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ABSTRACT
Partitioning large graphs is difficult, especially when performed in
the limited models of computation afforded to modern large scale
computing systems. In this work we introduce restreaming graph
partitioning and develop algorithms that scale similarly to stream-
ing partitioning algorithms yet empirically perform as well as fully
offline algorithms. In streaming partitioning, graphs are partitioned
serially in a single pass. Restreaming partitioning is motivated
by scenarios where approximately the same dataset is routinely
streamed, making it possible to transform streaming partitioning
algorithms into an iterative procedure.

This combination of simplicity and powerful performance allows
restreaming algorithms to be easily adapted to efficiently tackle
more challenging partitioning objectives. In particular, we consider
the problem of stratified graph partitioning, where each of many
node attribute strata are balanced simultaneously. As such, strati-
fied partitioning is well suited for the study of network effects on
social networks, where it is desirable to isolate disjoint dense sub-
graphs with representative user demographics. To demonstrate, we
partition a large social network such that each partition exhibits the
same degree distribution in the original graph — a novel achieve-
ment for non-regular graphs.

As part of our results, we also observe a fundamental difference
in the ease with which social graphs are partitioned when com-
pared to web graphs. Namely, the modular structure of web graphs
appears to motivate full offline optimization, whereas the locally
dense structure of social graphs precludes significant gains from
global manipulations.

Categories and Subject Descriptors: G.2.2 [Mathematics of Com-
puting]: Discrete Mathematics—Graph Theory, Graph Algorithms

Keywords: Graph clustering, social networks, balanced partition-
ing, stratified partitioning, multi-constraint balance.

1. INTRODUCTION
The tremendous scale of modern graph datasets has rapidly in-

creased the demand for efficient algorithms for graph analysis. With
the World Wide Web featuring over a trillion URLs and online so-
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cial networks such as Facebook featuring more than a billion active
users, it is becoming increasingly difficult to perform even the sim-
plest graph computations.

The tractability of large-scale graph computations often hinges
upon the ability to efficiently partition a graph for distributed com-
putation. The scale of this partitioning varies depending on the
domain, but the lesson is the same: partitioning massive graphs for
distributed computation can greatly decrease both network commu-
nication and runtime [24], while even in-memory computations can
benefit from partitioned graph arrangements [14].

But partitioning large graphs is difficult, especially within mod-
ern limited models of large-scale computation. Responding to this,
the goal of streaming graph partitioning is to partition the node set
of a graph into k balanced disjoint subsets by serially examining
only individual nodes and their local adjacency list. Importantly,
a streaming graph partition algorithm is forced to make a perma-
nent partition assignment the very first (and only) time it examines
each node, as opposed to allowing the partitioning to come from
post-processing, as in the semi-streaming model of computation
[2]. The motivation for streaming graph partitioning is that often
times the distributed systems performing graph computations are
‘anyways’ required to load a graph from a datastore, and one might
as well execute this loading process – streaming the graph to the
computation system – in an intelligent manner.

We introduce restreaming graph partitioning, which is motivated
by situations where the same graph – or approximately the same
graph – can be expected to be repeatedly streamed on a regular
basis. After all, if a graph is going to be reloaded from a datas-
tore with any regularity, streaming graph partitioning is making it
unnecessarily difficult for itself by starting over from scratch with
each stream. Instead, restreaming graph partitioning retains node
assignments across streams, allowing subsequent streams to pro-
duce partitionings with fewer cut edges.

In fact restreaming can produce partitions of such quality and
with such modest memory requirement that restreaming graph par-
titioning merits serious consideration as an efficient iterative stream-
ing algorithm well outside the motivating ‘data loading’ context.
Surprisingly, we find that after only a handful of restreams, our
restreaming graph partition algorithms converge upon graph parti-
tions competitive with or even superior to a fully offline partitioning
algorithms, METIS [11], in a number of important instances.

In particular, restreaming graph partition algorithms cut fewer
edges than METIS in social graphs, though they cut more edges in
web graphs. Indeed, it is well understood that social graphs and
web graphs are quite different in structure [26, 6]. We posit that
there is also a fundamental difference in the partitioning of web and
social graphs. While the local dense structure of social graphs pre-
cludes very high quality partitionings, it rewards the local greedy
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moves of restreaming graph partitioning. Meanwhile, the fully of-
fline optimization of METIS is able to discover the extremely high
quality partitions of web graphs through multi-level coarsening and
non-greedy Kernighan-Lin refinement [13]. Given the increasing
size and importance of social graphs, it is important to develop new
lightweight algorithms specially designed with these in mind.

Towards this goal, we construct restreaming versions of the stream-
ing partitioning algorithms Linear Deterministic Greedy (LDG) and
FENNEL, algorithms developed in [22] and [23] respectively, both
greedy heuristic approaches to partitioning. Where Linear Deter-
ministic Greedy uses multiplicative weights to guarantee balance,
FENNEL mimics modularity maximization [4, 19] by using regu-
larization to direct a greedy assignment strategy towards balance.
This regularization approach does not itself guarantee balanced par-
titions, and as part of this work, we show how one can ‘temper’
such a regularization over the course of restreams to obtain a re-
streaming variation on FENNEL that can ultimately guarantee bal-
ance in a way that ordinary modularity maximization can not.

Given that restreaming these highly scalable algorithms can bring
them into competition with fully offline methods, we show how
their scalability makes it possible to adapt towards much more so-
phisticated objectives. Indeed, for certain types of distributed graph
computation it can be desirable to obtain more sophisticated no-
tions of balance than just the number of nodes [11]. It is straight
forward to modify any of the streaming and restreaming algorithms
we consider to balance any cumulative node attribute, for example
the total degree of each partition, (or as in [23], the number of in-
ternal edges on each partition).

But beyond simply balancing one attribute, we show that sig-
nificantly more sophisticated notions of balance, similar to multi-
constraint balance from high-performance computing [11], are ob-
tainable. First, we show how the multiplicative weights in LDG can
be modified to balance both node count and edge count at once.
Moreover, we show how restreaming LDG and FENNEL can be
adapted to efficiently perform stratified graph partitioning, a con-
strained graph partitioning problem we introduce that aims not just
to balance nodes across partitions, but also ensure that each parti-
tion of the graph exhibits a balanced proportion of nodes from an
arbitrary number of strata. This offers an important contribution for
the study of social networks, making it possible to create dense bal-
anced clusters, where each cluster contains an equal proportion of
users from several age strata, countries, activity levels, and friend
counts. As an important demonstration, we study degree-stratified
graph partitioning, where each balanced cluster is required to ex-
hibit the same degree distribution.

The social network example above addresses an important prob-
lem in online social network experimentation [8]. In such experi-
ments, one wishes to select treatment and control groups that are
structurally isolated from each other in order to minimize spillover
effects. Without stratified balance constraints, it is natural to par-
tition a social graph either geographically or according to some
other basis of assortativity. As a result, ordinary graph partitioning,
without stratified balance, risks producing graph partitions that are
highly heterogenous, none of the partitions being representative. In
introducing stratified graph partitioning, we hope to contribute a
highly scalable partitioning methodology useful as a stratification
technique for variance reduction in network experimentation [25],
and also cross validation on graphs [18].

Lastly, we discuss parallelization. A notable drawback of single-
shot streaming partitioning is that it is fundamentally serial, mak-
ing parallelization difficult without continuous communication be-
tween parallel workers [23]. These algorithms are specifically in-
tended for partitioning extremely large graphs, and we show how

restreamed graph partitioning can be easily parallelized – commu-
nicating only between stream iterations – at only a small cost in the
final partition quality.

2. STREAMING PARTITIONING
Multi-way graph partitioning is a classical NP-hard problem.

Even the two-way partitioning problem, minimum graph bisection
is NP-hard [9], with the best known polynomial time approxima-
tion algorithmachieving only a O(

p
n log(n))-factor approxima-

tion [7] for general graphs. Similarly, semi-streaming algorithms,
can guarantee weak approximation bounds for graph cuts while
utilizing only O(npolylog(n)) memory [2]. Meanwhile, a robust
community of research has emerged to develop efficient algorithms
that achieve good performance on real world graphs. Among ex-
isting offline algorithms, we focus on the METIS package [11] for
graph partitioning, and use METIS as our running basis for com-
parison when comparing online to offline methods.

In this section, we review streaming graph partitioning and in-
troduce restreaming graph partitioning. We show how FENNEL,
a streaming algorithm previously without balance guarantees, can
be ‘tempered’ to guarantee balance. We then discuss how our re-
streaming framework is capable of both managing dynamic graph
partitioning and efficient parallelization.

2.1 The streaming model
We now review the basic details of the streaming partitioning

model. Let P t

= {P t

1 , . . . , P
t

k

} denote a k-way partitioning of the
node set at time t, where P t

i

is the set of nodes in partition i at time
t and P t

(u) denotes the partition that contains node u. A stream-
ing algorithm is sequentially presented a node u and its neighbors
N(u), and it must assign u to a partition i utilizing no more in-
formation than contained in the current partitioning P t. Over the
course of a stream, the time counter advances by one for each node
it examines.

Since streaming graph partition algorithms make decisions based
on an incomplete but increasing amount of information, the order
in which data is streamed can affect performance, and worst-case
orders can easily undermine the streaming approach [22, 23]. How-
ever, it has generally been observed that presenting the data in ei-
ther a breadth first, depth first, or in a random order does not greatly
alter performance [22, 23]. Of these orders, a random ordering is
the simplest to guarantee in large-scale streaming data scenarios,
and so we restrict our analysis to only consider random node or-
ders for simplicity. When considering restreams later on, we focus
on persistent random orders.

Finding partitions that are strictly balanced, where |P
i

| = |P
j

|
for all i and j, is rarely necessary. As a result, many partitioning al-
gorithms [12, 23] include a ‘slackness’ parameter, explicitly or im-
plicitly allowing deviations from exact balance, often in exchange
for superior cuts. As part of this work, we present algorithms for
exact balance and also modifications for ‘slacked’ balance.

Stanton and Kliot [22] considered a broad range of heuristics
for performing streaming node assignment. Of these heuristics,
the method with the best performance was ‘Linear Deterministic
Greedy’ (LDG), where each node u is assigned to the partition

argmax

i2{1,...,k}
|P t

i

\N(u)|
✓
1� |P t

i

|
C

i

◆
, (1)

where C
i

is the maximum capacity of partition i. Notice that since
this examines each node but once, |P t

i

\ N(u)| will be exactly 0

for many nodes at the start of the stream, and |P t

i

\N(u)| is only
likely to reflect the actual number of neighbors a node shares with
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a partition near the end of the stream. Single shot LDG exhibits
impressive performance despite this handicap. While the original
investigation of LDG was merely heuristic, subsequent work has
shown that an algorithm inspired by LDG is capable of recovering a
planted partitioning from a basic infinite random graph model, and
also that no streaming algorithm can obtain an o(n) approximation
with a worst-case or random stream ordering on an arbitrary graph
[21].

Meanwhile, FENNEL [23], a streaming generalization of modu-
larity maximization, attempts to maximize the following objective
function:

H =

X

u2V

|P t

(u) \N(u)|� ↵
2

kX

i=1

|P t

i

|� . (2)

Notice that when � = 2, the regularization becomes functionally
equivalent to ↵

P
i

�|P t
i |
2

�
, which is equivalent to modularity max-

imization with an Erdős-Rényi baseline with probability ↵. As a
streaming greedy maximization, maximizing this objective func-
tion corresponds to assigning u to the partition that maximizes the
change �Ht

i

(u) = |P t

i

\N(u)|�↵

2 [(|P
t

i

|+1)

��(|P t

i

|)� ]. To first
order, this corresponds to maximizing |P t

i

\N(u)|�↵ �

2 (|P
t

i

|)��1,
where the first order approximation is exact for � = 2. Thus the
FENNEL assignment rule is:

argmax

i2{1,...,k}
|P t

i

\N(u)|� ↵
�
2

(|P t

i

|)��1. (3)

In this work we focus our analysis of FENNEL on the special case
of � = 2, namely streaming modularity maximization.

While the multiplicative weights of LDG enforce exact balance,
the additive regularization used by FENNEL only ensures approx-
imate balance. While it is straightforward to show that this assign-
ment mechanism must produce exact balance for ↵ > dn

k

e, such
a large ↵ focuses almost entirely on balancing and leads to a very
poor partitioning. Nonetheless, when run at appropriately chosen
values of ↵, FENNEL performs very well on a number of real world
networks, producing very nearly balanced partitions [23].

The first phase of many common multiphase modularity maxi-
mization algorithms, including the Louvain method [4] and modularity-
specialized label propagation [16], bear a clear similarity to FEN-
NEL. The connection between regularizing label propagation and
modularity maximization was also outlined by Barber and Clark
[3]. By restreaming FENNEL, we show how modularity maximiza-
tion also fits well within a restreaming framework.

3. RESTREAMING PARTITIONING
For the distribution of very large graphs, the utility of streaming

graph partitioning derives from the routine need to stream graph
datasets, and when performing this streaming it can be worthwhile
to attempt to partition the dataset with some intelligent assignment
mechanism. It is equally routine, however, that the streaming pro-
cess is repeated periodically, and often frequently.

For example, a social networking service might be interested in
a streaming partitioning algorithm because it loads a graph from
memory to dedicated ranking servers on a daily basis [24]. How-
ever, if a streaming algorithm sees nearly the same data routinely,
it is clearly worth considering what information can be retained be-
tween streams so as to improve performance.

We thus introduce the concept of restreaming graph partition-
ing, and in particular we present restreaming versions of LDG and
FENNEL, the two single-shot streaming graph partitioning algo-
rithms presented earlier. In our restreaming framework, subsequent
streams of LDG and FENNEL have access to the result of previous

streams. We consider a graph as being streamed in a random but
persistent order each time it is restreamed, and we use persistent
(de-randomized) tie breaking across restreams.

3.1 Restreaming LDG
In the case of restreaming LDG, P t

i

records the most recent par-
tition assignment, either from the previous stream or, when present,
from the current stream. Additionally, let xt

i

record the number of
nodes assigned to i during the current stream. The assignment rule
for restreaming LDG remains functionally similar to (1),

argmax

i2{1,...,k}
|P t

i

\N(u)|
✓
1� xt

i

C
i

◆
. (4)

Since each xt

i

increases over each stream from 0 to C
i

, the par-
titioning achieves exact balance at the end of each stream. Con-
ceptually, restreaming LDG resembles a repeated shooting method,
where each time the partitions are built up anew, with the benefit
of the probable assignments for nodes not yet seen in the current
stream. Since LDG matches the constraints C

i

after each restream,
it is ideal for applications with hard constraints, otherwise these
hard constraints can be loosened by setting ⌃

i

C
i

> n.

3.2 Restreaming FENNEL
FENNEL can be restreamed without any change to its objective

function. Whereas restreaming LDG rebuilds the partitioning each
time, and thus involves implicit notions of the beginning and end of
a stream, FENNEL’s objective function can be computed without
knowing its location in the stream. On the other hand, this property
of FENNEL prevents it from reaching exact balance after a single
stream. In the restreaming scenario, however, we show that it is
possible to achieve exact balance using FENNEL by ‘tempering’
the solution towards increasingly balanced partitions over repeated
restreams. Namely, with each restream we run FENNEL with a
larger value of parameter ↵, denoting the value of ↵ during stream
s as ↵

s

. In this way tempering increasingly emphasizes balance,
while granting time in the earlier streams to finding high quality
partitions. Alternatively, had FENNEL been run with too high an
initial ↵, the algorithm would have resorted to placing nodes in par-
titions based solely on balance and without regard to the quality of
the partitions. As noted earlier, once each node is reconsidered by
a stream of FENNEL for which ↵

s

> dn

k

e, the assignment mecha-
nism will necessarily return a balanced partition. We formalize this
observation through the following proposition.

PROPOSITION 1. If ↵
s

> dn

k

e then at the completion of re-
stream s, |P t

i

| 2 { bn
k

c, dn

k

e} for all i.
PROOF. Suppose not: then at some time ⌧  t a node u was

assigned to a partition i where |P ⌧

i

| � |P ⌧

j

| � 1 for j being the
smallest partition. Since |P ⌧

i

\N(u)|  |P ⌧

i

|:

�H⌧

i

(u) = |P ⌧

i

\N(u)|� ↵
s

|P ⌧

i

|
 |P ⌧

i

|� ↵
s

|P ⌧

i

|
= �|P ⌧

i

|(↵
s

� 1),

�H⌧

j

(u) = |P ⌧

j

\N(u)|� ↵
s

|P ⌧

j

| � 0� ↵
s

|P ⌧

j

|.

Then:

�H⌧

i

(u)��H⌧

j

(u) = ↵
s

|P ⌧

j

|� |P ⌧

i

|(↵
s

� 1)

 ↵
s

|P ⌧

j

|� (|P ⌧

j

|+ 1)(↵
s

� 1)

= |P ⌧

j

|+ 1� ↵
s

.
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As P ⌧

j

is the smallest partition, |P ⌧

j

|  dn

k

e � 1, meaning that
�H⌧

i

(u)��H⌧

j

(u) < 0 — a contradiction as u would have then
been assigned to partition j.

When the maximum degree d < dn

k

e it can be shown the re-
quirement is relaxed to ↵

s

> d. It’s also clear that if restreaming
FENNEL finds a balanced partition for some ↵ < dn

k

e then further
tempering will not change that partition.

PROPOSITION 2. If at some time t0, P t0+j

= P t0 for all j =

1, . . . , n (one complete stream), |P t0
i

| 2 { bn
k

c, dn

k

e} for all i, and
↵
s+1 � ↵

s

for all s then P t

= P t0 for all t > t0.

PROOF. We prove this by induction. Suppose no node has moved
from time t0 to some t > t0 + n, and node u in partition j is the
next node in the stream at time t + 1. Since no nodes have moved
for time n, |P t+1�n

i

\N(u)| = |P t+1
i

\N(u)| and thus:

�Ht+1
j

��Ht+1�n

j

= �(↵
s+1 � ↵

s

)(|P t+1
j

|� 1),

�Ht+1
i

��Ht+1�n

i

= �(↵
s+1 � ↵

s

)|P t+1
i

| u 62 i.

Since ↵ is increasing and |P t+1
j

� 1|  |P t+1
i

| then �Ht+1
j

�
�Ht+1�n

j

� �Ht+1
i

��Ht+1�n

i

. Thus, as u was assigned to j
at time t + 1 � n, and ties are broken consistently, u will also be
assigned to j at time t+ 1.

As we discuss later, when using tempered FENNEL to partition
real world graphs we observe that the quality of the final partition-
ing is relatively insensitive to the initial value of ↵0. This is a some-
what surprising observation that has the added benefit of removing
the ↵0 selection problem present in single stream FENNEL. Mean-
while, there remains a trade off between computation and perfor-
mance in choosing how fast to temper, though our empirical results
suggest that moderate numbers of restreams are typically sufficient.

3.3 Convergence over restreams
Every node allocation/relocation in FENNEL increases its objec-

tive function. As there are only a finite number of different possi-
ble partitions, FENNEL will converge to a final partitioning at any
fixed ↵ given enough restreams, even if ↵ is not tempered all the
way to the bound established in Proposition 1. But since ↵ is in
theory a continuous parameter, we may be concerned that the so-
lutions differ at exponentially different values of ↵. While it is not
of practical importance — since it is always possible to make large
changes in ↵ when tempering — we establish a resolution limit
of ↵, the granularity below which the partitioning solution can not
change. We show that there are only polynomially many unique
values of ↵ for which any changes in partitioning can occur. We
emphasize that this resolution limit is much finer than the amount
that we choose to increase ↵ by in practice, but this investigation
illustrates important structures of the tempering framework.

PROPOSITION 3. For some ↵
s

> 0, and a partitioning P t,
then for any increasing sequence of L values ↵

s

< ↵
s+1 < . . . <

↵
s+L

 ↵
s

+

1
n

2 on which FENNEL is repeatedly restreamed to
convergence, there is at most one value of ↵

s+`

, 0  `  L, such
that the converged partitioning at ↵

s+`

is different from the con-
verged partitioning at ↵

s+`+1.

PROOF. Suppose there are two distinct pivotal ↵
s+`

, denoted,
↵
a

and ↵
b

> ↵
a

, such that at ↵
a+1 and ↵

b+1 FENNEL con-
verges to a different partition than at ↵

a

and ↵
b

. Let �a
ij

(u) =

|P ta
i

\N(u)|� |P ta
j

\N(u)|, and xa

ij

= |P ta
i

|� |P ta
j

|. It must
then be that there are partitions i, j, p and q and nodes u and v
such that for these different ↵ values, nodes would switch between

partitions implying a change in sign of �Hta
i

(u)��Hta
j

(u) and
of �Htb

p

(v)��Htb
q

(v) giving:

�a
ij

(u)� ↵
a

xa

ij

� 0 �a
ij

(u)� ↵
a+1x

a

ij

< 0

�b
pq

(v)� ↵
b

xb

pq

� 0 �b
pq

(v)� ↵
b+1x

b

pq

< 0.

Notice that it must be that xa

ij

6= 0 and xb

pq

6= 0. Without loss of
generality assume that each xa

ij

> 0 and xb

pq

> 0, then for u or v
to be assigned to i and p respectively, it must be that �a

ij

(u) � 0

and �b
pq

(v) � 0 as well. Thus it can be shown that: (↵
b+1 �

↵
a

)xa

ij

xb

pq

> �b
pq

(v)xa

ij

� �a
ij

(u)xb

pq

> 0. Notice then that c =

�b
pq

(v)xa

ij

� �a
ij

(u)xb

pq

is both positive and an integer, yielding that
↵
b+1 � ↵

a

> c

x

a
ijx

b
pq

> 1
n

2 , a contradiction.

Note that this convergence is in theory incredibly slow. In prac-
tice it is vastly more efficient to increase ↵ in larger steps, and
without waiting for convergence at each value of ↵. Indeed, the
tempering results we present later correspond to increasing ↵ at
an exponential rate, from an initial ↵0 to the critical ↵ for which
FENNEL is guaranteed to be balanced.

When restreaming FENNEL, tempered or untempered, it ulti-
mately converges only to one of many local maxima of its modularity-
like objective function. As discussed in [10], modularity typically
has many high quality local maxima, which is of great practicality
if one merely needs to find high quality partitions, but also of grave
concern when using modularity to discern ‘community structure’,
something we are not attempting.

LDG does not have any of the same convergence guarantees. In-
deed, restreaming LDG does not necessarily converge. Further-
more, should it converge, the resulting partitioning would depend
upon the specific node ordering: if the graph was restreamed in
a different order then nodes would be very likely to move. By
comparison, the convergence of FENNEL and tempered FENNEL
outlined above do not depend on any persistence in the node or-
der. Despite the lack of convergence guarantees, LDG performs
well, returning a balanced set after each restream. This lack of con-
vergence guarantee is also one of LDG’s strengths, enabling it to
handle dynamic graphs very well.

3.4 Dynamic graphs
In real world settings, large empirical graph datasets are typically

not static graphs, but rather they are slowly varying in time, with
their edges sets evolving gradually relative to their immense size. In
such cases, the graph may be expected to change slightly between
streams, and it is important to consider the ability of both restream-
ing algorithms to accommodate dynamic graphs. One advantage of
restreaming LDG is that it doesn’t require any modification: since
LDG rebuilds the graph each stream there aren’t any restrictions on
how the graph changes each time.

On the other hand, restreaming FENNEL is able to accommo-
date dynamic graphs only when ↵ is held fixed in a manner similar
to ordinary single stream FENNEL. When FENNEL is tempered
across restreams, the resulting partitioning becomes increasingly
rigid, unable to adjust to dynamic changes in a graph. In this way,
FENNEL is only appropriate for dynamic graphs in its untempered
form, precluding situations where exact balance is important.

3.5 Parallelization
Despite the simple computations and manageable memory foot-

print involved in LDG and FENNEL, in some settings the sheer
size of the dataset being streamed may make parallelization highly
desirable. Indeed, parallelizing single stream LDG and FENNEL is
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possible, but requires that a list of size O(n) on each parallel thread
is kept concurrent. In contrast, restreaming LDG and FENNEL
can be parallelized without any communication during a stream, in-
stead relying purely on inter-stream communication; thus speeding
the streaming process by a factor equal to the number of machines
used. Namely, for W workers, each of which will see a unique ran-
dom 1

W

fraction of a stream, we parallelize restreaming LDG and
FENNEL in the following way. Each worker partitions their own
n

W

nodes by utilizing the previous streams partitioning for nodes
not in their stream, and the most recent destination of those n

W

nodes in their stream. Between restreams, each worker reports on
their share of the partitioning and this compiled list is distributed to
all workers for the next restream. For the first stream, we can ini-
tialize the partitioning utilizing a hash function applied to the node
indices. Notice that this puts the first stream of LDG and FENNEL
at significant performance disadvantage, but interestingly, this is
largely overcome by additional restream iterations.

Thus these algorithms can be parallelized without communica-
tion for only a small partition quality tradeoff. Note that the paral-
lelized implementation of the offline partitioning package METIS
[12] also requires a similarly small quality tradeoff.

4. GENERALIZED TYPES OF BALANCE
In many situations the true objective function may depend not on

balancing nodes, but on balancing edges, a combination of nodes
and edges or some other more complicated function. In this section,
we show how our restreaming algorithms can be modified to guar-
antee more general types of balance. In particular, we present a new
balancing objective we call stratified graph partitioning, where an
arbitrary number of node strata are each required to be balanced.

4.1 Balancing other quantities
The simplicity and directness of LDG and modularity maximiza-

tion allow for straightforward generalizations. Indeed, notice that
we can modify restreaming LDG’s objective function, Equation 4,
to balance the sum of the degrees of each partition. The object
function can be modified as:

argmax

i2{1,...,k}
|P t

i

\N(u)|
✓
1� xt

i

C
i

◆
, (5)

where xt

i

= ⌃

u2P

t
i
|N(u)| is the sum of the degrees in P t

i

and C
i

is set to be dm

k

e. More generally, xt

i

can be the sum of any posi-
tive node weights c

u

, and each C
i

=

1
k

P
u

c
u

, is simply the total
possible sum split k ways. In this framework c

u

= 1 corresponds
to node balance, c

u

= |N(u)| corresponds to balancing degrees,
and c

u

= 1+

n

2m |N(u)| treats node balance and degree balance as
equally important. Here c

u

can in fact be any arbitrary positive at-
tribute calculated for each u a priori, such as the number of friends
of friends on a social network, or the number of log records each
node produced in the past month.

Note that when running this more general version of LDG, exact
balance of the node attribute is no longer precisely guaranteed due
to granularity. For example, when balancing degree and assigning
a very high degree node late in a stream, that node will invariably
push the sum xt

i

in Equation 8 over the threshold C
i

. Thus LDG
will only balance partitions to within the maximum value of c

u

.
Similarly to LDG, FENNEL can be reinterpreted as a function

on the total weights of each partition, rather than just the number
of nodes. The general assignment rule can then be stated simply as

argmax

i2{1,...,k}
|P t

i

\N(u)|� ↵xt

i

. (6)

The above modifications make it possible to address alternative
notions of balance, which raises the important question of whether
multiple balancing objectives can be obtained simultaneously. For
LDG, we note that it is possible to adjust the multiplicative weights
to attempt to balance multiple objectives simultaneously. Consider
adjusting LDG such that u is assigned to:

argmax

i2{1,...,k}
|P t
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where ȳ

`

is the average value of objective ` on G, ȳt

`,i

is the average
value of ` in P t

i

at time t, y
`,u

is the value of ` at u and f
`

(x) are
positive increasing functions. For example, if the argument of f

`

is (d
i

� 2m
n

)(

2m
n

� d
u

) where d
i

is the average degree of nodes
in P t

i

, and d
u

is the degree of u, then notice that the quantity is
positive if and only if adding u to P t

i

moves the average degree of
P t

i

towards the average degree of the graph. Thus, the strict LDG
multiplicative forcing term forces this assignment rule to exactly
balance nodes, while the second multiplicative forcing term biases
the algorithm towards edge balance. While this algorithm does not
guarantee strict balance on both edges and nodes simultaneously, it
does balance these well empirically.

4.2 Stratified balance
Optimizing against multiple constraints rapidly increases the dif-

ficulty of the partitioning problem. In contrast, we introduce a re-
stricted problem whose goal is to balance the counts of nodes from
several distinct strata. This problem arises when it is important
that each individual partition resembles the demographics of a full
graph. For example, in social network experiments it can be im-
portant that test groups have an equal number of men and women,
or have similar levels of educational attainment. If the network is
assortative under these demographic traits then a good partition-
ing algorithm risks producing slices that are very different demo-
graphically. A particularly interesting instance of this problem is
creating graph partitions that share the same degree distributions
(up to integer divisibility). A node’s degree in the full graph G
is always available to the partitioning algorithm, and it commonly
relates to important demographic node attributes such as age or ge-
ography, making balancing degree distributions a good proxy for
demographic balance.

While in many situations producing miniaturized, representative
partitions is a natural goal, it is quite different from the goal, or out-
put, of many graph partitioning algorithms. For example, spectral
partitioning tends to produce bisections with very different degree
distributions, usually with one dense connected partition containing
nodes of high degree and the other with low degree nodes that were
successively ‘trimmed’ away from the first partition [20]. Colloqui-
ally this tendency of spectral partitioning can be described as par-
titioning a graph into a ‘hairball’ and ‘whiskers’ [15]. For graphs
that have a pronounced core-periphery structure [5], algorithms that
minimize the edge cut of a partition frequently (and rightfully so)
split the graph between the core and the periphery. This results
in a high quality cut between partitions with very different degree
distributions, and typically, very different types of nodes.

Similarly, algorithms that aim to perform community detection
are frequently tested for their ability to take graphs and produce
communities whose nodes are fundamentally different. Indeed,
community detection algorithms frequently demonstrate their ef-
fectiveness by revealing hidden node information utilizing only net-
work information. In this way, community detection algorithms are
frequently calibrated to create the worst possible test groups, and
the partitions that least resemble the graph as a whole.
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In contrast, the goal of stratified graph partitioning is to produce
partitions where a node’s membership in a partition reveals no in-
formation of that node’s strata. We formalize the problem as:

PROBLEM 1 (STRATIFIED GRAPH PARTITIONING). For a graph
G = (V,E), where nodes belong to L disjoint strata V

i

such that
[L

i=1Vi

= V , partition the graph into k disjoint partitions P
j

such that [k

j=1Pj

= V , maximizing the number of uncut edges
1
2

P
u

|P (u) \ N(u)|, subject to the constraints that |P
i

\ V
j

| 
C

ij

for all i, j, and constraints C
ij

.

Setting each C
ij

= d |Vj |
k

e requires that each partition proportion-
ally represent the distribution of the strata in the original graph.

Despite the daunting increase in constraints, it is easy to adjust
both of our simple restreaming algorithms to address this problem.
For LDG this simply requires keeping additional indexing, such
that a node u 2 V

`

is assigned to:

argmax

i2{1,...,k}
|P t

i

\N(u)|
✓
1�

xt

i,`

C
i,`

◆
. (8)

Likewise, one can adjust FENNEL’s additive regularization, Equa-
tion 6, so that when assigning node u 2 V

`

, each x
i

is also depen-
dent on `, becoming x

i,`

.
Stratified graph partitioning has an interesting intersection with

METIS in the high performance computing literature. Namely,
in multi-constraint graph partitioning each node has an associ-
ated weight vector w

u

, and the partitioning aims to balance the
sum of these weights for each partition [12]. The primary aim
of multi-constraint graph partitioning in the context of high per-
formance computing is to enable efficient parallelization of large
computations by dividing meshes into partitions with similar num-
ber of nodes and other attributes that affect either memory or com-
putational requirements. The multi-constraint graph partitioning
approach can apply to the stratified graph partitioning problem as
well: simply consider a vertex of strata j as having weight w

u

[j] =
1 and w

u

[i] = 0 otherwise.
However, the added generality of multi-constraint partitioning

leads the METIS implementation to have a memory footprint of
˜O(m + Ln), as it stores each node’s weight vector in memory.
Meanwhile, the modified restreaming version of LDG requires only
memory ˜O(n+Lk). While in the high performance computing lit-
erature, it may not be necessary to have large L, if the goal is to
match degree distributions it is frequently desirable to have L on
the order of ⇥(

m

n

), at which point L has a large impact on the run-
time of METIS. For example, whereas METIS was able to partition
the LiveJournal graph with 9GB of RAM, when doing 100 degree
strata the memory footprint rises to 23GB. Meanwhile, the mem-
ory footprint of LDG barely changes as the number of strata are
increased.

Finally, there is an important difference in emphasis between
multi-constraint graph partitioning and stratified graph partition-
ing. While multi-constraint graph partitioning can perform strati-
fied graph partitioning, it does so by balancing marginalized traits
and not joint constraints. One must be careful of this distinction lest
one may balance gender and degree by stacking one partition with
high degree women and low degree men, and the other with high
degree men and low degree women. This would not produce slices
with comparable composition. Instead, one should make a Carte-
sian product of the features so that each combination of features
belongs to a distinct strata.

When it is important to do streaming or restreaming multi-constraint
partitioning instead of stratified partitioning, we note that the frame-
work of Equation 7 in Section 4.1 can be adjusted to allow multiple
constraints, though we do not examine this in our results.
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Figure 1: Iterating the restreaming partitioning process for
static LiveJournal and Orkut graphs. The left column reports
results for restreaming LDG, the right column for restream-
ing FENNEL. Dashed lines are METIS. Iteration zero corre-
sponds to single-shot streaming implementations, though note
that FENNEL does not guarantee balance until its final itera-
tion due to ongoing tempering.

5. RESULTS
We now examine the performance of our restreaming partition-

ing algorithms on ten empirical graphs: six social graphs and four
web graphs, listed in Table 1. All our graphs were obtained from
the SNAP repository [1] except for the Orkut graph [17]. Graphs
were made undirected by reciprocating all arcs. Self-loops and
nodes with degree zero were removed in order to aid the inter-
pretability of the fraction of edges cut by a partitioning algorithm.

The densest graph we analyze here was the Orkut graph, with
3.1 million nodes and 117 million edges. The algorithms we dis-
cuss scale effortlessly beyond this size, but we are not able to ana-
lyze graphs larger than this in comparison to METIS — performing
ordinary node balanced graph partitioning on Orkut in METIS al-
ready requires 18 GB of RAM, making larger graphs intractable.
For the Orkut graph our restreaming LDG algorithm utilizes just
200 MB of RAM for the same graph. Since the average degree of
the Orkut graph is 76, this is very nearly the expected factor of 76
times smaller. In order to compare our results to METIS we focus
our analysis on graphs up to this size.

5.1 Node balance results
We begin by discussing our performance for the standard node

balanced partitioning problem. When evaluating single-shot stream-
ing graph partitioning algorithms, it is unclear if the gap in quality
between streaming and offline algorithms should be attributed to
the limitations of the single-shot view of the graph or attributed to
the limited local means of the algorithm. After examining the per-
formance of our restreaming algorithms, it is clear that much of the
gap can be attributed to the limits of the single-shot view, not to a
fundamental limitation of local algorithms.

Both restreaming LDG and tempered FENNEL were effective
on all the graphs. However, in examining our results, it is im-
portant to distinguish between ‘web’ graphs, whose structure de-
rives from the structure of hyperlinks on the internet, and ‘social’
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Graph |V| |E| avg deg LDG reLDG reFENNEL reFENNEL-llel METIS(1.001) METIS(1.03)
wikivote 7115 100762 28.32 0.867 0.775 0.685 0.775 0.822 0.764
astro-ph 18771 198050 21.10 0.623 0.439 0.413 0.438 0.535 0.372
enron 36692 183831 10.02 0.664 0.490 0.471 0.482 0.855 0.411
slashdot 77360 469180 12.12 0.821 0.730 0.673 0.686 0.711 0.693
livejournal 4846609 42851237 17.68 0.561 0.390 0.328 0.351 0.309 0.301
orkut 3072441 117185083 76.28 0.645 0.428 0.421 0.585 0.376 0.353
web-nd 325729 1090108 6.69 0.313 0.128 0.121 0.181 0.036 0.036
web-stanford 281903 1992636 14.13 0.378 0.207 0.176 0.237 0.123 0.114
web-berkstan 685230 6649470 19.41 0.341 0.203 0.188 0.283 0.117 0.111
web-google 875713 8644106 19.74 0.290 0.163 0.160 0.206 0.009 0.008

Table 1: The percentage of edges cut (lower is better) for the basic methods studied in this paper applied to a diverse collection of
graphs partitioned into 40 different partitions. The restreamed methods were run for 10 restreaming iterations while the parallel
versions were split across 30 workers and run for 30 restreaming iterations. METIS(1.03) is run with 3% slack, while METIS(1.001)
is run with slack 0.1% slack. For each graph the best score excluding METIS(1.03) is bolded.

graphs, whose structures represent relationships people create be-
tween each other. Indeed, there are well known differences between
the structure of web and social graphs, both in their degree distri-
bution, effective diameter, their clustering coefficients [26] and in
their compressibility [6]. Social graphs are known to have signif-
icantly higher average local clustering coefficient, indicating that
the structure around individual nodes is far from divisible, while
web graphs are known to compress much better than social graphs.

Consistent with these observations, web graphs have extremely
high quality cuts, as seen in Table 1, with METIS dividing web-
google into 40 partitions cutting fewer than 1% of the edges. In-
deed, the multiple stages of METIS are very well suited to discover-
ing the extremely high quality cuts of such modular graphs. Mean-
while, the highly local nature of the restreaming graphs prevents
them from discovering the same high quality partitioning on web
graphs that METIS is able to find. On the other hand, the dense lo-
cal structure of social graphs coupled with the apparent lack of the
same modular organization inherent in the web is better suited to
the restreaming graphs. As such, all the restreaming algorithms are
competitive with METIS on the social graphs, see Figure 1. In par-
ticular, restreaming FENNEL performs the best of the restreaming
algorithms, out-competing METIS with 0.1% slack on four graphs
and even METIS with 3% slack on two graphs. We emphasize that
restreaming tempered FENNEL is finding exactly balanced parti-
tions and using only O(n) memory.

Furthermore, over the course of iterating restreams, we observe
that both restreaming LDG and FENNEL converge rapidly, and at
times exponentially, as seen in Figure 1. This provides an advanta-
geous tradeoff between computational work and the quality of the
cut. An exponential convergence rate towards the local optima is
consistent with the view that during each streaming pass of the al-
gorithm, nodes are placed permanently in their final position with
independent probability p and in a transient position with probabil-
ity (1 � p). Thus, after r restreams only (1 � p)r edges remain
in a transient assignment. The details of this view are not reflected
in the actual microstructure of any of the resteaming results we
observe, but we believe that this observation provides a helpful in-
tuition for how restreaming algorithms attempt to correct mistakes
from previous iterations.

Note that all the results for FENNEL in this section are for tem-
pered FENNEL, and as such, node balance is only guaranteed at
the end of the final iteration, so the flat performance of tempered
FENNEL over the course of the many iterations in Figure 1 hides
the fact that the algorithm is maintaining the quality of the parti-
tioning while moving towards balance. Indeed, for some graphs, in
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Figure 2: The quality of partitions as a function of the number
of nodes per shard, for the LiveJournal and Orkut graphs. No-
tice how the restreamed algorithms essentially match METIS.

order to achieve balance, restreaming FENNEL must decrease the
quality of the partitioning during the tempering process.

As a last look at node balance, we report the results of parti-
tioning two large graphs, LiveJournal and Orkut, into many many
partitions. In Figure 2 we observe that our restreaming algorithms
match METIS in performance across the full range of partition
counts. In fact, when METIS is run with 0.1% slack and k � 200,
the quality of the partitioning deteriorates rapidly, making it signif-
icantly worse than the quality of LDG and FENNEL. Since tight
slack was not the intended use case for METIS, we report our re-
sults for METIS using 1% slack. Still, we see in Figure 2 that when
Orkut is divided into 4000 partitions (of roughly 1000 nodes each),
the quality decreases markedly. This deterioration in quality does
not occur at 4000 partitions if the slack setting for METIS is further
increased.

5.2 Tempering
The FENNEL algorithm is only able to achieve high quality cuts

with exact balance because restreaming allows for tempering. Fig-
ure 3 displays the effect that the initial choice of ↵0 has when tem-
pering FENNEL over 20 restreams to the critically stable ↵, ↵

c

discussed in Proposition 1. Figure 3 shows that when tempering
FENNEL, the final quality of the ultimate tempered partitioning is
only sensitive to the choice of the initial ↵0 when it is very large,
but almost entirely insensitive to the choice as long as ↵0 is small
enough. Note that during a single stream, the choice of ↵ can
have a very large impact on both the quality of the partition and
the departure from balance, but this importance disappears when
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Figure 3: The effect of varying ↵0 when tempering, where ↵0

is the initial value of ↵ and ↵ is increased to the critical ↵
c

over 20 restreams. For k = 2, 4, 20, 40 shards, we see that for
sufficiently small ↵0 the quality of the edge cut does not depend
much on the initial ↵0 from which the tempering begins.

tempering. Notice also that this observation appears to apply in-
dependently over the number of partitions being sought. This for-
tunately removes some of the parameter complexity inherent in a
single stream of FENNEL while also allowing FENNEL to achieve
exact balance.

5.3 Other types of balance
In Section 4 we developed a range of different balance con-

straints that restreaming partitioning could be adopted towards. Here
we report on the quality of the graph cuts obtained when restream-
ing algorithms are applied towards balance constraints other than
node count. A discussion of stratified graph partitioning follows.

In Figure 4, we observe the differences in edge balance and de-
gree counts when running LWD under different constraints: bal-
ancing nodes, balancing edges, balancing a sum of the two, or bal-
ancing both via the multi-balance multiplicative weights developed
in Section 4.1. When either the degree counts or the node counts are
left unconstrained, the algorithms clearly utilize the unconstrained
flexibility. Thus, in situations where balancing degrees is impor-
tant, using a method designed to balance nodes would be a poor
proxy for the original problem. Indeed, even balancing based on a
linear function of nodes and degree fails to balance both. Alterna-
tively, when LDG (and FENNEL, though the results are not shown)
are altered to handle multiple constraints, they are able to balance
both nodes and degrees for only a small cost in partition quality.
The quality of the partitions is seen in Figure 4. It is clear from
this figure that stronger notions of balance than just node balance
are within reach using simple restreaming algorithms. We now turn
our attention to stratified partitioning.

5.4 Stratified balance results
The primary goal in stratified balance is to produce partitions

representative of the original degree distribution, such that the nodes
of degree d

i

in the original graph are split equally between all the
partitions. As seen in Figure 5, stratified LDG is able to produce
partitions of increasing similarity at a small cost in quality. Since
the strata in Figure 5 correspond to separately balancing separate
contiguous degree strata, stratified graph partitioning requires that
the cumulative degree distributions (CDFs) for all partitions inter-
sect at all strata boundaries. While exactly matching the degree
distributions of a graph would require as many strata as there are
unique degrees, using only 100 strata produces very similar degree
distributions, and even only 10 strata corrects for the majority of
the difference.
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Figure 4: The tradeoffs between node balance and degree bal-
ance when LiveJournal is partitioned into 40 different parti-
tions utilizing several different objectives. We see that stronger
notions of balance cost very little in partition quality.

Increasing the number of constraints reduces the quality of the
partitioning slightly, in a manner similar to multi-constraint METIS.
For a large number of strata, multi-constraint METIS and LDG pro-
duce partitionings of increasingly similar quality, such that by 100

strata on LiveJournal, METIS and LDG produce edge cuts within
1.5% of each other. Meanwhile, multi-constraints trials executed in
METIS required significantly more memory than the corresponding
single constraint trials, while stratified LDG only required mildly
more time and memory than unstratified LDG.

5.5 Parallel results
Finally we consider the results of parallelizing LDG and FEN-

NEL as discussed in Section 3.5. Figure 6 shows the effect of paral-
lelizing LDG and FENNEL on the LiveJournal graph, partitioning
it into 40 different partitions. Note that the first stream of the par-
allelized version cuts a large percentage of the graph’s edges, and
it takes longer for these parallelized versions to approach their final
quality. However, within less than 20 restreams both algorithms,
whether run on 2, 10 and 100 workers, produce partitions of qual-
ity comparable to the single thread versions of LDG and FENNEL
while only requiring that 1

2 , 1
10 and 1

100 of the graph be streamed to
each worker respectively. Thus, for a small price in partition quality
and an increase in the number of restreams, LDG and FENNEL can
be effectively parallelized to many machines. The poor partition
quality after the first stream shows that this parallelization strategy
can not be applied to single shot streaming partitioning, and that
restreaming plays an important role in enabling parallelization.

6. CONCLUSION
Given the enormous sizes of social and web graphs it is increas-

ingly important to carefully navigate the fundamental tradeoff be-
tween the quality of a graph partition and the memory and compu-
tational requirements to compute it. To address this tradeoff, we in-
troduce the problem of restreaming graph partitioning and develop
two algorithms that iteratively partition graphs using only the same
O(n) memory required in single pass streaming graph partition-
ing. Surprisingly, our results demonstrate that these restreaming
algorithms are able to close much of the distance between stream-
ing graph partition algorithms and full offline graph partitioning
optimization suites—at times even outperforming them. The com-
petitiveness of these streaming graph partitions is particularly no-
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Figure 5: The resulting degree distribution for 4 partitions (colored differently) of LiveJournal from restreaming stratified LDG
where portions of the degree distribution are explicitly balanced across 1, 2, 10 and 100 different stratified strata. As the number of
strata increases the degree distributions become increasingly similar, though at a small cost in the quality of the edge cut.
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Figure 6: The percentage of edges cut for parallelized versions
of FENNEL and LDG when partitioning LiveJournal into 40
partitions while parallelized across 2, 10 and 100 machines. No-
tice that while there is a small cost associated with increasing
the number of machines, it is small compared to the gains of
restreaming.

ticeable on social graphs. Furthermore, while restreaming graph
partitioning preserves the same small memory footprint as single
shot streaming algorithms, restreaming allows for true paralleliza-
tion, with communication between workers only between streams.

The simplicity and effectiveness of these algorithms allows for
their easy modification to a number of more complex objectives. In
particular we introduce the problem of stratified graph partitioning
as a way of creating partitionings where the composition of each
partition resembles the composition of the graph as a whole. De-
spite the significant increase in constraints in stratified graph par-
titioning, simple modifications to a restreaming algorithm allows
for the partitioning of a large social graph such that each parti-
tion has the same degree distribution. This particular application
addresses a fundamental question in the design of test groups on
social graphs.
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