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ABSTRACT
Role discovery in graphs is an emerging area that allows
analysis of complex graphs in an intuitive way. In contrast
to community discovery, which finds groups of highly con-
nected nodes, role discovery finds groups of nodes that share
similar topological structure in the graph, and hence a com-
mon role (or function) such as being a broker or a periphery
node. However, existing work so far is completely unsuper-
vised, which is undesirable for a number of reasons. We
provide an alternating least squares framework that allows
convex constraints to be placed on the role discovery prob-
lem, which can provide useful supervision. In particular we
explore supervision to enforce i) sparsity, ii) diversity, and
iii) alternativeness in the roles. We illustrate the usefulness
of this supervision on various data sets and applications.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; E.1 [Data
Structures]: Graphs and networks

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Role discovery; constrained clustering; graph mining

1. INTRODUCTION
Role discovery is a developing area that allows the sim-

plification of graphs in a user-interpretable way. Consider a
graph of n nodes specified in an adjacency matrix A. Earlier
efforts convert this matrix into a new n×f matrix V so that
each node in the graph has a list of f features [15]. Role dis-
covery is then the computation of converting V so that each
node/user is mapped to a combination of roles (denoted by
the n × r matrix G) and each role is defined with respect
to the f features (denoted by the r × f matrix F). This
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is accomplished by performing a non-negative matrix factor
decomposition as shown below:

argmin
G,F

||V −GF||2

subject to: G ≥ 0,F ≥ 0
(1)

The n × r matrix G when read row-wise indicates which
of the r roles each node plays and to what degree. The r×f
matrix F when read row-wise defines each of the r roles with
respect to the f features. The entries in G and F are positive
real numbers signifying that each node can play each role to
varying degrees and that different features define a role in
varying degrees. This simplification of graphs into roles is
not only intuitive for a domain expert, but it has been shown
to be useful in a number of interesting settings including
prediction, transfer learning, and sense making [14].

However, all work developed so far has been completely
unsupervised in that the domain expert cannot easily in-
ject their expertise and expectations into the simplification.
Having this ability is useful in a variety of settings. Consider
a domain expert that is looking for the simplest explanation
of a graph during their exploratory phase of analysis. Ex-
isting work cannot specify how to emphasize this simplicity
apart from requiring a small number of roles to be used.
Other forms of parsimonious guidance such as requiring a
node only be assigned to a few roles or making each role
defined by only a small set of features is desirable but cur-
rently not possible. Similarly, if a decomposition yields a set
of roles that are not actionable, not interesting or already
known, the domain expert cannot enforce an alternative set
of roles. These two recent trends in data mining – explor-
ing the addition of positive and negative guidance – have
been shown to have wide-scale application in the data min-
ing literature [2][24]; but to our knowledge have not been
applied to role discovery. Hence this work marks the first
paper exploring guided role discovery.

Our work makes several contributions to the field of role
discovery in graphs:

• We provide a framework to encode guidance as a se-
ries of convex optimization problems each of which can
be efficiently solved by our alternating least squares
(ALS) algorithm. All data sets and code will be made
available once the paper is accepted.

• Within our framework we explore guidance in the form
of sparsity, diversity and orthogonality/alternativeness
but other types of guidance are possible.
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• We show that sparsity and diversity yield improved
performance in terms of predictive accuracy for the
identity resolution task across multiple graphs.

• We show that alternative roles exist in social networks
(such as in a YouTube graph) and in particular these
roles are very different from the known communities
in the data.

In the next section, we describe related work and then
an algorithm for incorporating convex constraints in non-
negative matrix decomposition. Section 4 presents how con-
vex constraints can naturally encode guidance in the form
of sparsity and diversity on both the role assignment matrix
(G) and role explanation matrix (F). We also present how
these constraints can encode the notion of alternativeness
to find a different set of roles to another set that are for
instance non-actionable or trivial. Our experiments, in Sec-
tion 5, demonstrate the usefulness of these forms of guidance
in a number of applications and real-world graphs. We show
how sparsity and diversity guidance can improve upon pre-
diction performance for the application of identity resolution
via roles. We also show how alternativeness can be used to
find an alternative set of roles to the underlying community
structure.

2. RELATED WORK
The basis for role discovery in graphs using non-negative

matrix factorization (NMF) was first proposed in a series of
papers at KDD [15][14]. The method ReFeX [15] described
a recursive method to take a n×n adjacency matrix (A) and
compute a set of f salient features for each of the n nodes
represented as a matrix V . The RolX method [14] made
use of NMF to simplify the features into a set of roles and
explored their use for graph matching, sense making and
transfer learning. Many previous works had applied NMF
to other data mining problems (e.g. [27][18]) but theirs was
the first to apply it to role discovery. Other methods for
role discovery are not scalable to huge graphs and include
Bayesian frameworks using MCMC sampling methods [25]
and semi-supervised role labeling [11].

The addition of guidance to matrix decomposition is a rel-
atively new area with most work involving spatial data and
properties such as unimodality as we have done for tensors
[8]. Of course much work exists on very basic constraints
such as non-negativity and minimal rank decompositions.
The area of constraints for matrix decomposition takes on
several different meanings to our own work. For example
in [19] the authors propose the use of labeled information
to guide the decomposition. Perhaps the closest to our own
work is the use of sparseness constrains in NMF [16].

To the best of our knowledge the encoding of guidance
for role discovery and the encoding of diversity and alterna-
tive constraints for NMF as described in this paper has not
been addressed before. However, the notion of guided and
alternative is popular in the clustering field with work by
ourselves and others [2][24].

3. A FRAMEWORK FOR ENCODING GUID-
ANCE INTO ROLE DISCOVERY

In this section, we discuss our algorithm for solving the
guided role-discovery problem. We present a general algo-

rithm that is well-suited for large-scale problems, and is ca-
pable of being extended to different forms of guidance. The
different supervisions (described in Section 4) are solvable
using this algorithm.

Our algorithm for solving the guided role discovery prob-
lem is a constrained NMF approach used to find the decom-
position shown in Equation 2. Like many unconstrained
NMF solvers, it uses the alternating least squares approach
[23, 4]. Nonnegative least squares is a well-studied problem,
and can be utilized to find an NMF solution by solving for
one matrix at a time (G or F), while holding the other con-
stant which is generally known as alternating least squares
(ALS). NMF is known to be intractable; and the ALS ap-
proach is not guaranteed to find global solutions but will
converge to a local minimum. In this work, we add addi-
tional constraints to the problem and therefore need more
sophisticated methods.

The method we chose was motivated by gradient pro-
jection methods, which are known for being well-suited to
quickly finding good but not highly accurate solutions for
large problems, by sacrificing some of the theoretical con-
vergence guarantees of methods such as interior point [3].
Projected gradient descent methods can be summarized as
those that iteratively find better points by following the gra-
dient of the objective function, and subsequently find the
closest point that meets the constraints. Since the objective
we are solving is least squares, we have a closed form solution
to the unconstrained minimum from which we subsequently
find the closest constrained solution. It is known, that for a
class of constrained least squares solution, this approach will
lead to an exact global solution in one iteration (see Lemma
1).

Therefore, our algorithm has the advantage that each sub-
problem (but not the entire problem) can be solved exactly
by reducing it into an unconstrained least square problem
[26][1] and an Euclidean projection problem [10][21], both of
which have efficient solutions. Additionally, this approach
to optimization (projected gradient descent) has been shown
in the past to work well on large-scale problems, at the ex-
pense of accuracy, and is used by state of the art solvers
[20].

The outline of the remainder of this section is as follows.
First, we formally describe the convex constrained NMF
problem and discuss how ALS can be used to solve it. Then,
we explain how ALS can also be used to solve for individual
role assignment vectors, as well as role definition vectors. Fi-
nally, we describe how ALS over definition/assignment vec-
tors can be solved using a projection method by first solving
an unconstrained least squares problem and then finding the
closest point in the constrained space.

The Constrained NMF Problem.
In Equation 2, there are two variables G and F that are

being simultaneously optimized. If either is treated as a
constant, the problem becomes convex and can be solved
exactly using any method for solving convex optimization
problems. One can alternate between solving for G and F
this way until convergence. Although each iteration finds a
global optimum to this modified problem, the result of this
procedure (alternating optimization) is not guaranteed to
find a global minimum to the original problem in Equation
2. In the following, we describe our method for transforming
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the formulation into a series of convex programming prob-
lems, which are generally easy to solve.

minimize
G,F

||V −GF||2

subject to gi(G) ≤ dGi, i = 1, . . . , tG

fi(F) ≤ dFi, i = 1, . . . , tF

(2)

where gi and fi are convex functions.

An ALS Formulation.
Rather than alternating between solving for the entire ma-

trices G and F, we can instead solve for one column of G or
one row of F at a time. This is possible if convex constraints
can be specified in terms of these columns, which is the case
in this work. Without loss of generality, Equation 3 shows
an individual sub-optimization problem in terms of one of
the columns of G, denoted x.

Gk = minimize
x

||R− xFk||2

subject to: gi(x) ≤ dGi, i = 1, . . . , tG
(3)

In Equation 3, R represents the residuals of all other fac-
tors not being solved for (sum of outer products of corre-
sponding columns of G and rows F). Fk is the kth row
of the role/feature explanation matrix that corresponds to
the kth column of the role assignment matrix. So with this
formulation, we alternate between learning single role as-
signments, followed by learning a role definition. Next we
explain how we solve the convex constrained problem shown
in Equation 3.

Solving The Constrained Least Squares Problem.
Our projection method is as follows. First, solve Equation

3 with all constraints removed using standard least squares
solvers. Second, find the closest point to the unconstrained
solution, that satisfies the given constraints. This projec-
tion method takes advantage of standard and very fast least
squares solvers and the subsequent nearest feasible point
problem is relatively simple to solve. In addition, Lemma 1
shows that performing these two steps will exactly solve the
original problem in Equation 3. Applications of this theorem
and its proof can be found in [6][13].

Lemma 1. Projection Equivalence Result. The following
constrained optimization problem:

minimize
x

||B− xa||2

subject to: ci(x) ≤ di, i = 1, . . . , n
(4)

where ci are convex functions on x, is equivalent to:

minimize
x

||x∗ − x||2

subject to: ci(x) ≤ di, i = 1, . . . , n
(5)

where x∗ is the optimal to the optimization problem in Equa-
tion 4 without contraints.

This leads to the following algorithm for convex constrained
NMF presented in Figure 1. Like ALS for unconstrained
NMF, this heuristic is not guaranteed to meet a global opti-
mum, even though all subproblems are solved exactly. How-
ever, each step will lead to a reduction in the global objective

(Equation 2). Thus, in practice the algorithm will find local
minima that meet all specified constraints.

Inputs:

• V: Node feature matrix containing n nodes described
by f topological structure features.

• gi(x),fi(x): Convex constraints on columns of G and
rows of F respectively.

• r: Number of roles (methods for learning r described
in previous work [14]).

Outputs:

• G: Role assignment matrix that satisfying all con-
straints.

• F: Role definition matrix that satisfying all con-
straints.

Algorithm:

while reconstruction error decreases do
{

for k = 1 . . . r //Recalculate each role.
{

1. Calculate R = V −G•(6=k)F(6=k)•

2. Calculate G•k by solving for x as follows:

(a) x∗ = argmin
x
||R− xFk•||2

(b) G•k = argmin
x
||x∗−x||2 s.t. gi(x) ≤ εi : ∀i

3. Calculate Fk• by solving for x as follows:

(a) x∗ = argmin
x
||R− xG•k||2

(b) Fk• = argmin
x
||x∗−x||2 s.t. fi(x) ≤ εi : ∀i

}
}

Figure 1: Our algorithm that will be used to encode
all guidances described in Section 4. The algorithm
uses a least squares approach and allows additional
convex constraints to be added to the NMF formu-
lation.

The advantage of solving for one role at a time rather than
the entirety of G or F as is generally done with ALS, is that
it allows the problem to be broken down into smaller parts
that then fit into fast solvers. In general, projection meth-
ods have been found to be better suited to larger problems
and we found this to be the case as well. Using this method
allows us to solve much larger problems than we had previ-
ously been able to using standard constrained optimization
solvers [8]. The final constrained optimization problem (i.e.,
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closest constrained point problem) is simple enough that we
find for even medium-sized problems we could utilize high
level solvers such as CVX [7][12], which makes experiment-
ing with new types of constraints very simple.

4. FRAMEWORK FOR FLEXIBLE SUPER-
VISION

In the previous section, we discussed a novel and general
algorithm that can easily handle convex constraints. Convex
constraints can encode a variety of useful guidances. In this
section, we show how they can be used to enforce sparsity,
diversity and alternativeness. In the experimental section,
we show applications which exploit these forms of guidance.

4.1 Sparsity
The area of sparsity has recently attracted much atten-

tion. In a general context, sparsity has been shown to have
two main benefits: (1) parsimony and (2) improved predic-
tive performance, with the later being motivated by Occam’s
razor. Sparse learning formulations exist for many learning
settings such as linear regression (LASSO), Kernel methods
(SVM) and covariance estimation.

In our work, we can place sparsity constraints on both the
G or F matrices leading to an objective function of:

argmin
G,F

||V −GF||2

subject to: G ≥ 0,F ≥ 0

∀i ||G•i||1 ≤ εG
∀i ||Fi•||1 ≤ εF

where εG and εF define upperbounds for
the sparsity constraints (amount of
allowable density).

(6)

Previous works have shown the effectiveness of using L1
norm as a penalty in model learning. In our formulation the
L1 penalty is encoded as a constraint rather than a penalty
in the objective, but it is known that these formulations are
theoretically equivalent [5]. However, another twist to our
formulation is that we do not constrain the entire matrix
but instead constrain each column of G and each row of
F. This was done because our solver requires constraints
to be formulated only over one role vector at a time. The
effect of this technical difference is that the sparsity must
be more uniformly spread across each role definition or role
assignment which is a benefit of this method.

Sparsity constraints on G and F have easy to understand
intuitive interpretations. If G is sparse, it means that nodes
are assigned to as few roles as possible; and it is possible
for some nodes to be assigned to no roles. If F is sparse,
it means that the roles are defined with respect to as few
features as possible. Both of these extensions allow for a
simple explanation of the data, and lead to improved pre-
diction performance.

4.2 Diversity
In the NMF forms of role discovery, nothing prevents the

roles to which nodes are assigned (i.e., the G matrix) and
the role definitions (i.e., the F matrix) to be highly overlap-
ping. This can be undesirable particularly for the F matrix
since it means all roles are highly similar. This can be over-
come by enforcing a diversity requirement so that each role

Figure 2: Visualization of diversity constraints on
role explanation matrix F (roles × features) for
DBLP dataset. The top matrix shows the uncon-
strained result; the bottom matrix is constrained to
be completely diverse (ε = 0); and the middle matrix
shows a middle ground. From the top matrix to the
bottom matrix, the number of black cells (i.e. zero
values) increases since roles definitions must be ex-
plained with completely different sets of features.

uses a different set of features (for the F matrix) and nodes
are assigned to different combinations of roles (for the G
matrix).

Our formulation for role allocation diversity (G matrix)
and role definition diversity (F matrix) makes use of orthog-
onality as follows:

argmin
G,F

||V −GF||2

subject to: G ≥ 0,F ≥ 0

∀i, j GT
•iG•j ≤ εG i 6= j

∀i, j Fi•.F
T
j• ≤ εF i 6= j

where εG and εF define upperbounds on
how angularly similar role assign-
ments and role definitions can be to
each other.

(7)

When ε = 0, our constraint will exactly match the def-
inition orthogality, and when ε ≥ 0 the constraint can be
viewed as limiting the angular similarity between two vec-
tors. The effect of combining this constraint with non-
negativity constraints is that no role definitions will have
any common features and no role assignments will have over-
lapping populations for ε = 0. This is so since GT

•iG•j = 0
if and only if these two vectors do not share any non-zero
entries. Figure 2 shows such an example, where none of the
three roles have any overlapping features. In the context of
our solver which solves for one vector at a time, this con-
straint will be linear (a weighted sum).

4.3 Alternative Role Discovery
Recent work on another unsupervised problem, clustering,

has explored the area of alternativeness [24, 9]. In that liter-
ature, the term alternativeness and orthogonality are used
interchangeably, but we only use the term alternativeness
for clarity.

The motivation for alternativeness in unsupervised learn-
ing is strong. Most interesting problems are on large data
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Table 1: Summary of effects of constraints on both role assignment G and role definitions F (see Section 4
for formulation of each constraint type).

Role Assignment Role Definition

Sparsity Encourages role assignments to be more defini-
tive. Increasing the strength of constraint re-
duces the number of nodes that have minority
membership in role.

Increases the ability to interpret role definitions
by ensuring that the definitions only use fea-
tures most strongly correlated with each role.
Increasing the strength of constraint decreases
the likelihood that features with small explana-
tory benefit are included.

Diversity Roles cannot have memberships that are too
similar. No two roles can have exactly the
same membership assignment. Increasing the
strength of the constraint limits the amount of
allowable overlap in assignments.

Roles cannot have definitions that are too sim-
ilar. No two roles can have redundant explana-
tions and increasing the strength of constraint
ensures that roles must be explained with com-
pletely different sets of features.

Alternative Find a set of roles that lends itself to a different
role assignment than a given role assignment.
Increasing the strength of constraint, decreases
the allowable similarity between the two.

Learn a role definition matrix that is signifi-
cantly different than a given role definition. In-
creasing the strength of constraint ensures that
the definitions must be very dissimilar.

sets that contain complex phenomena and there may exist
multiple explanations of the data. However, most unsuper-
vised learning algorithms expect that there exists only one
good explanation of the data and return one explanation.

In many situations, it may be the case that the returned
explanation is undesirable since it is either unactionable or
not novel. Consider the IMDB (Internet Movies Database)
dataset. If the resultant roles map actors to the studios for
which they work, then this is not particularly novel. Here,
the work on alternative role discovery allows a previously
discovered set of role allocations (G∗) or role definitions (F∗)
to be specified as a counter-example of what not to find. The
challenge though is to find another good explanation of the
data that is different to those already found.

The optimization problem to find alternative roles is then:

argmin
G,F

||V −GF||2

subject to: G ≥ 0,F ≥ 0

∀i, j G∗T•i G•j ≤ εG
∀i, j F∗i•F

T
j• ≤ εF

where εG and εF define upperbounds on
how similar the results can be to G∗

and F∗.

(8)

5. EXPERIMENTS
Our experiments demonstrate how constraints on graph

role discovery can be useful. Role discovery requires the
user to specify the number of roles to use and a set of fea-
tures for a graph. For the former, we used the Minimum
Description Length (MDL) described in [14] to automati-
cally select the number of roles; and for the later, we used
the approach described in [15]. We show that role discovery
can be used to improve the results of the identity resolution
problem between two graphs, and that they can be further
improved by using sparsity or diversity constraints. By using
sparsity or diversity constraints, we improve the role defini-
tions which leads to more meaningful role assignments and
more accurate identity resolutions. See Section 5.1 for these

experiments. We also experimentally verify the solutions to
the alternative role discovery formulation presented in Sec-
tion 4.3 and observe that they indeed produce significantly
different results. The purpose of our experimental section is
to address the questions:

1. Does adding constraints to the NMF-based role dis-
covery formulation improve the quality of the result-
ing role explanations and assignments? Figures 3 and
4 show that constraints improve the results of identity
resolution.

2. What effects do diversity constraints have on role dis-
covery results? Figures 3 and 4 show how diversity
constraints can improve role discovery results even more
so than sparsity constraints.

3. Can our alternative role discovery formulation produce
significantly different results? Tables 3 and 4 shows
that our formulation can produce results that are sig-
nificantly different than a given set of roles or commu-
nity assignments respectively.

5.1 Sparse and Diverse Identity Resolution in
Co-authorship Graphs

In this experiment, we show that by adding sparsity and
diversity constraints to the NMF formulation of role discov-
ery, the resulting role definitions are of higher quality. We
measure this improvement in quality indirectly by showing
how role definition matrices can be used for resolving iden-
tities of nodes across graphs, and that constrained role def-
initions perform better than unconstrained role definitions
for that problem.

From the DBLP data-set [17], we extracted a co-author
graph from each of the following related conferences from
2005 to 2009: KDD, ICDM, SDM, CIKM, SIGMOD, VLDB
(see Table 2 for detailed information about each co-author
graph). We extract a set of relevant structure features for
the KDD graph using REFEX [15], and compute these same
features for all of the co-author graphs. We subsequently
learn a set of role definitions from the KDD graph using
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Figure 3: Comparison of role discovery techniques for identity resolution across graphs. Role definitions are
learned from the KDD co-authorship graph; then, authors from the other (conference) co-authorship graphs
are assigned to these roles using various techniques. In particular, we show results for ReFeX (features only),
RolX (unconstrained role discovery), GLRD-Sparse (role discovery with sparsity constraints), and GLRD-
Diverse (role discovery with diversity constraints). Authors from each conference are paired with increasing
number of nearest neighbors from KDD conference (x-axis) and the resulting recall is reported (y-axis).
Across most settings role definitions using sparsity and diversity constraints lead to better identity resolution
results than standard unconstrained RolX. For graphs that are most similar in nature to KDD (e.g. ICDM,
SDM, CIKM) the transfer of role definitions lead to better results than simply using structural features of
nodes directly. Note that the recall values are relatively low because the set sizes (on the x-axis) are small
compared to the population size in each graph.

Network |V| |E| k |LCC| #CC
VLDB 1,306 3,224 4.94 769 112
SIGMOD 1,545 4,191 5.43 1,092 116
CIKM 2,367 4,388 3.71 890 361
SIGKDD 1,529 3,158 4.13 743 189
ICDM 1,651 2,883 3.49 458 281
SDM 915 1,501 3.28 243 165

Table 2: Information about DBLP co-author
networks for each conference. Data was col-
lected for five years (2005-2009). |V|=number
of vertices, |E|=number of edges, k=average de-
gree, |LCC|=size of largest connected component,
#CC=number of connected components.

standard RolX [14] as well as the sparse and diverse ver-
sions of GLRD. For each of these competing role definitions,
we assign each vertex from each graph to the roles whose
function they most exhibit. As a baseline, we also explore
author identification without roles by using the raw graph
features as described in ReFeX.

We use the role assignments to resolve the identities of
vertices from each graph (namely, ICDM, SDM, CIKM, SIG-
MOD, and VLDB) to the vertices in the KDD graph. With-
out loss of generality, assume we are resolving identity of au-
thors from the KDD graph to the authors in ICDM graph.
For each author in both conferences, we select the corre-
sponding row vector from the node by role matrix Gkdd and
find the k closest neighbors (row vectors) from Gicdm. If
the original author from KDD graph is present in the set of
k closest neighbors, we count the result as a match. We re-
peat this experiment using sparsity and diversity constraints
on Fkdd. We also repeat the experiment using the ReFeX
features, comparing author feature vectors from Vkdd and
Vicdm. Figures 3 and 4 shows how the different decompo-
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Figure 4: Comparison of role discovery techniques
for identity resolution experiments. Authors from
each conference paired with the nearest 32 neighbors
from KDD conference; the resulting recall accuracy
is reported. The percentage number (on the x-axis)
is the fraction of authors that overlap between the
two conferences. Nearly all experiments show better
results with sparsity and diversity constraints except
when the authors do not share similar roles in the
two conferences (SIGMOD and VLDB).

sition methods compare in this setting for all graphs paired
with KDD.

Our method of utilizing role discovery results for the au-
thor identification task is described formally in the following
set of steps:

1. Extract features from co-authorship graphs to get graph
features (e.g. Vkdd,Vicdm) using ReFeX.

2. From the graph features matrix Vkdd perform role dis-
covery to obtain Gkdd and Fkdd.

3. Transfer the role definition matrix Fkdd (role by fea-
ture matrix) to other graphs (e.g. Vicdm) by solving
Equation 9.

Gicdm = min
G
||Vicdm −GFkdd||2 s.t. G ≥ 0 (9)

Our experiments with graph identity-resolution show that
diversity and sparseness constraints almost universally im-
prove the quality of learned role-definition matrix. This is
not unexpected since there is a long tradition in machine
learning of using sparsity to prevent overfitting. As men-
tioned previously we can view diversity as enforcing sparsity
since a diverse set of roles as per our definition do not share
many overlapping features and hence each role definition is
concise.

Figure 3 shows that role definitions learned using sparsity
and diversity outperform standard unconstrained role dis-
covery (RolX) in almost every setting and problem parame-
terization. Figure 4 more clearly shows the general trend by
considering the results for a particular problem parameteri-
zation. In that figure, we observe that diversity constraints
lead to the most improvement over RolX, while sparsity im-
provements are lesser. We also observe that transferring the
KDD role definitions to some graphs (like VLDB and SIG-
MOD) does not compare well to the baseline method that
does not use any roles (such as ReFeX). We believe this is
because the same participants in conferences such as VLDB

and SIGMOD do not have a similar role to the ones they
play in KDD; and hence, using the raw features (without
roles) produces better results.

We believe that sparsity improves the quality of role defi-
nitions by reducing the ability of unconstrained NMF-based
role discovery to overfit the problem. Features that only
slightly add to the definition of a role are more likely to be
explaining noise; and by forcing those values to zero, we end
up with more robust definitions. Furthermore, the diversity
constraints help by removing redundancy in role definitions,
which leads to definitions that are more easily comparable.
For example, if a feature is used to define every role, then it
is not essential in defining any of them.

5.2 Alternative Roles
In this section, we show that our alternative role discov-

ery formulation (presented in Section 4.3) can discover sig-
nificantly different role definitions, as well as show that the
formulation can be used to improve the role definitions when
there are ground-truth communities. In Table 3, we show
the difference between an alternative role discovery result
and an original role definition found using unconstrained
role discovery (via RolX). In Table 4, we show that we can
use our formulation to get more consistent assignments of
roles when ground-truth communities are known.

In our first experiment, we explore the difference between
the roles of the original and alternative role discovery. Using
the KDD co-authorship graph, we find a set of roles and con-
strain a new solution to have a significantly different role def-
inition (F matrix). We then compare the results by assign-
ing each vertex to its most dominant role in both results to
create two separate partitions of the vertices. We then mea-
sure the difference between the two partitions using Jaccard
distance. Table 3 shows that all of the Jaccard distances are
far from 0 meaning that the alternative role assignments are
very different than the original ones. Figure 5 illustrates the
alternative roles found in the largest connected component
of the KDD coauthorship graph. Note, the reader can zoom
in on this figure to read the names of each author. The fol-
lowing is a description of the original roles and the roles that
GLRD(Alternative) found. These description are based on
sense-making analysis [14]. As the descriptions show these
roles are capturing alternative concepts.

R1(alt) R2(alt) R3(alt) R4(alt)
R1 0.946 0.510 0.762 0.913
R2 1.000 0.971 0.810 0.739
R3 1.000 0.7942 1.000 1.000
R4 0.345 0.991 1.000 0.982

Table 3: Jaccard distance matrix comparing original
role assignments (rows) to alternative role assign-
ments (columns). Jaccard distance of 0 represents
an exact match between clustering and 1 represents
no overlap. The relative error for the two decom-
positions was similar: 0.12% and .5% (where relative
error is error = ||V −GF||/||V||).

Original Roles:

Role 1: Nodes here have high eccentricity. These are
periphery nodes.
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Role 2: Nodes here have high eccentricity and high clus-
tering coefficient. These are periphery nodes that are
cliquey.

Role 3: Nodes here have high degree and high clustering
coefficient. These are highly connected cliquey nodes.

Role 4: Nodes here have high PageRank, high degree,
and high biconnected components numbers. These are
globally central stars and brokers.

Alternative Roles:

Role 1: Nodes here have high PageRank and high bicon-
nected component numbers. These are globally central
and brokers.

Role 2: Nodes here have high clustering coefficient but
not high eccentricity. These are non-periphery nodes
that are cliquey.

Role 3: Nodes here have high eccentricity and high clus-
tering coefficient. These are periphery nodes that are
cliquey.

Role 4: Nodes here have high eccentricity and high de-
gree. These are periphery nodes that are locally stars.
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Figure 5: A visualization of our alternative role dis-
covery results for the KDD co-authorship graph’s
largest connected component. All the colored nodes
belong to the same primary role under the origi-
nal factorization. However, they belong to different
primary roles under the alternative factorization, as
indicated by the various colors. We observe that
the alternative roles are able to separate the 3 blue
“local-star” nodes (namely, Jun Zhu, Lei Zhang, and
Evimaria Terzi) from the red “global-broker” nodes
(namely, Christos Faloutsos, Heikki Mannila, Vipin
Kumar, etc). The alternative roles also separate out
the 4 yellow “periphery-cliquey” nodes. Note, the
reader can zoom in on this figure to read the names
of each author.

We next experiment with a YouTube dataset, which is a
network of users with known ground-truth communities [22].

This graph was created by crawling the YouTube site in 2007
and creating directed edges between a pair of users a and b
if a’s profile page linked to b’s profile page. Ground-truth
communities were assigned by collecting all users belong-
ing to the same group, which were pages that allowed com-
munications between users on given topics. The graph has
1,134,890 vertices, 2,987,624 edges, and 8,385 communities.
We selected all communities with over 100 users of which
there were 105. The largest community has 2,217 users.

There is an inherent complementariness between role dis-
covery and community detection. The former is about struc-
tural similarity; while the latter is based on proximity in the
graph. Role discovery finds functions/roles of users but does
not find the communities themselves. However, there may
be multiple interesting sets of communities within the same
network and those communities may be characterized by
very different roles. In this experiment, we encode the set
of ground-truth communities for which our role discovery
technique should find roles.

The way we encode the YouTube ground-truth commu-
nities into our analysis is by providing the communities as
G∗ to our alternative role discovery formulation. This will
force our discovered roles to have a role assignment that is
different than ground-truth communities, which matches the
semantic relationship between the two problems.

To evaluate the effectiveness of this result we measured
the proportion of members in each community belonging to
each role. We then calculated the standard deviation over all
such communities per role and report the results in Table 4.
The assumption for this evaluation is that each role should
be equally represented in each community. Our results show
that the alternative role discovery formulation can indeed be
used to normalize the roles with respect to a set of ground-
truth communities. After applying sense-making [14], the
six roles that our GLRD(Alternative) finds are as follows:

Alternative Role 1: Nodes here are global hubs. They
have high PageRank values, high out-degrees, and high
biconnected component numbers.

Alternative Role 2: Nodes here are on the periphery of
the graph. They have higher than default eccentricity.

Alternative Role 3: Nodes here are authorities. They have
high PageRank values and high in-degrees.

Alternative Role 4: Nodes here are very cliquey. They
have high clustering coefficients.

Alternative Role 5: Nodes here are local hubs. They have
high out-degrees and high biconnected component num-
bers.

Alternative Role 6: Nodes here are the majority of the
population; they are the “regular” folks. They have a
local neighborhood that is more cliquey than expected
but otherwise nothing special stands out.

6. CONCLUSION
Role discovery is an emerging and important area of graph

mining. It looks at discovering nodes that perform similar
functions in networks, but do not necessarily belong to the
same community. Existing work so far has been completely
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Roles 1 2 3 4 5 6
Original 7.85 7.93 8.70 2.35 9.81 7.57
Alternate 5.06 6.34 5.34 3.81 8.62 5.88

Table 4: For each role, we report the standard de-
viations of role proportions over all communities.
The result shows that our alternative role discovery
formulation can be used to find roles whose mem-
bers are better distributed across a set of interesting
communities. The values are scaled by 102.

unsupervised. We propose a framework that allows incor-
porating convex constraints into NMF to allow a rich set of
guided role discovery formulations.

In particular we explore three types of guidance: sparsity,
diversity and alternativeness. Sparsity and diversity can be
used to create simpler and more interpretable role definitions
and role allocations. Also they can reduce overfitting and
produce better predictive results for matching authors be-
tween the KDD conference and a variety of other conferences
provided they perform similar roles in both conferences. The
notion of alternativeness has been explored in the clustering
literature and is useful if the given explanation is not valid
and an alternative is required. Here we show that not only
do alternative roles exist in co-author networks, but that we
can find an alternative to the community structure in a very
large YouTube graph.

We view our work as a framework for incorporating guid-
ance into role discovery and in the future will explore other
forms of guidance such as partial role definitions and extend
our solvers to tensor settings to allow evolving roles.

7. ACKNOWLEDGMENTS
The authors gratefully acknowledge support of this re-

search via ONR grants N00014-09-1-0712, N00014-11- 1-
0108 and NSF Grant NSF IIS-0801528. This work was
also supported in part by IARPA via AFRL Contract No.
FA8650-10-C-7061 and in part by DAPRA under SMISC
Program Agreement No. W911NF-12-C-0028.

8. REFERENCES
[1] B. W. Bader, T. G. Kolda, et al. Matlab tensor

toolbox version 2.5, January 2012.

[2] S. Basu, I. Davidson, and K. Wagstaff. Constrained
Clustering: Algorithms, Applications and Theory.
Prentice Hall, 2008.

[3] A. Beck and M. Teboulle. Mirror descent and
nonlinear projected subgradient methods for convex
optimization. Operations Research Letters,
31(3):167–175, 2003.

[4] M. W. Berry, M. Browne, A. N. Langville, V. P.
Pauca, and R. J. Plemmons. Algorithms and
applications for approximate nonnegative matrix
factorization. Computational Statistics and Data
Analysis, 52(1):155–173, 2007.

[5] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, NY, USA, 2004.

[6] R. Bro and N. D. Sidiropoulos. Least squares
algorithms under unimodality and non-negativity
constraints. J. of Chemometrics, 12(4):223–247, 1998.

[7] CVX Research. CVX: Matlab software for disciplined
convex programming, version 2.0 beta, Sept. 2012.

[8] I. Davidson, S. Gilpin, and P. B. Walker. Behavioral
event data and their analysis. DMKD, 25(3):635–653,
2012.

[9] I. Davidson and Z. Qi. Finding alternative clusterings
using constraints. In ICDM, pages 773–778, 2008.

[10] J. Duchi, S. Shalev-Shwartz, Y. Singer, and
T. Chandra. Efficient projections onto the l1-ball for
learning in high dimensions. In ICML, pages 272–279,
2008.

[11] H. Furstenau and M. Lapata. Semi-supervised
semantic role labeling. In EACL, pages 220–228, 2009.

[12] M. Grant and S. Boyd. Graph implementations for
nonsmooth convex programs. In Recent Advances in
Learning and Control, volume 371, pages 95–110.
Springer-Verlag, 2008.

[13] W. Heiser and P. Kroonenberg. Dimensionwise fitting
in PARAFAC-CANDECOMP with missing data and
constrained parameters. Technical Report PRM 97-01,
University of Leiden, The Netherlands, 1997.

[14] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong,
S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, and
L. Li. RolX: Structural role extraction & mining in
large graphs. In KDD, pages 1231–1239, 2012.

[15] K. Henderson, B. Gallagher, L. Li, L. Akoglu,
T. Eliassi-Rad, H. Tong, and C. Faloutsos. It’s who
you know: Graph mining using recursive structural
features. In KDD, pages 663–671, 2011.

[16] P. O. Hoyer. Non-negative matrix factorization with
sparseness constraints. JMLR, 5:1457–1469, 2004.

[17] M. Ley. DBLP, computer science bibliography.
http://www.informatik.uni-trier.de/~ley/db/.

[18] T. Li and C. Ding. The relationships among various
nonnegative matrix factorization methods for
clustering. In ICDM, pages 362–371, 2006.

[19] H. Liu, Z. Wu, X. Li, D. Cai, and T. Huang.
Constrained nonnegative matrix factorization for
image representation. PAMI, 34(7):1299–1311, 2012.

[20] J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with
Efficient Projections. Arizona State University, 2009.

[21] J. Liu and J. Ye. Efficient Euclidean projections in
linear time. In ICML, pages 657–664, 2009.

[22] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In IMC, pages 29–42, 2007.

[23] P. Paatero and U. Tapper. Positive matrix
factorization: A non-negative factor model with
optimal utilization of error estimates of data values.
Environmetrics, 5(2):111–126, 1994.

[24] Z. Qi and I. Davidson. A principled and flexible
framework for finding alternative clusterings. In KDD,
pages 717–726, 2009.

[25] M. Somaiya, C. Jermaine, and S. Ranka. Mixture
models for learning low-dimensional roles in
high-dimensional data. In KDD, pages 909–918, 2010.

[26] L. N. Trefethen and D. Bau. Numerical Linear
Algebra. SIAM, 1997.

[27] F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding.
Community discovery using nonnegative matrix
factorization. DMKD, 22(3):493–521, 2011.

121




