, most living in apart-
ment buildings of 4-40 apartments. The data consisted of:

1. Daily readings from each meter
2. Meter technical data for each meter
3. Consumer data for each meter (e.g., number of resi-

dents in the household)
4. Apartment buildings water network (identification of

main meters and their sub meters)
5. Lists of meter replacements and meter cleanings as re-

ported by technician logs
All data related to this paper were collected by an Arad

Technologies system5.

2.5 Data Challenges
The water management tools we developed are based on

the supplied AMI data. We faced several generic challenges
when attempting to mine the data. Such challenges prevail
in any significant amount of data produced by AMI systems,
and where acute enough to require specific handling. These
include the following:

• Relatively large amounts of missing data due to commu-
nication problems, empty transmitter batteries, etc.

• Time discrepancy: Different meters reporting at different
times of the day.

• Metering quantization: Each meter reports only a floor
value of the actual reading. The floor resolution depends
on the type and the capacity of the meter. Typically
the resolutions are 0.1, 1, and 10 cubic meters for small
(apartment), medium (main building), and large (infras-
tructure) meters, respectively6.

• Meter thresholds: Each water meter has a threshold flow
below which it does not measure any consumption. This
is different from the previous item in that flow below
the threshold value is neither recorded nor transmitted
at any subsequent time. Threshold flow is typically 10-
15 liters/hour for apartment meters, and higher for main
meters.

• Meter inaccuracies: Meters are presumed to have a non-
systematic measurement margin of error. The estimated
error is 5% for flows below 200 liters/hour and 2% above
that.

• Faulty reports: Many cases of faulty reports occurred,
originating from different causes. These included meters
that advanced backwards causing apparent negative con-
sumption, faulty meters with unpredictable reports, and
large differences between two subsequent readings due to
replacement of the meter.

3. RELATED WORK
Several papers address the detection of anomalies in water

distribution networks [2, 10, 17, 18]. Unlike our work, which
focuses on buildings and uses AMI data only, these papers
focus on large-scale networks that are equipped with sensors
that measure water pressure, flow, and more. The papers
use a variety of machine learning techniques, such as K-PCA

5More information regarding Arad’s measurement technol-
ogy can be found at http://www.aradtec.com.
6Future systems will have smaller quantization levels, which
will reduce the quantization error, but it will not completely
vanish.
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and neural network, to detect anomalies and mainly focus
on leak detection, water quality monitoring, etc.

Other recent papers address the problem on an apartment
level. In [8], A. Hampapur et al. described a water man-
agement system they developed. Their system uses AMI
readings and machine learning techniques to analyze water
consumption in apartments. They focus on detecting leaks,
but only at the apartment level, and their work does not offer
a solution for malfunction of meters or for leaks at the com-
mon grounds. A few other papers [6, 13, 7] suggest installing
additional sensors in the apartments, such as microphone-
based sensors, water pressure sensors, and others to address
the same problems.

In an additional effort to conserve water on an apartment
level, Chen et al. [3] provided an algorithm for disaggregat-
ing apartments’ water consumption signals into components.
Disaggregation of the water consumption signal helps resi-
dents gain insights, identify, and change bad consumption
behavior.

Many other research efforts were performed in the area
of water consumption prediction using different approaches
and algorithms. Many of these works deal with prediction
of large populations, such as cities [1, 4, 12], campuses [11]
and water plants [19]. Additionally, in some of the works the
prediction is required in resolutions of months (e.g., [1, 12])
or weeks (e.g., [11]). Even in works in which the resolution
of prediction is daily [12, 19], the input features include not
only the past consumption but also additional features re-
lated to weather conditions (temperature, humidity). In [4],
Cutore et al. attempt to predict daily consumption based on
past consumption and additional features (day of the week
and whether or not it was a working day). In [16], Liu et
al. predict a domestic model, but the input features include
the consumption as well as features related to water pricing,
household income, and property size.

None of the works related to prediction specifically men-
tion AMI data. Only two works referred to a preprocessing
stage: in [11] Jain et al. mention missing values but use
only part of the samples with complete values and in [12]
Jowhar et al. use linear transformation to change the range
of values. No other work has dealt with missing values,
alignment in sampling times, or noise. We are not aware
of other works similar to ours in the sense of prediction of
domestic (or building-level) consumption on a daily basis,
based on past data only.

4. DATA PREPROCESSING
As a first step in dealing with the data challenges we

described in Section 2.5, we performed an extensive phase
of preprocessing of the data. This phase contained three
stages: cleaning the data, fixing existing values, and esti-
mating missing values. The stages were performed sequen-
tially (usually in the above order) before running the main
data mining algorithms. Note that the raw data for the pre-
processing phase is pairs of timestamps and readings from
each meter. In this section, we describe each stage and in the
subsequent sections, we show a comparison of those meth-
ods and present their effects on the performance of our al-
gorithms.

4.1 Cleaning the Data
In the cleaning stage, we removed all unreasonable read-

ings from the historical data. Unreasonable readings are de-

fined as very high consumption and negative consumption,
both of which occur due to various known malfunctions.

The raw data provided were particularly noisy in nature.
An initial analysis revealed that the noise occurs at all fre-
quencies, and that the information is also spread over the
entire spectrum, in the sense that different consumers have
different frequency components. Therefore, filtering or other
signal-processing related preprocessing procedures were not
performed.

4.2 Alignment of the data
Most of the historical data were at a daily rate. Thus, we

relied on daily consumption when analyzing for leaks and
faulty meters. On most days, any given meter was sampled
at 7am. However, on some days the meters were sampled
at a different time. In this section, we present two main
methods for making our samples aligned.
• Linear Interpolation. We used linear interpolation to

create a continuous signal from the samples. It was done
by linear connection between every two nearest points.
Then we sampled this signal every day at 7am. This
method changes only samples that were not taken at 7am.

• Average Consumption. We used the average consump-
tion to fix each sample. A sample sj = (tj , xj) is a pair
of positive numbers in which t corresponds to the time
and x is the actual reading from the meter. For fix-
ing the ith sample si = (ti, xi), we looked at samples
si−k = (ti−k, xi−k) and si+k = (ti+k, xi+k), where k is
a fixed positive constant. Assume that the average water
consumption between times ti−k and ti+k is c liters per
hour; that is, c = (xi+k − xi−k)/(ti+k − ti−k) . Denote
the difference in hours between t and 7am of that day by
Δ (note that Δ can be negative). The algorithm changed
the ith sample si to be s̃i = (t−Δ, x−Δ · c).

4.3 Estimation of Missing Values
In this section, we present the various methods we used

to predict the values of missing samples.
• Linear Interpolation. Similar to Section 4.2 except

that we sampled the continuous signal everyday at 7am.
• Polynomial Regression. We tried to estimate meter

readings using a polynomial Pd(t) = θ0 + θ1t+ · · ·+ θdt
d

of limited degree d. Given a set of examples

(t(1), x(1)), (t(2), x(2)), . . . , (t(m), x(m)) ∈ (Rn,R),

the polynomial regression algorithm chooses a polynomial
Pd such that the L2 norm of the error on the training set

is minimized. That is,
∑

i

(
Pd(t

(i))− x(i)
)2

+ λ
∑d

j=2 θj ,

is minimized. Here λ is the regularization constant and θj
is the jth coefficient of the polynomial. Now, to predict
the reading in time ti, we ran a polynomial regression
algorithm. We provided the algorithm with the training
set S = {(t�, x�), . . . , (t�+k, x�+k)}, where S corresponds
to the k samples closest in time to ti

7. After training the
algorithm with S, we used its hypothesis Pd(t) to predict
the reading in time ti to be (ti, Pd(ti)).

• Polynomial Interpolation. In this method, we used
polynomial regression with no regularization (λ = 0) and
full degree (that is, if the size of the training sample set is
k then, we look for a polynomial of degree k−1). In other

7We make sure that k/2 of the samples were taken before
ti, and k/2 were taken after ti.
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words, let S = {(t�+1, x�+1), (t�+2, x�+2), . . . , (t�+k, x�+k)} ,
be the set of k samples closest in time to ti. We found
a k − 1 degree polynomial P such that for all j ∈ {� +
1, . . . , � + k} we had P (tj) = xj . Our prediction for the
reading in time ti was P (ti). That is, we added the pre-
dicted sample (ti, P (ti)) to the data.

• Estimating using Median. To estimate the consump-
tion in a given day — in this method we estimated the
consumption and not the actual read from the meter —
we looked at the water consumption on nearby days (past
and future). Our estimated consumption was the median
of these values. Note that this is the only method that
produces quantized values.

• Collaborative Estimation — Principal Component
Analysis (PCA). In this method we used PCA compo-
nents. The idea is to use water consumption vectors with
only a few missing samples8. We performed PCA on these
vectors and found the principal components from which
we could recover the original vectors with minimal error.
That is, we found vectors u1, u2, . . . , um, for which every
water consumption vector v with few missing values there
exists coefficients a1, . . . , am where ||v − (a1u1 + a2u2 +
· · · + amum)|| is minimized. Here m is the smallest inte-
ger for which we retain 95% of the variance. After we had
identified these vectors, when constructing a vector with
many missing entries w, we used regression to find coef-
ficients θ1, . . . , θm that minimize the cost function ||w −
(θ1u1 + θ2u2 + · · · + θmum)||2. Obviously, we minimized
the distance between w and (θ1u1 + θ2u2 + · · · + θmum)
in entries for which w i known. The vector w is replaced
with the vector (θ1u1 + θ2u2 + · · · + θmum), which does
not contain missing entries.

5. ALGORITHMS AND DESIGN DECISIONS
In this section we describe the main structure of the data

mining algorithms that we used in order to analyze the three
use cases described in Sections 2.1, 2.2, and 2.3, respec-
tively,and the design decisions leading to them.

5.1 Leaks and Theft in the Common Area
We used an unsupervised anomaly detection method to

detect irregular behavior in the common area of the build-
ings. With this method, the data were cleaned and cor-
rected according to the preprocessing methods described in
Section 4 before running the main algorithm. The com-
mon consumption was calculated as described in Section 2.1.
Then the relevant features were extracted. These features
were created separately for each building and for each day9.
The features we selected were the current day of the week,
the current month, the daily common consumption, and the
weekly common consumption. The weekly common con-
sumption was calculated by moving windows of seven days
each on the daily consumption. The weekly consumption is
important because the common consumption is very noisy
and inaccurate, while the weekly consumption significantly
smooths this noise. The following distance measures were
used for the various features: for consumption — the arith-
metic difference; for the day in the week — delta function

8In a consumption vector v, the ith coordinate vi equals
xi+1 − xi, where xi are the meter readings.
9For small leaks, looking at smaller intervals can not distin-
guish legitimate and illegitimate usage.

(namely 1 if the elements are identical and 0 otherwise); for
the month — the gap between two months.

We applied the k-nearest neighbor (KNN) [5] algorithm on
the common consumption of each building on a given day
to detect anomalous behavior. Note that we can only detect
malfunctions that started relatively recent to the historical
data. The idea is to check if the common consumption on
the given day is abnormal compared to the historical behav-
ior of this building. We did this by comparing the extracted
feature’s vector of the given day with the vectors of its clos-
est neighbors. In particular, we chose the k vectors that
were closest to the given day and then calculated the aver-
age distance between those instances and the vector of the
current day. A low average distance indicates that the vector
of the current day is similar to its neighbors, which means
that the consumption on the given day is normal. A high
average distance indicates that the vector of the current day
is different from its closest neighbors, meaning that the con-
sumption behavioral is changed and therefore should cause
concern of a leak or malfunction. The chosen k in our solu-
tion was 30. We calculated KNN twice, once before applying
the estimation of missing values procedure and again after
estimation, and we took the maximum value of the two. The
KNN algorithm requires a certain amount of data in order
to work correctly. Therefore, if not enough historical data
exist, we used a simple statistical model to represent the
daily consumption and the weekly consumption. We then
used Grubb’s test for outliers [9] for each feature (daily and
weekly consumption) and the anomaly score of the current
day as the average value.

Since no labeled data existed in the case we analyzed, we
had to use an unsupervised learning technique. The KNN
algorithm is suitable to our problem because it is entirely
data-driven and no additional feedback or labeling is re-
quired [9]. In addition, KNN suits our setting in which no
assumptions related to the distribution of the data exist-the
data are unknown and vary among different buildings.

Using our approach, once we had the results for each
building, we created a ranked list in descending order of
building identifications and scores, indicating the level of
anomalous consumption in the common area. Note that
we reported only cases of positive common consumption;
in cases that the common consumption is negative the al-
gorithm applies a score of zero. In addition, the function
returned a status for each building including information
such as whether enough historical data exist or whether the
common consumption is high only on the given day, etc. A
water authority can then use the scored list and the addi-
tional indicators to handle the cases of abnormal common
consumption in buildings. Typically, an authority looks at
the most highly-scored anomalous cases, and either alerts
the building administration of the potential loss of water
or directly investigates the case. Figure 2 summarizes the
solution.

5.2 Identification of Faulty Meters
Our solution used a classifier to distinguish between cases

of legitimate, such as residents on vacation, and illegitimate,
as malfunctioning or tampered, zero-consumption meters.
Before using the classifier, the algorithm cleaned and cor-
rected the data as described in Section 4. Following this,
the algorithm created samples, and calculated the features.
The samples were created as follows: The historical data
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Figure 2: Algorithm’s scheme for detection of losses in common areas
of buildings.

were parsed to find the events in which meters report zero-
consumption during a predefined period of time. For each
event, we calculated the start of the event — the first day
that the meter started to report zero and the end of the
event — the last day that the meter reported zero, and we
then set labels. If the meter was replaced or cleaned by
a technician, we labeled it faulty, otherwise it was labeled
legitimate.

One main problem in the sample creation stage is distin-
guishing between two similar cases that can occur for a spe-
cific meter. Once case is a non zero-consumption meter that
progresses slowly and therefore reports rarely. The second
is the case of two or more different zero-consumption events
for the same meter. Due to meter quantization and inaccu-
racy, such cases may appear quite similar from a data point
of view, yet they have different origins and may thus confuse
the classifier. Our solution handles such cases by merging
two events when the consumption between the events was
less then a predefined number, typically one half of a cu-
bic meter, and removed the second event if the gap between
the events, between the end of the first event and the be-
ginning of the second event, was less then 30 days. In our
analysis, accurately recognizing such cases was particularly
important, especially the start time, because there were sev-
eral features that represent the consumption behavior dur-
ing the last few days before the meter started to report the
same reading and several features that compared between
behavior before the event start and during the event.

After the algorithm defined the samples, it calculated the
following features:

• Features that describe the behavior during the days prior
to the beginning of the event of zero-consumption (e.g.,
average, variance, and slope of the consumption)

• Consumption features (e.g., average and entropy of the
daily consumption)

• Features that describes the history of the meter (e.g.,
number of zero-consumption events in the past)

• Meter’s and property’s features (e.g., age, usage type)

• Features of the event (month, day of the week, and dif-
ference in the common consumption of a building before
and during the event)

We checked a few classifiers — random forest [15], Näıve
Bayes [5], and support vector machine [5] — and found em-
pirically that random forest gives the best results. In Sec-
tion 6.3 we present the full details of this.

Specifically, in our sample, and generally, in reality, many
more events of legitimate zero-consumption occur than events
of faulty meters. This ratio between the two types of events

depends on the duration in which the meter reports zero-
consumption. In our historical data, for example, around
10 percent of the events were faulty when we set this pe-
riod as one month. For this reason, the faulty meter events
got a weight that is 10 times more then the legitimate zero-
consumption events. If the classifier did not accept a weight
parameter as input, we simulated this by replicating the
faulty events 10 times. In order to improve prediction re-
sults, we learned separate models for various intervals of
zero-consumption. In particular, we learned a model for me-
ters that were reported zero-consumption four-five weeks, a
model for meters that were reported zero-consumption five-
six weeks etc. The minimal duration for learning a model
(four-five weeks in our case) can be determined by the user
(the water authority). The decision to take durations of one
week obtained the best performance.

Once we had the results for each zero-consumption meter,
we created a ranked list in descending order of meter iden-
tifications and scores, indicating the level of confidence that
a given zero-consumption meter is faulty.

Figure 3 summarizes the algorithmic stages in this part of
the work.

Figure 3: Algorithm’s scheme for identification of faulty meters.

5.3 Consumption Prediction
We trained models to predict the daily consumption for

the main meters in buildings. A model was learned for each
building based on its past data. The prediction of a certain
day was based on the consumption in the preceding seven
days. Since water consumption patterns can change over
time, the predictor was retrained every predefined period of
time using the additionally gathered data. We used linear
regression [5] with several regularization methods, polyno-
mial regression, and artificial neural networks [5]. A simple
average over past data was used as baseline. The results
were compared when the missing data were estimated with
various data estimation methods.

Previous research on daily consumption show that us-
ing additional information (e.g., temperature, humidity, and
rainfall) can significantly improve results [12, 16, 19]. We
plan to extend our model to include such additional fea-
tures.

6. EXPERIMENTAL RESULTS
In this section we show (1) the results of the comparison of

different methods in the preprocessing stage; (2) the results
of our algorithm for water losses in the common area; (3) the
results of our zero-consumption meter algorithm, including
its performance as calculated by 5-fold cross validation, and
comparison of a few classifiers; and(4) the results of our pre-
dictor and a comparison with a simple solution. In addition,
we checked the effect of the different methods of estimation
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of missing values (part of the preprocessing stage) on the
performance of all the algorithms.

When presenting and discussing the results, we used the
following classical measures: Precision, Recall, F1 score,
and AUC [area under the receiver operating characteristic
(ROC) curves]. In the zero-consumption scenario, we calcu-
lated the mean AUC, which is the mean area under the five
ROC curves created by the five-fold cross-validation method.
We also used the percent of samples to be checked for ob-
taining recall of 0.8, namely the proportion of the samples
that should be checked in order to detect 80% of the positive
values. (Recall that the algorithm’s result is a ranked list in
decreasing order.) This measure was the most effective in
our communication with the water authority.

6.1 Preprocessing
In order to estimate the error of each method we re-

moved intervals of known readings and estimated those miss-
ing readings by using the various estimation methods. The
length of the interval was chosen using a distribution that
represents the lengths of actual missing readings intervals in
our data.
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Figure 4: The mean square error for the preprocessing methods. Each
couple represents a estimation method and the two colors represent
the two fixing discrepancy methods.

Figure 4 displays the mean square error (MSE) of ev-
ery preprocessing method. That is, we measured the mean
square distance between real values and estimated values.
The figure clearly shows that the linear interpolation method
has the minimal MSE.

In order to further understand our results, we examined
the data and monitored the algorithms’ runs. When apply-
ing polynomial regression, we noticed that the coefficient of
the linear component is the most dominant. Other coeffi-
cients, that correspond to non-linear features, were small in
magnitude. This suggests that many of our meters trans-
mitted a function that is close to linear with high frequency
noise.

As for collaborative estimation (PCA method), the nois-
iness of the water consumption vectors makes this method
problematic. We used dimensionality reduction to search for
a linear space that approximates consumption vectors with
minimal loss of variance. Many meters experienced malfunc-
tions and unreasonable behavior during the observed period
of time. This caused many unexpected consumption values
that changed the principal component to include non-typical
behavior causing the error in estimation to increase.

Finally, we recall that different meters have different reso-
lutions. Given a meter with resolution r (in which r can be
100 Liters or 1000 Liters), and given that the amount of wa-
ter consumed is equal to c, the meter transmits � c

r
�·r. In an

attempt to lower the MSE, we tried to apply a quantization
function similar to the one the meter uses on the estimated

values. The idea is simple: performing quantization on the
estimated consumption using the meter resolution should
decrease the MSE, since our real values are quantized. In
practice however, the error only increased. Given a real
value from the meter x, and predicted values x̃, the error is
equal to the difference squared (x − x̃)2. When performing
quantization on x̃, the error equals zero for all predictions
in [x, x + r). However, for values in [x + r, x + 2r) and
[x− r, x), the error equals r2. That is, we have a very large
error when the predicted consumption is lower than the ac-
tual consumption. Since this event happens frequently, the
MSE increased after performing quantization. Similar anal-
ysis showed that the error does not decrease when we round
our estimated values using the meter’s resolution.

6.2 Leaks and Theft in the Common Area
We checked our new solution with data from 590 build-

ings. We ran the algorithm on a specific day and compared
the new solution with the currently used solution, which is
based on a defined threshold. The first 25 buildings with the
highest score from our solution were checked by technicians.
The check method included talking to the house committee
or other residents to find about known leaks, checking for
above ground leakage, checking for unmeasured water con-
sumption (other than irrigation), and finally, if no other ex-
planation was found, checking for underground hidden leaks
with leak detection tools. Of the 25 cases, 13 were actually
checked on-site and the other 12 were not checked due to
technical problems (3) or inability to coordinate the check
with the house committee (9). The technicians found that
12 cases had leaks or other malfunctions such as faults in the
irrigation system or improper connections of pipes. Only one
case was a false alarm. Of those 13 cases, the existing solu-
tion detected only nine cases and had the same false alarm.
The unchecked cases caused due to coordination problems
were examined by a domain expert. The domain expert
found that eight cases had leaks or other malfunctions and
one case was a false alarm. The existing solution detected
six cases and had the same false alarm.

In addition, the expert classified 42 cases that the existing
system classified as leaks and the new solution gave them
low priority. Of those cases 15 were proper, nine cases were
prolonged malfunction which our solution does not claim to
reveal because it does not yet have historical data that goes
that far into the past, 17 cases could not be classified and
one case was classified as a new malfunction.

To summarize those results, the new solution detects faulty
cases that the existing solution did not reveal. Even more
importantly, it gave low priority to many cases that were
incorrectly classified as malfunctions by the solution of the
meter company.

For more extensive testing we succeeded to label 326 build-
ings from this sample. The labeling was done by the results
of the technicians and by the help of the domain expert.
In those cases, 35 were leaks or other malfunctions and the
rest were proper. In the existing solution 62 buildings were
specified as having malfunctions but only 26 of them were
actually malfunctions. The precision was 42% and the re-
call was 74%. We checked the new algorithm using the fol-
lowing estimation methods: linear interpolation, regression,
median and polynomial interpolation. Table 1 summarizes
the comparison result. The precision, recall, and F1 mea-
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sures calculated for threshold 10%, meaning that 10% of the
highest samples were classified as leaks.

Table 1: Leaks results.

Percent of samples

to be checked for

AUC recall = 0.8 Precision Recall F1
Lin. interp. 90 15 73 69 71
Poly. reg. 90 13 70 66 68
Median 76 34 30 29 29

Poly. interp. 88 23 64 60 62
PCA 84 24 42 40 41

The best results were achieved by linear interpolation and
regression. The polynomial interpolation method was slightly
worse, the PCA method was much worse for this algorithm,
and the median was the worst method. The best F1 measure
was 71, while the F1 of the existing solution was 53.6.

6.3 Identification of Faulty Meters
We checked the algorithm using different methods of pre-

processing. We collected all the events in which the meter
was reporting zero for two weeks or more from 2010 and
2011 and used 5-fold cross validation to check the perfor-
mance. In our comparison of methods, we got similar re-
sults to those in the previous section, namely that linear
interpolation and regression achieved the best results. In ad-
dition, we compared a solution using linear interpolation as
a estimation method with a solution that does not estimate
missing data. Figure 5(a) shows the comparison between
the ROC curves of the two solutions. We can see that the
estimation stage significantly improves the results (we used
a two-sample Kolmogorov-Smirnov test on 30 runs for non-
estimation and linear interpolation cases and got that they
are from different continuous distributions at a very high sig-
nificance level with p-values in the range of 10−14 − 10−12).
We also tried different classifiers and found that the random
forest gave the best result. See Table 2 for the comparable
result.

Table 2: Zero-consumption meter results, a comparison between ran-
dom forest, näıve Bayes, and linear SVM.

Percent of samples

mean to be checked for

AUC recall = 0.8 Precision Recall F1
R. forest 83 33 29 50 37

NB 72 71 22 38 28
SVM 73 51 19 32 24

In the beginning of 2012, we tested our solution by sending
technicians to all the meters that reported zero-consumption
for at least four weeks. We used historical data from 2010
and 2011 to train the model and then tested its performance
on 283 new events. The classifier results were verified by
correct labels from the technicians who checked each me-
ter directly. The consumption data was estimated by lin-
ear interpolation. Recall that the existing solution was to
send technicians to all zero-consumption events. The goal
of the meter company was to reduce the number of meters
that were inspected, while capturing most, e.g., 80%, of the
faulty meters. Our solution predicted that to cover 80% of
the meters that were actually faulty, inspect only 91 out
of the 283 zero-consumption meters, which are 33% of the
suspicious meters, would be sufficient. Figure 5(b) shows

the predicted proportion of faulty meters among all zero-
consumption meters as a function of the proportion of the
sample that is inspected by a technician.
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Figure 5: Detection of zero-consumption meters.

6.4 Consumption Prediction
We compared the consumption predictor with a simple

algorithm that predicts the consumption of the next follow-
ing by averaging the preceding seven days. The predictors
learned the consumption in 2011 and predicted the consump-
tion in the first six months of 2012. After prediction of each
month, the models were retrained using a training set that
contained the previous samples and the data of the addi-
tional month. Learning the predictors was performed for
each data estimation method. We got similar results for the
various estimation methods as those mentioned in the pre-
vious sections. Therefore, the results we present here are
achieved by the linear interpolation method, which consis-
tently showed the best results. The performance measure
is the MSE averaged over all buildings. The polynomial re-
gression method provided the best results (mean MSE of
1.87), which is an average improvement of 9% as compared
to the baseline (mean MSE of 2.09). The linear regression
method (regardless of the regularization method) was bet-
ter than the baseline but worse than the polynomial. The
neural networks gave poor results compared to the baseline,
on all the architectures that we tried. We believe that this
is due to the noisy nature of the data, and we suspect there
was over-fitting to the noise. In order to demostrate the
benefits of our solution, we present Figure 6(a) to show the
MSE of the polynomial regression predictor vs. the MSE of
the baseline. This shows that in most of the buildings, the
polynomial regression performed better. Figure 6(b) shows
an example from a single building (slightly changed, due to
privacy restrictions). Notably, the polynomial regression fol-
lows the real consumption more accurately than the simple
baseline algorithm.
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Figure 6: Consumption prediction example. The MSE results of the
building that is shown in figure b is marked by a red dot in figure a.
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7. DISCUSSION
We have presented a new data mining application that

holds great promise for tackling issues of prime importance
to the operation of municipal water supply. The importance
stems from the effect of the results on the regular business
aspects of water authorities, such as increased revenues, re-
source efficiency, and customer care, but also from the effect
on environmental aspects related to water conservation and
sustainability. In fact, with water scarcity becoming a signif-
icant issue in more and more parts of the world, this second
aspect is gaining growing interest in virtually all municipal-
ities in both the developing and industrialized world.

While the results presented in this paper show the signifi-
cant value of the work already done, much work remains for
the future, in terms of both new functionality, and stronger
technology. Together with water authorities, we are working
on identifying and formalizing new business cases addressing
further major pain points of the customers. In addition, we
are working on strengthening and improving the algorithmic
methods used to approach AMI data related to apartment
buildings. One promising direction that we have only started
to experiment with is analyzing correlations between neigh-
boring buildings, and among buildings and neighborhoods
of similar characteristics. Another direction we intend to
investigate is extending our algorithms to use hourly reso-
lution. This was not done under the scope of this work due
to lack of historical data at this resolution.

We are certain that this work and others like it will serve
to accelerate the transition of municipalities to modern me-
tering infrastructures. With this, demand for analytics and
data mining will only increase and will drive for growing
complexity and sophistication of the methods. We are look-
ing forward to this future.
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