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ABSTRACT
The low-rank regression model has been studied and ap-
plied to capture the underlying classes/tasks correlation pat-
terns, such that the regression/classification results can be
enhanced. In this paper, we will prove that the low-rank
regression model is equivalent to doing linear regression in
the linear discriminant analysis (LDA) subspace. Our new
theory reveals the learning mechanism of low-rank regres-
sion, and shows that the low-rank structures exacted from
classes/tasks are connected to the LDA projection results.
Thus, the low-rank regression efficiently works for the high-
dimensional data.

Moreover, we will propose new discriminant low-rank ridge
regression and sparse low-rank regression methods. Both of
them are equivalent to doing regularized regression in the
regularized LDA subspace. These new regularized objectives
provide better data mining results than existing low-rank re-
gression in both theoretical and empirical validations. We
evaluate our discriminant low-rank regression methods by
six benchmark datasets. In all empirical results, our dis-
criminant low-rank models consistently show better results
than the corresponding full-rank methods.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Management]: Database Applications-
Data Mining

General Terms
Algorithms
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1. INTRODUCTION
As one of most important data mining and machine learn-

ing technique, multivariate linear regression attempts to model
the relationship between predictors and responses by fitting
a linear equation to observed data. Such linear regression
models suffer from two deficiencies when they are applied
to the real-world applications. First, the linear regression
models usually have low performance for analyzing the high-
dimensional data. In many data mining and machine learn-
ing applications, such as gene expression, document classifi-
cation, face recognition, the input data have a large number
of features. To perform accurate regression or classification
tasks on such data, we have to collect an enormous number
of samples. However, due to the data and label collection
difficulty, we often cannot obtain enough samples and suf-
fer from the curse-of-dimensionality problem [8]. To solve
this problem, the dimensionality reduction methods, such
as linear discriminant analysis (LDA) [10], were often used
to reduce the feature dimensionality first.

Second, the linear regression models don’t emphasize the
correlations among different responses. Standard least squares
regression is equivalent to regressing each response on the
predictors separately. To incorporate the response (i.e. classes
or tasks) correlations into the regression model, Anderson
introduced the reduced rank regression method [1], which
is a multivariate regression model with a coefficient matrix
with reduced rank. Later many researchers worked on the
low-rank (or reduced) regression models [26, 5, 13, 1, 2, 20],
in which the classes/tasks correlation patterns are explored
by the low-rank structure and utilized to enhance the re-
gression/classification results.

In this paper, we propose new and important theoretical
foundations of the low-rank regression. We first present the
discriminant low-rank linear regression, which reformulates
the standard low-rank regression to a more interpretable
objective. After that, we prove that the low-rank regres-
sion model is indeed equivalent to doing linear regression in
the LDA subspace, i.e. the learned low-rank classes/tasks

1124



correlation patterns are connected to the LDA projection
results. Our new theorem explains the underlying compu-
tational mechanism of low-rank regression, which performs
the LDA projection and the linear regression on data points
simultaneously. In our special case, when the low-rank re-
gression coefficient matrix becomes a full-rank matrix, our
result is connected to Ye’s work on the equivalence between
the multivariate linear regression and LDA [27].

Motivated by our new theoretical analysis, we propose two
new discriminant low-rank regression models, including low-
rank ridge regression (LRRR) and sparse low-rank regression
(SLRR). Both methods are equivalent to performing the reg-
ularized regression tasks in the regularized LDA subspace
(two methods have different regularization terms). Because
the regularization term avoids the rank deficiency problem
in both regression and LDA, our LRRRmethod outperforms
the low-rank regression in both theoretical analysis and ex-
perimental results. Using the structured sparsity-inducing
norm based regularization term, our SLRR method can ex-
plore both classes/tasks correlations and feature structures.
All our new discriminant low-rank regression models can si-
multaneously analyze the high-dimensional data in the dis-
criminant subspace without any pre-processing step and in-
corporate the classes/tasks correlations. We evaluate the
proposed methods on six benchmark data sets. In all ex-
perimental results, our discriminant low-rank models con-
sistently outperform their corresponding full-rank counter-
parts.
Notations. In this paper, matrices are written as uppercase
letters and vectors are written as bold lowercase letters. For
matrix W = {wij}, its i-th row, j-th column are denoted as
wi, wj respectively. Tr (W ) means the trace operation for
matrix W and ||W ||∗ means the trace norm of matrix W .

2. LOW-RANK REGRESSION AND LDA+LR
One of the main result of this paper is to prove that the

low-rank linear regression (LRLR) is equivalent to do-
ing standard linear regression in LDA subspace (we
call this as “LDA+LR”).

2.1 Low-Rank Linear Regression Revisit
Traditional Linear Regression model for classification is to

solve the following problem:

min
W

||Y −XTW ||2F , (1)

where X = [x1,x2, ...., xn] ∈ �d×n is the centered training
data matrix and Y ∈ �n×k is the normalized class indicator
matrix, i.e. Yi,j = 1/

√
nj if the i-th data point belongs to

the j-th class and Yi,j = 0 otherwise and nj is the sample
size of the j-th class. The model outputs the parameter
matrix W ∈ �d×k, which can be used to predict any test
data point x ∈ �d×1 by W Tx.

When the class or task number is large, there are often
underlying correlation structures between classes or tasks.
To explore these hidden structures and utilize such patterns
to improve the learning model, in recent work [3], researchers
presented to learn a low-rank projection W in the regression
model by imposing the trace norm regularization as:

min
W

||Y −XTW ||2F + λ||W ||∗ . (2)

The trace norm regularization can discover the low-rank
structures existing between classes or tasks. Using Eq. (2),

the rank of coefficient matrix W , which is decided by the
selection of parameter λ, cannot be explicitly selected and
tuned.

In related research work, the low-rank regression was stud-
ied in statistics and machine learning communities [26, 5,
13, 1, 2, 20]. In the low-rank regression, the rank of W
is explicitly decided by constraining the rank of W to be
s < min(n, k) and solving the following problem:

min
W

||Y −XTW ||2F , s.t. rank(W ) ≤ s. (3)

Because the rank of coefficient matrix can be explicitly de-
termined, the low-rank regression in Eq. (3) is better than
the trace norm based objective in Eq. (2) in practical appli-
cations. Although the general rank minimization is a non-
convex and NP-hard problem, the objectives with rank con-
straints are solvable, e.g. the global solution was given in
[26, 5].

2.2 Relation to LDA+LR
In this section, we will show that the low-rank linear re-

gression (LRLR) is equivalent to perform Linear Discrimi-
nant Analysis (LDA) and linear regression simultaneously
(LDA+LR). In other words, the learned low-rank structures
and patterns are induced by the LDA projection (with re-
gression). The low rank s is indeed the projection dimension
of LDA.

Before introducing our main theorems, we first propose
the following discriminant Low-Rank Linear Regression for-
mulation (LRLR):

min
A,B

||Y −XTAB||2F , (4)

where A ∈ �d×s, B ∈ �s×k, s < min(n, k). Thus W =
AB has low-rank s. The above LRLR objective has the
same solutions as Eq. (3), but it has clearer discriminant
projection interpretation. Eq. (4) can be written as

min
A,B

||Y − (ATX)TB||2F . (5)

This shows A can be viewed as a projection. Interestingly
as we show in Theorem 1, A is exactly the optimal subspace
defined by the classic LDA.

Theorem 1. The low-rank linear regression method of
Eq. (4)) is identical to doing standard linear regression in
LDA subspace.

Proof: Denoting J1(A,B) = ||Y −XTAB||2F and taking its
derivative w.r.t. B, we have,

∂J1(A,B)

∂B
= −2ATXY + 2ATXXTAB. (6)

Setting Eq. (6) to zero, we obtain,

B = (ATXXTA)−1ATXY. (7)

Substituting Eq. (7) back into Eq. (4), we have,

min
A

||Y −XTA(ATXXTA)−1ATXY ||2F , (8)

which is equivalent to

max
A

Tr ((AT (XXT )A)−1ATXY Y TXTA). (9)

Note that

St = XXT , Sb = XY Y TXT , (10)
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where St and Sb are the total-class scatter matrix and the
between-class scatter matrix defined in the LDA, respec-
tively. Therefore, the solution of Eq. (9) can be written as:

A∗ = argmax
A

Tr [(ATStA)−1ATSbA], (11)

which is exactly the problem of LDA, and the global opti-
mal solution to Eq. (11) is the top s eigenvectors of S−1

t Sb

corresponding to the nonzero eigenvalues (if St is singular,
we compute the eigenvectors of S+

t Sb corresponding to the
nonzero eigenvalues, where S+

t denotes the pseudo-inverse of
St). Now Eq. (5) implies that we do linear regression on the

projected data X̃ = ATB. Since A is the LDA projection,
thus Eq. (5) implies we do regression on the LDA subspace.

�

Note that in Eq. (4), the class indicator matrix Y is nor-
malized, but not centered. However X is centered. The
following Theorem 2 shows that we obtain the optimal so-
lution whatever Y is centered or not.

Theorem 2. The optimal solution (A∗, B∗) for the fol-
lowing problem

min
A,B

||PY −XTAB||2F (12)

is identical to those of Eq. (4); here P = I − eeT /n ∈ �n×n

is the centering matrix, and e = (1 · · · 1)T .
For this reason, the bias (intercept) term are already au-

tomatically incorporated in Eq. (4).

Proof: The key point of the proof is the fact that in the
solution for both B and A of Eq. (7) and Eq. (9), Y always
appears together with X as combination

XY = (XP )Y = XP 2Y = (XP )(PY ),

because X is centered and P 2 = P . In other words, as long
as X is centered, Y is automatically centered. �

This results can be easily extended to the standard linear
regression. In fact we have

Remark 1. As long as X is centered, the optimal solu-
tion W ∗ for the standard linear regression of Eq.(1) remains
identical no matter Y is centered or not.

Our new results provide the theoretical foundation to ex-
plain the mechanism behind the low-rank regression meth-
ods. Meanwhile, the above proof process also indicates a
concise algorithm to achieve the global solution of LRLR in
Eq. (4), as well as Eq. (3). The Algorithm to solve Eq. (4)
is summarized in Alg. 1.

Moreover, we note that Theorem 1 also provides clari-
fication to a long-standing puzzle in multi-class LDA, as
explained below.

2.3 LDA: Trace-of-Ratio or Ratio-of-Trace?
The original Fisher LDA is on 2-class problem, where only

k − 1 = 1 projection direction a is needed. The Fisher
objective is

max
a

aTSba

aTSwa
.

The generalization to multi-class has two natural formula-
tions [10], either the trace-of-ratio formulation

max
A

Tr
ATSbA

ATSwA
(13)

Algorithm 1 The algorithm to solve LRLR

Input:
1. The centralized training data X ∈ �d×n.
2. The normalized training indicator matrix Y ∈ �n×k.
3. The low-rank parameter s.
Output:
1. The matrices A ∈ �d×s and B ∈ �s×k.
Process:
1. Calculate A by Eq. (11)
2. Calculate B by Eq. (7)

where A = (a1 · · · ak−1), or the ratio-of-trace formulation1

max
A

Tr ATSbA

Tr ATSwA
(14)

Our Theorem 1 lends support to the trace-of-ratio objective
function because this formulation arises directly from the
linear regression.

2.4 Full-Rank Linear Regression and LDA
Here we note an important connection. In the special case,

the low-rank regression coefficient matrix W becomes a full-
rank matrix. Without loss of generality we assume s = k ≤
n, because the number of data points n is usually larger than
the number of classes k. The matrix B ∈ �k×k becomes a
square matrix. Because rank(W ) = rank(AB) = k and
k ≤ n, rank(A) ≥ k and rank(B) ≥ k. Thus, rank(B) = k
and B is a full rank matrix, i.e. the matrix B is invertible.

The Theorem 1 is still correct for the special case. More-
over, we can further conclude the equivalence between the
multivariate linear regression and LDA results. We can sim-
ply prove this conclusion. Because the matrix A includes
the LDA subspaces and the matrix B can be considered as
an invertible rotational matrix, thus AB is also one of the
infinite number global solutions of LDA [15]. Thus, in the
special full-rank case, the multivariate linear regression is
equivalent to the LDA result, which was shown in Ye’s work
[27] with the assumptions: the reduced dimension is k − 1
and rank(Sb) + rank(Sw) = rank(St). Our proof is more
general and doesn’t need the rank assumption.

2.5 Low-Rank Ridge Regression (LRRR)
As we know, by adding a Frobenius norm based regulariza-

tion on the linear regression loss, ridge regression can achieve
better performance than linear regression [12]. Thus, it is
important and necessary to add the ridge regularization into
low-rank regression formulation. We propose the following
Low-Rank Ridge Regression (LRRR) objective as,

min
A,B

||Y −XTAB||2F + λ||AB||2F , (15)

where A ∈ �d×s, B ∈ �s×k, s < min(n, k), λ is the regu-
larization parameter. Similarly, we can see that the LRRR
objective is equivalent to the following objective:

min
W

||Y −XTW ||2F + λ||W ||2F , s.t. rank(W ) ≤ s. (16)

Compared to Eq. (16), Eq. (15) provides better chance for
us to understand the learning mechanism of LRRR. We will

1In Eqs.(13,14), the optimal solution remains the same when
Sw is replaced by St.
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Algorithm 2 The algorithm to LRRR

Input:
1. The centralized training data X ∈ �d×n.
2. The normalized training indicator matrix Y ∈ �n×k.
3. The low-rank parameter s.
4. The regularization parameter λ.
Output:
1. The matrices A ∈ �d×s and B ∈ �s×k.
Process:
1. Calculate A by Eq. (21)
2. Calculate B by Eq. (18)

show that our new LRRR objective is connected to the reg-
ularized discriminant analysis, which provides better projec-
tion results than the standard LDA. We will also derive the
global solution of the non-convex problems in Eq. (15) and
Eq. (16).

Theorem 3. The proposed Low-Rank Ridge Regression
(LRRR) method (both Eq. (15) and Eq. (16)) is equivalent
to doing the regularized regression in the regularized LDA
subspace.

Proof: Denoting J2(A,B) = ||Y − XTAB||2F + λ||AB||2F ,
and taking its derivative w.r.t. B, we have,

∂J2(A,B)

∂B
= −2ATXY + 2ATXXTAB + 2λATAB. (17)

Setting Eq. (17) to zero, we get,

B = (AT (XXT + λI)A)−1ATXY, (18)

where I ∈ �d×d is the identity matrix. Substituting Eq. (18)
back into Eq. (15), we have

min
A

||Y −XTA(ATXXTA+ λATA)−1ATXY ||2F
+λ||A(AT (XXT + λI)A)−1ATXY ||2F , (19)

which is equivalent to the following problem:

max
A

{(AT (XXT + λI)A)−1ATXY Y TXTA}. (20)

Similarly, the solution of Eq. (20) can be written as:

A∗ = argmax
A

{Tr((AT (St + λI)A)−1ATSbA)}, (21)

which is exactly the problem in regularized LDA [9]. After
we get the optimal solution A, we can re-write Eq. (15) as:

min
B

||Y − (ATX)TB||2F + λ||AB||2F , (22)

which is the regularized regression, and the optimal solu-
tion is given by Eq. (18). Thus, the LRRR of Eq. (15) is
equivalent to performing ridge regression in regularized-LDA
subspace. �

Similar to Theorem 2, we can show that Y is automatically
centered as long as X is centered.

Another interest point is that although our LRRR model
is a non-convex problem, Theorems 1 and 3 show that they
have the global optimal solutions. The Algorithm to solve
LRRR of Eq. (15) is described in Alg. 2.

2.6 Full-Rank Ridge Regression and
Regularized LDA

In the special case, the low-rank regression coefficient ma-
trix W becomes a full-rank matrix. Similar to §2.4, we have
the following lemma:

Lemma 1. The full-rank ridge regression result is equiva-
lent to the solution of regularized LDA (St is replaced by the
regularized form St + λI).

Similar to the proof in §2.4, we can easily prove the coef-
ficient matrix W in full-rank ridge regression is one of the
global solutions of LDA regularized by λI .

3. SPARSE LOW-RANK REGRESSION FOR
FEATURE SELECTION

Besides exploring and utilizing the class/task correlations
and structure information, the learning models also prefer to
select and use the important features to avoid the “curse of
dimensionality” problem in high-dimensional data analysis.
Thus, it is important to extend our discriminant low-rank
regression formulations to feature selection models.

Due to the intrinsic properties of real world data, the
structured sparse learning models have shown superior fea-
ture selection results in previous research [22, 28, 21, 17, 6,
23, 25, 24, 7]. One of the most effective ways for selecting
features is to impose sparsity by inducing hybrid structured
�2,1-norm on the coefficient matrix W as the regularization
term [19, 3]. Therefore, following our LRLR and LRRR
methods, we propose a new Sparse Low-Rank Regres-
sion (SLRR) method, which reserves the low-rank con-
straint and adds the mixed �2,1-norm regularization term to
induce both desired low-rank structure of classes/tasks cor-
relations and structured sparsity between features. To be
specific, “low-rank” means rank(AB) = s < min(n, k) and
“structured sparsity” means most rows of AB are zero to
help feature selection. Thus, we solve:

min
A,B

||Y −XTAB||2F + λ||AB||2,1 , (23)

where A ∈ �d×s, B ∈ �s×k, s < min(n, k). Similarly, we
can see that the above SLRR objective is equivalent to the
following objective:

min
W

||Y −XTW ||2F + λ||W ||2,1, s.t. rank(W ) ≤ s. (24)

Both Eq. (23) and Eq. (24) are new objectives to simultane-
ously learn low-rank classes correlation patterns and features
structured sparsity.

3.1 Connection to Discriminant Analysis
Interestingly our new SLRR method also connects to the

regularized discriminant analysis by the following theorem.

Theorem 4. The optimal solution of the proposed SLRR
method (Eq. (23) and Eq. (24)) has the same column space
of a special regularized LDA.

Proof: Eq. (23) is equivalent to the following problem,

min
A,B

||Y −XTAB||2F + λTr (BTATDAB), (25)

where D ∈ �d×d is a diagonal matrix and each element on
the diagonal is defined as follows:

dii =
1

2||gi||2 , i = 1, 2, ..., d, (26)
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Algorithm 3 The algorithm to SLRR

Input:
1. The centralized training data X ∈ �d×n.
2. The normalized training indicator matrix Y ∈ �n×k.
3. The low-rank parameter s.
4. The regularization parameter λ.
Output:
1. The matrices A ∈ �d×s and B ∈ �s×k.
Initialization:
1. Set t = 0
2. Initialize D(t) = I ∈ �d×d.
Repeat:
1. Calculate A(t+1) by Eq. (30)

2. Calculate B(t+1) by Eq. (28)

3. Update the diagonal matrix D(t+1) ∈ �d×d, where the
i-th diagonal element is 1

2||(A(t+1)B(t+1))i||2 .
4. Update t = t+ 1
Until Converge.

where gi is the i-th row of matrix G = A∗B∗. Denoting
J3(A,B) = ||Y −XTAB||2F +λTr (BTATDAB) and taking
its derivative w.r.t. B, we have,

∂J3(A,B)

∂B
= −2ATXY +2ATXXTAB+2λATDAB. (27)

Setting the above equation to be zero, we can get,

B = (AT (XXT + λD)A)−1ATXY, (28)

where D ∈ �d×d is the diagonal matrix defined in Eq. (26).
Substituting Eq. (28) back into Eq. (25), then we need solve
the following problem to get A,

max
A

Tr ((AT (XXT + λD)A)−1ATXY Y TXTA). (29)

The solution of Eq. (29) is:

A∗ = argmax
A

{Tr ((AT (St + λD)A)−1ATSbA)}, (30)

Since the column space of W ∗ = A∗B∗ is identical to the
column space of A∗, the proposed SLRR has the same col-
umn space of a special regularized LDA (St is replaced with
St + λD). �

After we get the optimal solution A, we can solve Eq. (23)
through Eq. (25), which is the regularized regression prob-
lem. Again, similar to Theorm 2, we can prove that if Y is
centered or not will not affect the learnt model A∗ and B∗.

3.2 Algorithm to Solve SLRR
Solving SLRR objective in Eq. (23) is nontrivial, there are

two variables A and B needed to be optimized, and the non-
smooth regularization also makes the problem more difficult
to solve. Interestingly, a concise algorithm can be derived to
solve this problem based on the above proof. The detailed
algorithm is described in Algorithm 3. In next subsection,
we will prove that the algorithm converges. Our experimen-
tal results show that the algorithm always converges in 5-20
iterations.

3.3 Algorithm Convergence Analysis
Because Alg. 3 is an iterative algorithm, we will prove its

convergence.

Theorem 5. Alg. 3 decreases the objective function of
Eq. (23) monotonically.

Proof: In the t-th iteration, we have

< A(t+1), B(t+1) >= argmin
A,B

||Y −XTAB||2F
+λTr (BTATD(t)AB)

(31)

In other words,

||Y −XTA(t+1)B(t+1)||2F + λTr (B(t+1)T A(t+1)T D(t)A(t+1)B(t+1))

≤ ||Y −XA(t)B(t)||2F + λTr (B(t)T A(t)T D(t)A(t)B(t))
(32)

Denote G(t) = A(t)B(t) and G(t+1) = A(t+1)B(t+1). By the
definition of matrix D in the algorithm, Eq. (32) can be
rewritten as,

||Y −XTG(t+1)||2F + λ

d∑
i=1

||gi(t+1)||22
2||gi(t)||2

≤ ||Y −XTG(t)||2F + λ
d∑

i=1

||gi(t)||22
2||gi(t)||2 (33)

where gi(t) and gi(t+1) are the i-th row of the matrix G(t)

and G(t+1) respectively. Since for each i, we have

||gi(t+1) ||2 − ||gi(t+1) ||22
2||gi(t) ||2

≤ ||gi(t) ||2 − ||gi(t) ||22
2||gi(t) ||2

. (34)

Thus, summing up d inequalities and multiplying the sum-
mation with the regularization parameter λ, we obtain:

λ
d∑

i=1

(
||gi(t+1) ||2 − ||gi(t+1) ||22

2||gi(t) ||2

)

≤ λ
d∑

i=1

(
||gi(t) ||2 − ||gi(t) ||22

2||gi(t) ||2

)
(35)

Combining Eq. (33) and Eq. (35), we get:

||Y −XTG(t+1)||2F + λ

d∑
i=1

||gi(t+1)||2

≤ ||Y −XTG(t)||2F + λ
d∑

i=1

||gi(t)||2 (36)

Therefore, we have:

||Y −XTG(t+1)||2F + λ||G(t+1)||2,1 ≤ ||Y −XG(t)||2F + λ||G(t)||2,1
(37)

Since A and B are updated according to gradient, Alg. 3
will monotonically decrease the objective in Eq. (23) in each
iteration. �

3.4 Full-Rank Sparse Linear Regression and
Regularized LDA

In the special case, the low-rank regression coefficient ma-
trix W becomes a full-rank matrix. Similar to §2.4, we also
have the following lemma:

Lemma 2. The optimal solution of the full-rank sparse
linear regression is one of the global solutions of LDA regu-
larized by λD.

Similar to the proof in §2.4, we can easily prove the coeffi-
cient matrix W in full-rank sparse linear regression is one of
the global solutions of LDA regularized by λD.
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4. EXPERIMENTAL RESULTS
In this section, we will evaluate the performance of our

proposed LRLR, LRRR, SLRR with their corresponding
full-rank counterparts. We firstly introduce the six bench-
mark datasets used in our experiments.

4.1 Dataset Descriptions
UMIST face dataset [11] contains 20 persons and totally

575 images. All images are cropped and resized into 112×92
pixels per image.

Binary Alphadigits 36 dataset [4] contains binary digits
of 0 through 9 and capital A through Z with size 20 × 16.
There are 39 examples of each class.

Binary Alphadigits 26 dataset [4] contains binary cap-
ital A through Z with size 20× 16. There are 39 examples
of each class.

VOWEL dataset [18] consists of 990 vowel recognition
data used for the study of recognition of the eleven steady
state vowels of British English. The speakers are indexed by
integers 0-89. (Actually, there are fifteen individual speak-
ers, each saying each vowel six times.) The vowels are in-
dexed by integers 0-10. For each utterance, there are ten
floating-point input values, with array indices 0-9.

MNIST hand-written digits dataset [14] consists of 60, 000
training and 10, 000 testing digits. It has 10 classes, from
digit 0 to 9. Each image is centralized (according to the
center of mass of the pixel intensities) on a 28×28 grid. We
randomly select 15 images for each class in our experiment.

JApanese Female Facial Expressions (JAFFE) data
set [16] contains 213 photos of 10 Japanese female models.
Each image has been rated on 6 emotion adjectives by 60
Japanese subjects.

We summarize the datasets that we will use in our exper-
iments in Table 1

4.2 Experimental Setup
All the datasets in our experiments have large number

of classes (at least 10 classes). For each dataset, we ran-
domly split the data into 5 parts. According to the stan-
dard 5-fold cross validation, in each round, we use 4 parts
for training and the remaining part for testing. The aver-
age classification accuracy rates for different methods are
reported. In the training stage, we use different full-rank
linear regression models, i.e. full-rank linear regression,
full-rank ridge regression, sparse full-rank linear regression
to learn the coefficient matrix W directly or we solve the
proposed low-rank counterparts (LRLR, LRRR, SLRR) to
calculate W indirectly by W = AB. In all experiments,
we automatically tune the regularization parameters by se-
lecting the best parameters among the values {10r : r ∈
{−5,−4,−3, ...3, 4, 5}} with 5-fold cross validation on the
corresponding training data only. In addition, for LRLR,
LRRR, SLRR, we calculate the classification results with
respect to different low-rank parameters s in the range of
[k/2, k), where k is the number of classes. At last, in the
testing stage, we utilize the following decision function to
classify the coming testing data xt ∈ �d×1 into one and
only one out of k classes,

argmax
1≤j≤k

(W Txt)j . (38)

Please note that all the data are centered and we consider
the model without bias. The code is written in MATLAB

Table 1: The summary of the datasets used in our
experiments. k is the number of classes, d is the
number of feature dimensions, n is the number of
data points.

Dataset k d n
UMIST 20 10304 575

BINALPHA36 36 320 1404
BINALPHA26 26 320 1014

VOWEL 11 10 990
MNIST 10 784 150
JAFFE 10 1024 213

and we terminate our iterative optimization procedure of
sparse regression when the relative change in the objective
function is below 10−5.

4.3 Classification Results
Our proposed methods can find the low-rank structure

of the regression models, which are equivalent to doing re-
gression in the regularized LDA subspace. For illustration
purpose, in Fig. 1 we plot the ranked singular value of the
learnt coefficient matrix W = AB on the left hand side and
draw the absolute value of the learnt W of the 1st fold (of
the 5 fold cross validation, other folds show similar result)
on the right hand side for each dataset. The corresponding
rank parameter is selected based on which SLRR achieves
the best classification accuracy. For example, in Fig. 1(a)
shows the UMIST results, we can see the number of non-
zero singular value of W is 15, i.e., the rank of the learnt
coefficient matrix is 15, less than its full rank value of 20.
In addition, the learnt W is sparse and is effectively used
for feature selection, e.g. selecting the important features
(non-zero rows) across all the classes.

Fig. 2 shows the average classification accuracy compar-
isons of the above three types of full-rank regressions with
the proposed low-rank counterparts with respect to differ-
ent low-rank constraints. From Fig. 2, we can obviously con-
clude that the discriminant low-rank regressions consistently
outperform their full-rank counterparts, when the specified
low-rank parameter s falls in a proper range. For five out of
six datasets in our experiments, the low-rank property can
boost the result greatly. Only in JAFFE dataset (as shown
in Fig. 2.(l)), the performance of sparse low-rank regression
is competitive with that of the full-rank counterpart.

To help the researchers easily compare all methods, we
also list the best classification results in terms of average ac-
curacy and standard deviation for different regression meth-
ods in Table 2.

Our experimental results also verify our previous key point
that the RLRR method is better than LRLR method. On
all six datasets, the RLRR outperforms the LRLR. Surpris-
ingly, the standard ridge regression even has better perfor-
mance than the LRLR method. The LRLR is equivalent to
existing low-rank regression models, and both methods may
have suboptimal results due to the rank deficiency problem.
In standard ridge regression or RLRR methods, because the
rank constraint is imposed, both of them alleviate such ma-
trix rank deficiency issue. Now we showed the connection
between low-rank constraint and LDA projection, such that
we can uncover this problem.
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Table 2: The average classification accuracy using different regression methods on six datasets.
Data Rank Linear Regression Ridge Regression Sparse Linear Regression

UMIST
Full 0.6650 ± 0.1069 0.9197 ± 0.0456 0.9525 ± 0.0533
Low 0.8225± 0.0937 0.9675± 0.0322 0.9675± 0.0245

BINALPHA36
Full 0.3488 ± 0.0241 0.6039 ± 0.0231 0.5971 ± 0.0205
Low 0.4147± 0.0238 0.6105± 0.0178 0.6069± 0.0205

BINALPHA26
Full 0.3636 ± 0.0124 0.6732 ± 0.0258 0.6527 ± 0.0297
Low 0.4422± 0.0255 0.6771± 0.0221 0.6578± 0.0281

VOWEL
Full 0.2960 ± 0.0405 0.3010 ± 0.0402 0.2960 ± 0.0417
Low 0.2980± 0.0323 0.3040± 0.0304 0.3020± 0.0314

MNIST
Full 0.4067 ± 0.0830 0.4467 ± 0.1043 0.8067 ± 0.0435
Low 0.4400± 0.1020 0.7933± 0.0772 0.8267± 0.0742

JAFFE
Full 0.6519 ± 0.1066 0.9446 ± 0.0479 0.9870 ± 0.0188
Low 0.8617± 0.0813 1.0000± 0.0000 0.9951± 0.0098
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(a) UMIST low-rank structure and sparse structure
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(b) VOWEL low-rank structure and sparse structure
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(c) MNIST low-rank structure and sparse structure
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(d) JAFFE low-rank structure and sparse structure
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(e) BINALPHA36 low-rank structure and sparse structure
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(f) BINALPHA26 low-rank structure and sparse structure

Figure 1: Demonstration of the low-rank structure and sparse structure found by our proposed SLRR method.

For some data with very large feature dimension (d >> n),
like UMIST, MNIST and JAFFE, feature selection is nec-
essary to reduce the redundancy between features and alle-
viate the curse of dimensionality. Our classification results
both in Fig. 2 and Table 2 have shown that under such cir-
cumstances, SLRR and its full rank counterpart can achieve
better classification result than RLRR and ridge regression
since the �2,1-norm can impose sparsity and select the fea-
tures for all the classes.

Thus, our newly proposed RLRR as well as SLRR meth-
ods are more important and more practical low-rank models
for machine learning applications.

5. CONCLUSION
In this paper, we provide theoretical analysis on low-rank

regression models. We proved that the low-rank regression is
equivalent to doing linear regression in the LDA subspace.
More important, we proposed two new discriminant low-
rank ridge regression and sparse low-rank regression meth-
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(a) UMIST linear regression
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(b) UMIST ridge regression
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(c) UMIST sparse linear regression
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(d) VOWEL linear regression
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(e) VOWEL ridge regression
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(f) VOWEL sparse linear regression
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(g) MNIST linear regression
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(h) MNIST ridge regression
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(i) MNIST sparse linear regression
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(j) JAFFE linear regression
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(k) JAFFE ridge regression
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(l) JAFFE sparse linear regression
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(m) BINALPHA36 linear regression
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(n) BINALPHA36 ridge regression
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(o) BINALPHA36 sparse linear regres-

sion
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(p) BINALPHA26 linear regression
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(q) BINALPHA26 ridge regression
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Figure 2: The average classification accuracy using 5-fold cross validation on six datasets
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ods. Both of them are equivalent to doing regularized regres-
sion in the regularized LDA subspace. From both theoret-
ical and empirical views, we showed that both LRRR and
SLRR methods provide better learning results than stan-
dard low-rank regression. Extensive experiments have been
conducted on six benchmark datasets to demonstrate that
our proposed low-rank regression methods consistently out-
perform their corresponding full-rank counterparts in terms
of average classification accuracy.
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