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ABSTRACT

In sponsored search auctions, the auctioneer operates the
marketplace by setting a number of auction parameters such
as reserve prices for the task of auction optimization. The
auction parameters may be set for each individual keyword,
but the optimization problem becomes intractable since the
number of keywords is in the millions. To reduce the dimen-
sionality and generalize well, one wishes to cluster keywords
or queries into meaningful groups, and set parameters at
the keyword-cluster level. For auction optimization, key-
words shall be deemed as interchangeable commodities with
respect to their valuations from advertisers, represented as
bid distributions or landscapes. Clustering keywords for
auction optimization shall thus be based on their bid dis-
tributions. In this paper we present a formalism of cluster-
ing probability distributions, and its application to query
clustering where each query is represented as a probability
density of click-through rate (CTR) weighted bid and dis-
tortion is measured by KL divergence. We first derive a k-
means variant for clustering Gaussian densities, which have
a closed-form KL divergence. We then develop an algorithm
for clustering Gaussian mixture densities, which generalize
a single Gaussian and are typically a more realistic para-
metric assumption for real-world data. The KL divergence
between Gaussian mixture densities is no longer analytically
tractable; hence we derive a variational EM algorithm that
minimizes an upper bound of the total within-cluster KL di-
vergence. The clustering algorithm has been deployed suc-
cessfully into production, yielding significant improvement
in revenue and clicks over the existing production system.
While motivated by the specific setting of query clustering,
the proposed clustering method is generally applicable to
many real-world applications where an example is better
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characterized by a distribution than a finite-dimensional fea-
ture vector in Euclidean space as in the classical k-means.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering.

General Terms

Algorithms, Experimentation, Performance

Keywords

Clustering; Bayesian methods; sponsored search; auction;
optimization

1. INTRODUCTION
In search advertising, advertisers bid on keywords for ad-

vertising opportunities alongside algorithmic search results,
through a generalized second-price auction (GSP) [6]. The
bidder with the highest estimated click-through rate (CTR)
weighted cost-per-click (CPC) bid (also known as rank score)
wins the auction (impression opportunity). If the served
ads are clicked, the advertisers pay the search engine (e.g.,
Google or Bing) the CTR adjusted next highest CPC bid.

The auctioneer or the search engine operates the mar-
ketplace by setting a number of auction parameters, which
play an important part in determining the outcome of the
auction. An example of an auction parameter is reserve
prices; only ads that clear the reserve price participate in
the auction [12, 13]. Another example is the exponent to
which the CTR estimate is raised in the rank score func-
tion [9, 11]. Auction optimization is the task of finding pa-
rameters to optimize an objective such as maximizing click
volume or revenue, while satisfying constraints such as the
average number of ad impressions shown. One may seek
to set the auction parameters for each individual keyword,
but the optimization problem becomes intractable since the
number of keywords is in the millions. To reduce the dimen-
sionality for a parsimonious model that generalizes well, one
wishes to cluster keywords or queries into meaningful groups,
and set parameters at the keyword-cluster level.
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For the purpose of auction optimization such as reserve
setting, keywords shall be regarded as interchangeable com-
modities with respect to their valuations from advertisers,
more precisely the estimated CTR weighted CPC bids. The
valuation of a keyword is the underlying parameter of a prob-
ability distribution referred to as bid landscape, and each
advertiser’s bid is a sample drawn from the distribution.
Clustering keywords for auction optimization shall thus be
based on their bid distributions. To see intuitively why rep-
resenting a keyword as a bid distribution is more advanta-
geous than point estimates for this specific task of auction
optimization, let us consider reserve price setting as an ex-
ample. It is clear that both mean and variance are relevant
to finding optimal reserve. The mean reflects the overall
valuation level, while the variance captures the important
aspects of competitive landscape including bid density and
spread.

The main contribution of this paper is to present a for-
malism of clustering probability distributions. We describe
a query clustering algorithm where each query is represented
as a probability density of CTR-weighted bid and distortion
is measured by Kullback-Leibler (KL) divergence. We first
derive a k-means variant for clustering Gaussian densities,
which have a closed-form KL divergence, and show that the
iterative algorithm monotonically decreases the total KL di-
vergence. We then develop an algorithm for clustering Gaus-
sian mixture densities, which generalize a single Gaussian
and are typically a more realistic parametric assumption for
real-world data. The KL divergence between Gaussian mix-
ture densities is no longer analytically tractable; hence we
derive a variational EM algorithm that minimizes an upper
bound of the total within-cluster KL divergence.

The clustering algorithm has been deployed successfully
into production at Bing Ads, and has produced keyword
clusters for auction optimization. The method yielded a
22% gain in CTR over k-means in offline simulation, and
a 5% improvement in revenue and clicks over the existing
production system, which is a very significant improvement
for a multi-billion dollar marketplace. As a consequence, the
reported query clustering method is now serving 100% Bing
and Yahoo search advertising traffic.

The paper is organized as follows. In Section 2, we formu-
late the problem of auction optimization. We then examine
some empirical bid distributions in sponsored search auc-
tions in Section 3, to support the parametric assumption
that each keyword is represented as a Gaussian mixture
density. In Section 4, we discuss a Bayesian perspective
of clustering, and in Section 5, we formalize the problem
of clustering probability distributions and derive a k-means
variant, using Gaussian density as an illustrative example,
while the approach remains general. We then in Section 6
generalize the single Gaussian model to Gaussian mixture
model (GMM) and derive a variational EM algorithm with
the otherwise analytically intractable KL divergence. Em-
pirical results with the application of keyword clustering for
auction optimization is presented in Section 7. Finally, we
conclude the work in Section 8.

2. AUCTION OPTIMIZATION
The state of the art of auction optimization is to formulate

an integer programming (IP) problem using counterfactual
auction simulation as input. Before we formulate the auction

optimization problem, let us first introduce the following
concepts and notations for sponsored search.

1. Ranking. Given a keyword-ad pair, let the estimated
position-unbiased CTR be ρ [3], the CPC bid be b, the
rank score is defined as s = bρα, where α is called click
investment power.1 If α > 1, ranking favors ads with
higher estimated CTRs; otherwise, ranking favors ads
with higher bids.

2. Pricing. In a GSP auction, if an ad from bidder (ad-
vertiser) i is clicked, her payment or price per click
depends on the value per impression (rank score) of
the next highest bidder i + 1, i.e., ci = bi+1ρ

α
i+1/ρ

α
i .

This design is to avoid dynamic bidding behavior [9]
(the price ci does not depend on her own bid bi), while
motivating high quality ads (the higher the CTR ρi,
the lower the price ci).

3. Allocation. Ads are allocated, in the descending or-
der of their rank scores, from top to bottom display
positions, i.e., the ad with the highest rank score is dis-
played in the first (top) slot, and so forth. Ad positions
are primarily from two page sections: mainline (ML)
refers to the positions above the algorithmic search re-
sults, and sidebar (SB) refers to the positions right to
the algorithmic results [9, 13]. There are two reserve
prices in the unit of rank score controlling the sectional
allocation: mainline reserve R and sidebar reserve r.
Given an ad i with rank score si, if si ≥ r, the ad will
be shown; and further if si ≥ R, it will be shown in ML,
with other constraints satisfied2. The reserves R and
r also affect pricing, e.g., ci = max (bi+1ρ

α
i+1, R)/ραi , if

ad i is shown at the last position in ML.

4. Optimization. For auction optimization, one typ-
ically maximizes either revenue y or clicks w, con-
strained on the average number of ads shown in main-
line per search result pageview, called ML impression
yield or MLIY and denoted as a. Another constraint
typically used in practice is the average number of
ads shown overall both in mainline and sidebar per
search result pageview, called impression yield or IY.
Since the contribution to the objective function of ei-
ther revenue or clicks is dominated by MLIY, we focus
our discussion on the primary constraint on MLIY for
simplicity.

Auction optimization consists of two steps as follows.

1. A counterfactual auction simulation is performed by
applying a discrete set of candidate values of auction
parameters H = {hj}mj=1 to a historical auction log, to
compute a number of metrics U = {uj}mj=1. For exam-
ple, one can simulate how many more clicks would have

1In practice, CTR estimates are typically at more granular
levels including, e.g., user signals. We focus our discussion
on the keyword-ad level to abstract from the nuances irrele-
vant to this work, without loss of generality. The keyword-
ad pair is arguably the most predictive feature anyway. The
rank score function has been evolving as well, and may con-
tains other terms such as relevance of the ad landing page.
2In search advertising auction, there are other constraints
on ad relevance (minimum relevance), CTR (minimum es-
timated CTR), and page layout (maximum numbers of ads
in ML and SB), and so on.
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been yielded if mainline reserve is reduced by half, by
replaying the auction with lowered mainline reserve to
compute impressions and predicting clicks using esti-
mated CTR. Without loss of generality, we only con-
sider the major parameters h = (α,R), efficiency and
budget metrics u = (y, w, a).

2. An integer programming (IP) problem is formulated
based on the objective and constraint coefficients com-
puted from the auction simulation, and is solved to find
the optimal parameter settings, one for each keyword
cluster.

Formally, let j index m parameter settings, p index k key-
word clusters, and xpj be the binary decision variable indi-
cating whether to choose parameter setting j for keyword
cluster p or not. A representative IP problem to maximize
clicks is formulated as follows.

max
x

∑

p,j

wpjxpj

s.t.
∑

p,j

ypjxpj ≥ g1;

∑

p,j

(apjvpxpj)/
∑

p

vp ≤ g2;

∑

j

xpj = 1, ∀p;

xpj ∈ {0, 1}, ∀p, j.

(1)

Here one maximizes clicks while lower bounding revenue by
g1. There is an empirical trade-off between these two ob-
jectives; whereas a sustaining auction shall yield revenue
though clicks rather than CPC price. vp is the number
of search result pageviews for keyword cluster p, and g2 is
the global upper bound on MLIY. The coefficient matrix
[ypj , wpj , apj ]k×m is obtained from auction simulation. The
number of variables is k × m, and in practice the number
of settings m can easily be several hundred to cover a large
number of parameters. It is clear that the optimization is in-
tractable at the individual keyword level, where the number
of keywords k is typically in the order of several million.

3. BID DISTRIBUTIONS
We wish to cluster keywords to reduce the dimensionality

of the IP problem for a parsimonious optimal solution that
generalizes well. For the purpose of clustering queries for
setting parameters such as reserve prices, queries shall be
treated as interchangeable commodities given same valua-
tion distributions. To make a sound parametric assumption
for the bid distribution in an appropriately chosen metric
space, we examine the empirical distributions of rank scores
for most frequently searched keywords, with several plau-
sible metric transformations, as shown in Figure 1 for the
example of “angry birds”, and Figure 2 for the example of
“flights san francisco”.

First of all, we choose the coordinate space of log (bid)×
CTR, instead of the original or logarithmic space of (bid ×
CTR). The original space of rank score does not exhibit
any pattern of a smoothed parametric distribution, typi-
cally with a sharp spike focused on a very low rank score
range. Bids (in cents) are observed from advertisers, hence
a log transformation effectively squashes out large variances
likely due to noises, e.g., from outlier bidders. On the other
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Figure 1: Empirical and fitted distributions of
log (bid)×CTR for the keyword “angry birds”.

hand, a log transformation of CTR estimates is not nec-
essary, since CTRs are already normalized into the range
[0, 1], typically below 10%. Empirically, we find that us-
ing the metric log (bid) × CTR works best for maximizing
objectives, particularly clicks.

Second and more appealingly, almost all empirical curves
show a good fit to the two-component Gaussian mixture sig-
nature, as illustrated in Figures 1(a) and 2(a). One hypoth-
esis is that there are two reserves, for mainline and sidebar
respectively; bidders are aware and place bids reacting to
one reserve at a time. This behavior is intuitive since ad-
vertisers usually have campaign goals and budgets. It turns
out that our hypothesis is strongly supported by the data, as
shown in Figures 1(a) and 2(a), the two peaks are dominated
by mainline (blue) and sidebar (brown) ads, respectively.

Now that we have made the parametric assumption that
each keyword is represented as a two-component Gaussian
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Figure 2: Empirical and fitted distributions of
log (bid) × CTR for the keyword “flights san fran-
cisco”.

mixture density of log (bid)× CTR, this is not only a more
realistic assumption than, e.g., a single Gaussian, but also
may expose better opportunities to the IP optimization, e.g.,
the saddle area between two peaks presents more feasible
region for seeking optimal mainline reserve.

Further, given the two-reserve bidding mechanism evident
from the data, the hidden variable or the membership of
Gaussian component for each bid is known (think of the
generative process of GMM). In other words, the mixture
weights of GMM are known. This observation considerably
reduces the complexity of learning GMMs for keywords, that
is, the standard iterative EM is no longer needed. Recall
that we need to learn one GMM for each of the possibly
several million keywords. Specifically, fitting a GMM for

each keyword has a closed-form solution as follow,

µz = µ(ρi log bi|i ∈ z), ∀z, (2)

σ2
z = σ2(ρi log bi|i ∈ z), ∀z, (3)

ωz =
∑

i∈z

1/
∑

i

1, ∀z, (4)

where i indexes bids and z indexes mainline or sidebar. As
shown in Figures 1(b) and 2(b), the fitted GMM (the blue
solid line) captures the nature of the bid distribution much
better than a single Gaussian (the green dotted line), par-
ticularly the sharpnesses of the two peaks.

4. CLUSTERING: A BAYESIAN

PERSPECTIVE
Clustering is an unsupervised learning method widely used

for dimensionality reduction. Given a set of examples D =
{xi}ni=1, the goal is to partition them into reasonable clus-
ters. In k-means clustering, each example is represented as a
feature vector xi ∈ R

d, and an iterative algorithm finds a lo-
cally optimal set of k clusters θ = {µj}kj=1 so as to minimize
the distortion measured as the squared Euclidean distance
θ∗ = argminθ L(D|θ) = argminθ

∑

j

∑

i∈j ‖xi − µj‖22. The
k-means algorithm is the limiting case of EM algorithm for
Gaussian mixture models with infinitely small covariances.

The classical clustering methods hold a frequentist per-
spective in that data examples are a repeatable random
sample from an underlying process with fixed parameters.
The clustering task is then essentially inferencing the clus-
ter centers θ as point estimates of means from repeatable
observations, which are represented as point estimates as
well. Recall that in the k-means case, minimizing quadratic
loss L(D|θ) is equivalent to maximizing log likelihood ℓ(D|θ)
under Gaussian mixture models with infinitely small covari-
ances, that is, the inference problem of computing the mode
of log likelihood argmaxθ ℓ(D|θ) or the maximum likelihood
estimate (MLE) of cluster centers θ. With the frequentist
view, the classical clustering methods are more natural for
clustering statically measurable objects such as documents
and images using bag-of-words representation.

In many real-world applications, however, data examples
to be clustered are better described probabilistically, and
so are the cluster centers or representatives. In predictive
modeling such as logistic regression, one wants to estimate
the probability of an outcome given an unseen input feature
vector p(y|x). Clustering is typically applied to input fea-
tures to reduce dimensionality for a better model generality.
While clusters θ are learned from historical data, one is most
interested in inferencing the cluster membership of a future
x, which is bound to change. One motivational application
is predicting CTR of search results or ads given a user among
other input features [2]. To reduce the high dimensionality
of user features (e.g., user ID or IP address), one may clus-
ter users based on their click propensities. A frequentist ap-
proach would simply cluster point estimates of the Bernoulli
success probability p, whose MLE is the sample mean, and
hence unable to capture higher-order moments of the distri-
bution of p such as variance and skewness. One important
aspect of the distribution is the variance, e.g., for the pur-
pose of exploring users with few Bernoulli trials formulated
as a multi-armed bandit problem [7, 14]. The frequentist in
this regard would characterize the distribution with a finite
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number of quantities, whereas clustering feature vectors of
moments in Euclidean space has no clear interpretation.

A Bayesian perspective is more natural in such predictive
settings where underlying parameters are unknown and their
uncertainty is of interest. For the CTR prediction applica-
tion, a user with respect to click propensity is represented
as a probability distribution of the Bernoulli success prob-
ability p, that is, the posterior beta distribution. For clus-
tering distributions, a natural and sound choice of distance
function is the KL divergence, for its probabilistic under-
pinning and additivity. While KL divergence is asymmetric,
centroid-based parametric clustering approaches [1] only re-
quire a directed distance function, i.e., from a cluster center
to an example.

The significance of introducing a Bayesian perspective to
the classical clustering methods is beyond the predictive set-
ting as illustrated above. In many scenarios, an object shall
be clustered with respect to some underlying parameters of a
probability distribution, from which individual observations
about the object are drawn. The motivational application in
this paper is clustering keywords based on their underlying
valuations for sponsored search auction optimization.

5. CLUSTERING GAUSSIAN DENSITIES
The Gaussian distribution is considered the most promi-

nent probability distribution given the central limit theorem
and its analytical tractability. We use Gaussian density as
a representative example to derive a formal clustering algo-
rithm. This choice is mathematically convenient and helps
to guide intuition, yet it is sufficient to illustrate the un-
derlying principle. It is important to emphasize, however,
that the formulation of the clustering problem generalizes to
other distributions.

Let us assume that the observations x for an object p fol-
low a Gaussian distribution. Each object can be represented
as a Gaussian density:

p(x) ∼ N
(

µ, σ2
)

=
1

σ
√
2π

exp

(

− (x− µ)2

2σ2

)

. (5)

The goal is to cluster objects with similar distributions to-
gether, for which we need a pairwise distance function. A
natural choice of distance measure between two distributions
denoted by p and q is the KL divergence:

DKL(p‖q) =
∫

p(x) log
p(x)

q(x)
dx. (6)

KL divergence measures in bits how close a model distribu-
tion q is to the true underlying distribution p. Although KL
divergence is not symmetric nor does it satisfy the triangle
inequality, for centroid-based parametric clustering meth-
ods [1], such as the one we present, one only needs a di-
rected distance measure from a cluster center p to an object
q. KL divergence is additive for independent variable dis-
tributions, that is, DKL(p‖q) = DKL(p1‖q1) + DKL(p2‖q2)
if p(x, y) = p1(x)p2(y) and q(x, y) = q1(x)q2(y). This is
particularly useful for clustering distributions based on KL
divergence, since it allows for a clear interpretation of mini-
mizing total KL divergence.
We now formulate the optimization problem underlying

the task of clustering Gaussian densities, following a simi-
lar approach as k-means. Let us begin with the KL diver-
gence from a cluster center p ∼ N

(

µp, σ
2
p

)

to an example

q ∼ N
(

µq, σ
2
q

)

. The KL divergence between two Gaussian
densities has a closed form.

DGauss
KL (p‖q) = 1

2

(

σ2
p

σ2
q

+
(µp − µq)

2

σ2
q

− log (
σ2
p

σ2
q

)− 1

)

. (7)

Given a set of training examples D = {q ∼ N
(

x;µq, σ
2
q

)

}
indexed by q and observed as x, we wish to learn a set of
cluster centers θ = {p ∼ N

(

x;µp, σ
2
p

)

} indexed by p, by
minimizing the loss in KL divergence.

min
µp,σ2

p;∀p
L(D|θ) =

∑

p

∑

q∈p

DGauss
KL (p‖q), (8)

where q ∈ p denotes that the example q belongs to the clus-
ter p.

If the assignment q ∈ p, ∀p, q is fixed, the objective func-
tion L is convex in µp and σ2

p. This is an unconstrained
optimization problem, thus we set the partial derivatives of
L w.r.t. µp and σ2

p to zero to derive the update rule for
cluster centers.

∂L

∂µp

=
∑

q∈p

1

2

(

2(µp − µq)

σ2
q

)

→ 0

µp =

(

∑

q∈p

1

σ2
q

µq

)

/
∑

q∈p

1

σ2
q

;

(9)

∂L

∂σ2
p

=
∑

q∈p

1

2

(

1

σ2
q

− σ2
q

σ2
p

1

σ2
q

)

→ 0

σ2
p =

(

∑

q∈p

1

)

/
∑

q∈p

1

σ2
q

.

(10)

For fixed cluster centers µp and σ2
p, ∀p, we simply assign q

to its closest cluster center p(q) in terms of KL divergence.
We now arrive at an iterative algorithm that monotonically
decreases the loss in KL divergence as follows.

1. Randomly choose k examples as cluster centers.

2. Repeat until convergence.

(a) Assignment step:

p(q) = argmin
p

DGauss
KL (p‖q), ∀q. (11)

(b) Update step:

µp =

(

∑

q∈p

1

σ2
q

µq

)

/
∑

q∈p

1

σ2
q

, ∀p; (12)

σ2
p =

(

∑

q∈p

1

)

/
∑

q∈p

1

σ2
q

, ∀p. (13)

The optimal solution to the cluster centers µp and σ2
p, as

in Eqs. (12) and (13), reveals an appealing yet somewhat
nontrivial intuition. First, the optimizing center mean µp is
an inverse-variance weighted average of example means µq.
Inverse-variance weighted averaging is known to minimize
the variance of the sum and is typically used in statistical
meta-analysis to combine evidences from independent stud-
ies [8]. Intuitively, we weight studies to give preference to
the more precise ones with larger samples. This is appro-
priate for clustering distributions, since the measurements
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or sampling of x for each example distribution q shall be
treated as individual studies, instead of from a single large
study, to allow for other differences such as in variance. The
latter views examples q as parts of a single sampling, whose
mean would be a sample-size weighted average of example
means. Second, the optimizing center variance σ2

p is the
harmonic mean of example variances σ2

q . Harmonic mean is
typically used for averaging rate variables, and variance can
be interpreted as the rate of imprecision of a study. A more
well-known metric is the F1-score, defined as the harmonic
mean of precision and recall, from information retrieval.

The proposed algorithm for clustering Gaussian densities
can be viewed as a special case of the Bregman clustering
problem [1], in that KL divergence is the Bregman diver-
gence realized from the convex function φ(p) =

∑

j pj log pj
in a d-simplex. In [1], Banerjee et al. unify centroid-based
clustering approaches into a meta hard clustering algorithm
that is applicable to all Bregman divergences including squared
Euclidean distance and KL divergence. They also show
that there is a bijection between regular exponential fam-
ilies and regular Bregman divergences. These findings es-
tablish a general theoretical foundation for our work. More
specifically, the update step for the centroid mean in the
Bregman hard clustering (Algorithm 1 in [1]) has the form:
µj ← 1

πj

∑

i∈j νixi, where i indexes examples, j indexes

cluster centers, πj =
∑

i∈j νi, and ν = {νi}ni=1 is a probabil-

ity measure over X = {xi}ni=1. We have shown, in Eqs. (12)
and (13), that for Gaussian densities with unknown µ and
σ2, the general probability measure νi in Bregman hard clus-
tering is realized as the inverse variance 1/σ2

i .

6. CLUSTERING GAUSSIAN

MIXTURE DENSITIES
We have formalized the problem of clustering probability

distributions with KL divergence, and derived a simple k-
means type iterative algorithm for Gaussian densities. In
this section, we generalize a single Gaussian to Gaussian
mixture model (GMM), which often times appears to be a
better parametric assumption for many real-world applica-
tions such as speech and image recognition [10].

Let us begin with a simplified yet practically represen-
tative case of GMMs with equal-number non-exchangeable
components. The Gaussian mixture densities of a cluster
center p and an example q are:

p(x) =
∑

z

πzpz(x), (14)

where
∑

z

πz = 1 and pz(x) ∼ N (x;µpz, σ
2
pz).

q(x) =
∑

z

ωzqz(x), (15)

where
∑

z

ωz = 1 and qz(x) ∼ N (x;µqz, σ
2
qz).

Here z indexes matched components, πz and ωz are mixture
weights, pz and qz are component Gaussian, for the cluster
center and the example, respectively.

The KL divergence between two GMMs is no longer ana-
lytically tractable, which renders exact EM impossible. One
solution is to use variational inference that decreases but
not necessarily minimizes the loss in KL divergence, so as
to find approximate estimates of cluster center parameters

θ = {µpz, σ
2
pz, πpz; ∀p, z}. Let us treat the assignment q ∈

p, ∀p, q as variational parameters (indicator variables) and
cluster centers θ as model parameters, which is invariant
for finding a local minimum. We first minimize a tractable
upper bound w.r.t. the variational parameters q ∈ p, ∀p, q,
and then for fixed variational parameters, minimize the up-
per bound w.r.t. the model parameters θ, alternating until
convergence. This procedure is known as variational EM
algorithm.

Let us first give an upper bound on the otherwise in-
tractable KL divergence.

DGMM
KL =

∫

p(x) log
p(x)

q(x)
dx

=

∫

(

∑

z

πzpz

)

log

(
∑

z πzpz
∑

z ωzqz

)

dx

≤
∫

∑

z

(

πzpz log

(

πzpz
ωzqz

))

dx

=
∑

z

πz log

(

πz

ωz

)

+
∑

z

πz

∫

pz log

(

pz
qz

)

dx

= DKL(π‖ω) +
∑

z

πzD
Gauss
KL (pz‖qz).

(16)

The inequality in Eq. (16) follows from the log-sum inequal-

ity [4, 5], that is, x log
(

x
y

)

≤ ∑

i xi log
(

xi

yi

)

, where x =
∑

i xi, y =
∑

i yi and xi, yi ≥ 0, with equality iff xi

yi
is a con-

stant. When p and q are aligned well in terms of both mix-
ture weights and component Gaussian, πzpz

ωzqz
approaches one

∀z, DGMM
KL approaches zero, so does its upper bound, which

tends to be tight. This is particularly useful for hard clus-
tering since, in the assignment step, one only seeks the mini-
mizing p. At the other extreme, when all components except
one vanish, The KL divergence between GMMs DGMM

KL de-
grades to the one for Gaussian DGauss

KL . This is why the
clustering algorithm for GMMs is a generalization of clus-
tering Gaussian densities, hence can be used directly for the
latter.

The optimization problem defined on the upper bound is

min
µpz ,σ2

pz ,πpz ;∀p,z
L(D|θ)

=
∑

p

∑

q∈p

(

DKL(πp‖ωq) +
∑

z

πpzDKL(pz‖qz)

)

=
∑

p

∑

q∈p

(

∑

z

πpz log (
πpz

ωqz

)+

∑

z

πpz
1

2
(
σ2
pz

σ2
qz

+
(µpz − µqz)2

σ2
qz

− log (
σ2
pz

σ2
qz

)− 1)

)

.

s.t.
∑

z

πpz = 1, ∀p.

(17)

For a fixed assignment q ∈ p, ∀p, q, this is a constrained
optimization problem. We form the Lagrangian

L = L(D|θ)−
∑

p

λp

(

∑

z

πpz − 1

)

, (18)
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and set its partial derivatives w.r.t. µpz, σ
2
pz and πpz to zero.

∂L
∂µpz

=
∑

q∈p

(

πpz
1

2

1

σ2
qz

2(µpz − µqz)

)

→ 0

µpz =

(

∑

q∈p

1

σ2
qz

µqz

)

/
∑

q∈p

1

σ2
qz

;

(19)

∂L
∂σ2

pz

=
∑

q∈p

(

πpz
1

2

(

1

σ2
qz

− σ2
qz

σ2
pz

1

σ2
qz

))

→ 0

σ2
pz =

(

∑

q∈p

1

)

/
∑

q∈p

1

σ2
qz

;

(20)

∂L

∂πpz

=
∑

q∈p

(log πpz − logωqz + 1 +D(pz‖qz))− λp → 0

πpz ∝ exp





∑

q∈p

(logωqz −D(pz‖qz)− 1)/
∑

q∈p

1



 .

(21)

For cluster assignment with fixed centers µpz, σ
2
pz and

πpz, ∀p, z, we assign q to its closest cluster p(q) in terms
of the upper bound. We now arrive at the variational EM
algorithm as follows.

1. E-step:

p(q) = argmin
p

D(πp‖ωq) +
∑

z

πpzD(pz‖qz), ∀q. (22)

2. M-step:

µpz =





∑

q∈p

1

σ2
qz

µqz



 /
∑

q∈p

1

σ2
qz

, ∀p, z; (23)

σ2
pz =





∑

q∈p

1



 /
∑

q∈p

1

σ2
qz

, ∀p, z; (24)

πpz ∝ exp

(
∑

q∈p(logωqz −D(pz‖qz)− 1)
∑

q∈p 1

)

, ∀p, z. (25)

The EM recurrence substantiates simple intuitions. In the
M-step update for the cluster center mixture weights πpz

(Eq. (25)), the belonging example mixture weights or pri-
ors ωqz contribute multiplicatively as exp

∑

q∈p (logωqz . . .),
while penalized by their matched-component KL divergence
D(pz‖qz), or equivalently, the negative log likelihood [1].
The M-step update for the component Gaussian parameters
µpz and σ2

pz (Eqs. (23) and (24)) is very similar to the single
Gaussian case (Eqs. (12) and (13)), except at the component
level.

As the clustering algorithm (the assignment E-step and
the update M-step) iterates, the total KL divergence de-
creases and clusters become more homogeneous, hence the
upper bound becomes tight. In practice, we find that the
clustering algorithm converges sublinearly, and typically con-
verges after 20 to 30 iterations.

It is important to note that, when some example variances
σ2
qz approach zero, the optimization problem becomes ill-

conditioned. Since example variances σ2
qz appear as denom-

inators in the update formulae (Eqs. (23), (24) and (25)), the
zero-variance examples will dominate hill climbing. One ap-
proach to coping with this numerical issue is to smooth the

Gaussian parameters by adding an i.i.d. zero-mean Gaussian
noise ǫ ∼ N (0, ς2) to each observation x, and the resulting
Gaussian parameters of example q is N (µqz, σ

2
qz + ς2), ∀z.

The smoothing variance ς2 can be chosen in a data-driven
manner, e.g., the first percentile of nonzero variances. In
fact, the smoothing variance ς2 introduces a useful mecha-
nism to control whether the clustering shall emphasize more
on mean or variance, depending on different applications.
A sufficiently large smoothing ς2 effectively makes the clus-
tering based upon the example means. On the other hand,
smoothing cluster center variances σ2

pz is not necessary, since
they never appear as denominators in the algorithm.

7. EXPERIMENTAL RESULTS
With the learned GMMs for keywords described in Sec-

tion 3, we apply the variational EM algorithm described in
Section 6 to cluster keywords into k partitions. We collected
auction related data (e.g., bids, CTR estimates, and display
positions) over a one-month period, learned k clusters from
a smaller set of most frequent keywords (about 1M), and
performed a final assignment step to infer clusters for all
keywords (about 8M). The choice of k is made such that
clusters will have a mild loss in entropy, while the dimension-
ality k × m fits well with the IP solver. A good empirical
choice is k = 2000 ∼ 4000. The clustering results are vi-
sualized in Figure 3. Figure 3(a) shows how clusters are
spanning in the 3D space of (µml, µsb, πml), where each ball
denotes a cluster center, with a volume proportional to σ2

ml.
It is clear that the algorithm does not partition examples
in the Euclidean sense, e.g., more clusters are derived in the
low-variance area since those examples have greater impacts
on the total loss in KL divergence (Eq. (16)). Figure 3(b)
illustrates how keywords are clustered, where each ball rep-
resents a keyword GMM and each same-color cloud forms
a cluster. The clustering exhibits a meaningful yet non-
Euclidean pattern, e.g., low-variance clusters are denser in
belonging keywords.

Finally, we evaluate the effectiveness of the proposed GMM
clustering algorithm in the context of auction optimization,
through both offline simulation and online A/B testing. The
IP problem is formulated as:

max{clicks}
s.t. revenue ≥ 1.0;

MLIY ≤ 1.05;

both constraints relative to actual log traffic.

(26)

This optimization is to maximize clicks given a 5% more
budget in mainline impression yield, while maintaining the
same amount of revenue.

In offline experiments, we compare the proposed GMM
clustering (k-GMM) with three benchmarks:

1. The Gaussian clustering (k-Gauss) that represents each
keyword as a single Gaussian of ρ log b, as described in
Section 5.

2. The k-means clustering that represents each keyword
as a vector of valuation-based features:

qi =

(

µ(ni), µ(log(bi)), σ(log(bi))/µ(log(bi)),

µml(ρi log(bi)), µsb(ρi log(bi))

)

.

(27)
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Figure 3: Keyword clustering results.

Here ni is the number of bids casted for query qi in one
auction, also called bid density or auction density, and
µ(ni) is the average bid density over all auctions for
query qi. The standard deviation of log bid is normal-
ized by the mean σ(log(bi))/µ(log(bi)). For a proper
scaling, each feature dimension is quantized into uni-
variate percentile. This feature vector is chosen as
the empirical optimal based upon careful engineering
and extensive experiments. In particular, the k-means
feature vector encodes the same domain knowledge of
two-reserve bidding as µml and µsb, and uses the same
metric space of ρi log(bi).

3. A univariate binning approach (k-bins) that partitions
keywords by their 95th rank score percentiles, which
is the current method used in production and reflected
in the actual log.

The offline simulation results are summarized in Table 1.
The k-GMM clustering outperforms all other methods with
respect to lift in clicks over actual log traffic. The ratio
∆clicks/∆MLIY measures the efficiency of converting ad
impression to click by a particular method. With a 5%
MLIY budget, k-GMM yields a 5.3-fold improvement in
click-converting efficiency over the existing approach in pro-

duction k-bins, a 22% improvement over k-means primarily
due to the Bayesian treatment, and a 48% improvement over
k-Gauss in consequence of a sound parametric assumption.

Table 1: Auction optimization results with different
clustering methods

Model Lift in clicks@5% MLIY

k-GMM 13.01%
k-Gauss 8.78%
k-means 10.66%
k-bins 2.46%

We have also conducted online A/B testing to compare
the k-GMM clustering algorithm with the current k-bins
approach in production. The online experiment ran for
a two-week period and accounted for 16.2M search result
pageviews. The results are shown in Table 2. The proposed
GMM clustering has gained a 5.60% revenue lift over the ex-
isting k-bins approach, entirely from the gain in clicks 5.79%
with a slight and favorable drop in CPC price −0.27%, at an
approximately same MLIY level 0.80%. As a consequence,
the novel query clustering method has been successfully de-
ployed to the Bing search engine.

Table 2: Online A/B testing results
Metric Lift of k-GMM over k-bins

Revenue 5.60%
Clicks 5.79%
CPC −0.27%
MLIY 0.80%

8. CONCLUSIONS
We have presented a formalism of clustering probability

distributions, motivated by real-world applications where
observations are drawn from underlying distributions and
the goal is to cluster the underlying concepts with uncer-
tainty. An appealing Bayesian analog is that the cluster
center or representative distribution is the prior p(θ) and
the example distribution is the posterior p(θ|D). We have
derived the algorithms for clustering Gaussian densities and
GMMs, while the underlying principle generalizes to other
distributions such as beta distribution for binomially dis-
tributed data, Dirichlet distribution for multinomial data,
and gamma distribution for Poisson data. The algorithm has
been applied to the important problem of sponsored search
auction optimization, and yielded significant improvement
in CTR over k-means in offline simulation, and as well as
improvement in revenue and clicks over the existing produc-
tion system.
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