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ABSTRACT
Spontaneous devaluation in preferences is ubiquitous, where
yesterday’s hit is today’s affliction. Despite technological
advances facilitating access to a wide range of media com-
modities, finding engaging content is a major enterprise with
few principled solutions. Systems tracking spontaneous de-
valuation in user preferences can allow prediction of the on-
set of boredom in users potentially catering to their changed
needs. In this work, we study the music listening histories
of Last.fm users focusing on the changes in their preferences
based on their choices for different artists at different points
in time. A hazard function, commonly used in statistics
for survival analysis, is used to capture the rate at which
a user returns to an artist as a function of exposure to the
artist. The analysis provides the first evidence of sponta-
neous devaluation in preferences of music listeners. Better
understanding of the temporal dynamics of this phenomenon
can inform solutions to the similarity-diversity dilemma of
recommender systems.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Applications

General Terms
Human Factors
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1. INTRODUCTION
Recommendation systems have become a popular means

of suggesting relevant content to the user. Methods in rec-
ommendations have focused on constructing estimates of
user preferences based on their history of choices. These
preference estimates are then used to suggest new content
to the user using content-based or collaborative methods.
Content-based methods use a user’s preference estimates to
find similar content, while collaborative methods use a user’s
preference estimates to identify similar users (neighborhood)
and recommend content popular in the identified neighbor-
hood. But, it’s not sufficient for a recommender agent to
only estimate a user’s past preferences; it’s also important
to predict their future preferences given past experiences.
This makes the task of a recommender even more challeng-
ing by requiring it to predict when and how a user’s pref-
erences will change in the future. The recommendations
community, however, lacks models which can predict chang-
ing preferences of users and doing so is generally accepted
as a hard problem. On the other hand, user’s recent choices
have been found to be a good predictor of their future be-
havior. Efforts in modeling temporal recommendations have
exploited this aspect of user choices by designing recommen-
dation systems which systematically emphasize recency with
good results. The critical shortcoming of this formulation
is that such a system merely reacts to preference changes
rather than trying to predict them.

While little work has been done on predicting changes in
user preferences in the recommendation literature, psychol-
ogists and behaviorists have long studied the dynamics of
individual preferences. Several theories have been proposed
to explain why individuals seek out new content (novelty
seeking, exploratory and information seeking behavior) [2].
Other studies talk about individuals making choices to ac-
tively seek an optimal level of stimulation in their environ-
ment [21]. The theory of flow [20] suggests that an envi-
ronment which provides an optimal level of challenge for a
given level of skill leads to a desirable state of flow. Despite
such theoretical developments, it has been difficult to op-
erationalize these aspects of individual choices to solve real
world problems. However, modeling properties of individ-
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ual behavior is critical for advancing designs of automated
agents which interact with individuals on a daily basis.

In this work, we study one aspect of dynamic individual
preferences. Individuals are often found to develop disinter-
est and even dislike for their dearly preferred content both
temporarily and lastingly. It’s common to find that one’s
clothes, food, entertainment, jobs etc. have grown boring de-
spite being enjoyable in the past. We call this phenomenon a
spontaneous devaluation of one’s preferences or boredom for
a stimulus. Spontaneous devaluation is seen to arise when
repeated exposure to a stimulus creates a feeling of satia-
tion towards it leading to a loss in interest [7]. Alternatively,
spontaneous devaluation has been linked to lost opportunity
for novel experiences when similar experiences are repeated
too often [18]. Both theories concur in suggesting that, in
contrast to recency-based expectations, repeated exposure to
familiar choices spontaneously devalues one’s preference for
them.

Human behavior driven by these dynamics could be mod-
eled as systematically alternating between one’s set of choices,
assuming that the time spent in experiencing other stimuli
is sufficient to mitigate the effects of boredom for a par-
ticular stimulus. Several studies on user purchase behavior
have found buyers to alternate among their preferred alter-
natives [11, 18, 9] etc. However, in practice users have a
non-uniform liking for different alternatives in their choice
space. Furthermore, users have a pronounced tendency to
stick to their recent choices [11] which has been responsi-
ble for the success of the previously proposed recommender
models. We call this behavior the ‘sticky’ behavior in users.
This phenomenon has also been called reinforcement or in-
ertial behavior. Such behavior can be explained to arise due
to an actual increase in liking on exposure [9] or a tendency
to avoid switching costs.

The presence of both stickiness and devaluation effects
in user preferences make predicting the temporal choices of
a user non-trivial. In this paper, we analyze user music lis-
tening behavior to extract signals of stickiness and boredom.
Our analysis is limited to the music domain due to availabil-
ity of public datasets, nevertheless, we expect our results to
generalize to other items like movies, videos, books, vacation
packages, shopping etc. which are fairly susceptible to bore-
dom effects. We demonstrate the use of hazard functions
for measuring these phenomena. Our work provides the first
proof of spontaneous devaluation in music listening prefer-
ences of users and its impact on user choices. This work
can inform design of future methods that incorporate these
dynamics, producing agents that can cater to new needs of
users suffering from boredom.

The rest of the paper is organized as follows: Section 2
provides a summary of the related work. Section 3 gives
an overview of the dataset and pre-processing details. Sec-
tion 4 lays out terminology relevant to our analysis. Sec-
tion 5 provides details of our methodology. Our results are
summarized in Section 6. We end with a discussion of the
contributions of this work and possible future extensions in
Section 7.

2. RELATED WORK

2.1 Dynamic Preferences
Stimulus satiation was initially used by researchers to ex-

plain spontaneous alternation in rats [7]. Rats were placed

in a T-shaped maze and provided an unlimited supply of
food at the left and the right corners of the maze at equal
distances. The experiment was set up such that that the rat
had to return to the starting point before each trial. It was
seen that rats chose to alternate between the left and the
right ends on repeated trials. Glanzer [10] suggested that
such a behavior arose due to stimulus satiation such that
each time the organism was exposed to the stimulus, sati-
ation for the stimulus increased causing the rat to switch
directions. Further, satiation for the stimulus diminished
when the organism could no longer perceive the stimulus
and the rat returned back to the same direction.
Researchers have found individuals to engage in more com-
plex forms of variety seeking behavior while making choices.
McAlister proposed a taxonomy of factors responsible for
varied behavior in individuals [18]. These were classified
into two categories based on whether they arose due to ex-
ternal factors (such as unavailability of a product, launch of
new products etc.) or due to internal motivations. When
arising out of internal motivations, variety seeing behavior
was suggested to manifest in two forms; a desire for unfamil-
iar alternatives or a desire to alternate among familiar al-
ternatives. The former was linked to individuals seeking an
optimal level of stimulation [2, 21], while, the latter was seen
as a weak form of exploratory behavior. It was also linked to
devaluation in preferences due to satiation. A single peaked
preference function was proposed to characterize the attrac-
tiveness of a stimulus on repeated exposure [6]. McAlister
also proposed a dynamic attribute satiation model [17] which
assumed an ideal level of inventory for different attributes
of the items. The inventory was designed to dwindle over
time to incorporate the effects of forgetting.
Researchers have subsequently focused on modeling the choice
probabilities of consumers directly given their past choices.
Consumers were found to exhibit either a short term loy-
alty for their last purchased brand (inertia) or devaluation
for the last purchased brand (variety seeking) [11, 9]. Kahn
[12] compared seven models for user choice behavior with
similar results. Bawa et al [1] used a single peaked func-
tion, to model the conditional probability of repeat purchase
given the number of times the brand was re-purchased since
user’s last switch (run length). Chintagunta [5] used hazard
rates to model the level of inertia and variety seeking as a
function of time between purchases. Recent efforts have ex-
panded these models to incorporate heterogeneities between
consumers and external environment variables affecting user
choices [13].
Most of the research in this area, however, has been limited
to panel datasets and analysis of user surveys and question-
naires. In this work we have adopted a data driven approach
to elicit changes in user preferences towards a stimulus as a
function of their past exposure to it. Our efforts do not look
at variety seeking or inertial behavior in users in general,
but at changes in choice probabilities with respect to partic-
ular stimulus, grounding ourselves in psychological theories
of boredom and novelty seeking, which provides a causal
explanation for the existence of these patterns.

2.2 Recommender Systems
State-of-the-art methods in recommender systems have

assumed a static view of human preferences. Ding et al. [8]
showed that the static view of user preferences used while
generating recommendations was flawed as it did not take
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changing user interests into account. They used a decay
function to gradually devalue the impact of a user’s past his-
tory while making prediction of his future likings. Recently,
a temporal model of recommendation was developed [15,
14] which was an important part of the solution to the KDD
Cup on Yahoo Music dataset and the Netflix challenge. The
model incorporated several time-sensitive user and item bi-
ases in the standard factor model. Gradual changes in user
preferences over time were captured using a linear function.
Their model showed that modeling temporal dynamics in
user choices was essential for improving the performance
of the recommender. Sahoo [22] has proposed a dynamic
model of blog reading behavior in employees. He used a Hid-
den Markov Model to predict future interests of employees
based on their previous choices. However, user transitions
are assumed to be driven by a static transition matrix. At
present, the recommendation community lacks models that
predict changes in user preferences.

Also related to our work are methods to introduce di-
versity and novelty in recommendations. Lathia et al. [16]
showed that popular recommendations methods such as kNN
and SVD produced recommendations which were very sim-
ilar (low in temporal diversity) on iterated train-test exper-
iments on temporally ordered data. Many methods that
systematically introduce diversity in the recommendations
have been proposed [19, 23, 24, 3]. However, these meth-
ods focus on jointly optimizing both similarity and diversity
indices described on the space of items being recommended
rather than predicting changes in user preferences.

3. DATA
Our analysis is based on complete temporal music listen-

ing histories of users provided by Last.fm. Last.fm is a pop-
ular music website with millions of active users. It allows
users to purchase tracks, listen to online radios and playlists
etc. and has additional social networking features as well.
Recently, Last.fm made available a dataset of complete mu-
sic listening histories of around 1000 users as recorded till
May 2009 [4]. This is the only publicly available dataset,
to our knowledge, to provide complete temporal records of
user choices. Because Last.fm hosts several online radios,
it is quite probable that parts of the user histories capture
radios, and playlists rather than active user choices. We
filtered these effects by using the time gap between two con-
secutive tracks played by the user. Last.fm has a generous
list of API’s available to developers. The API, track.getInfo,
was used to retrieve the duration of most of the songs in our
dataset. We compared the time gap between song 1 and song
2 in that temporal order in the user history with the length
of song 1. If the time gap was found to be more than the
length of song 1 by less than 5 seconds, song 2 was identified
to belong to an automated play list. All tracks ‘not on auto-
play ’ were assumed to be active user choices. We could not
remove auto-play effects for the songs whose lengths were
unavailable through the API. This corresponded to 0.05% of
the songs. We only considered the first 1 year of each user
history in our analysis. All the users which had less than 30
records of activity were eliminated from the dataset. Also,
we only kept those artists in the user history which the user
had listened to 15 or more times in that period of 1 year.
We summarize some important statistics about the dataset
in Table 1.

Property Value
# unique tracks 1,084,872
# unique artists 174,091
# Users 957
Mean history length -
# songs heard

6716

Mean history length -
# active days

177

Mean # unique artists
heard

37

Table 1: Statistics from the Last.fm dataset

4. TERMINOLOGY
Based on both the novelty-seeking and stimulus satiation

theories of devaluation of preferences, repeated exposure to
a stimulus causes devaluation in one’s preferences towards
it. Additionally, devalued preferences can get reinstated af-
ter a period of reduced or no exposure. A music piece can
stimulate the listeners because of the combined effect of its
multiple features (artist, genre, tempo, strong female vocals,
etc.). For simplicity and ease of access, we use the artist of
the songs as our basic stimulus. More sophisticated stimu-
lus definitions that model the interaction between multiple
features of a song can enhance our method.

Preferences have been linked to choice probabilities in the
past. It is only a logical extension to relate changes in pref-
erences to changes in choice probabilities, and in our case
conditional choice probabilities. We suspect that the phe-
nomenon of devaluation produces two different patterns in
the choice probabilities of users for an artist.

Hypothesis 1: The probability that a user will listen
to an artist again will decrease after he has listened to the
artist some number of times. When this happens, we say
that the user’s preferences for the artist have devalued.

Hypothesis 2: Devalued preferences can get reinstated
after a sufficient period of non/reduced exposure to the artist.

Through our experiments, we look for signals suggestive of
spontaneous devaluation in choices probabilities of Last.fm
users. By doing so, we establish a methodology for detecting
this phenomenon and analyzing its properties.

We consider the state of the user at some time t to be
defined by the artist of the song the user was listening to at
that time. The temporal history of the user comprises the
sequence of states visited by him as a function of time; i.e.
Hu(t) = sa if user u was listening to artist a at time t.
User u is said to enter a state a at time t if Hu(t) = sa and
Hu(t− 1) 6= sa. A user u is said to exit a state a at time t
if Hu(t) 6= sa and Hu(t− 1) = sa. We can now define the
following conditional choice probabilities:

1. Conditional probability of exit: This is the con-
ditional probability of a user u exiting state a at time
t given that he last entered state a at time t − r and
has not exited state a yet. Formally, the probability is
equal to P (Hu(t) = sa|Hu(t − 1) = sa, . . . , H

u(t −
r) = sa, H

u(t− r− 1) 6= sa). Here, r is the time spent
listening to the artist and corresponds to the idea of a
run length in Bawa’s model [1]. We make the simplify-
ing assumption that this probability depends only on
r. Hence, we can also represent the conditional prob-
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ability of exiting state a by user u when time spent in
state is r as Pua(exit|time spent in state a = r).

2. Conditional probability of entry: This is the con-
ditional probability of user u entering a state a at time
t given that the user last exited state a at time t−(o+
1). Formally, this corresponds to P (Hu(t) = sa|Hu(t−
1) 6= sa, . . . , H

u(t−o) 6= sa, H
u(t−o−1) = sa). Here,

o is the time spent not listening to the artist a. Again,
for simplicity, we assume that this probability depends
only on o. We later relax this assumption with interest-
ing effects, described in Section 6.3. Thus, this proba-
bility can also be represented as the conditional proba-
bility of entering state a after having exited it o units of
time ago or Pua(entry|time spent out of state a = o).

The definition of time has been kept ambiguous in the defi-
nitions above. We now define it more formally. Time can be
defined in terms of the order in which songs are heard by the
user such that Hu(t) refers to the t-th song heard by user
u. Such a definition, however, does not take the actual time
gap between consecutive listenings into account. It is impor-
tant to consider the actual time gap between user choices.
This is because a user satiated with an artist can get unsa-
tiated both by listening to other artists or due to forgetting
if he returns to the system after a long time. To analyze the
impact of actual clock time on the satiation level, we define
time in terms of days since the first historical record of the
user. Accordingly, Hu(t) refers to the state of the user on
t-th day since day 1. For simplicity, the state of the user on
a day is defined by the artist listened to most frequently by
him on that day.

5. METHODOLOGY
Survival Analysis is a statistical method commonly used

for modeling time-to-event data. The purpose of this kind
of analysis is to model the probability of survival (where
the occurrence of the event corresponds to death) beyond
a certain point in time. For simplicity, we use a discrete
measures of time t ∈ N. The survivor function at time t is
defined as:

S(t) = P (T > t) (1)

Where, T is a random variable denoting the time of death.
The instantaneous rate of occurrence of the event at time
t, conditioned on having survived up to time t, is captured
using the hazard function. The hazard function is also called
the conditional failure rate and is defined as:

λ(t) = lim
∆t→0|

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

= −S′(t)/S(t) (2)

We use the hazard rate function to compute the exit and en-
try conditional probabilities defined in the previous section.
We set ∆t = 1. This allows us to use the terms hazard
rate and conditional probability of death interchangeably.
We can construct the two different hazard curves based on
how we define our events.

1. Exit Hazard Rate: Here, we measure time from the
point when a user u entered a state a. The event cor-
responds to his ‘exit’ from the state. The random vari-
able Tuaexit denotes the time of exit or death. This haz-
ard rate captures the conditional probability of exiting
the state at time t+ 1 having survived in the state for
time t or greater; λuaexit(t) = Pua(Tuaexit = t|Tuaexit ≥ t).

2. Entry Hazard Rate: Here, we measure time from
the point when a user u exited a state a. The event
corresponds to his ‘entry’ back into the state. The ran-
dom variable Tuaentry denotes the time of entry or death.
This hazard rate captures the conditional probability
of entering a state at time t having survived outside
the state for time t or greater;
λuaentry(t) = Pua(Tuaentry = t|Tuaentry ≥ t).

An exit and entry hazard rate can be defined for each artist
a user listens to. For our analysis, we pool across the differ-
ent users and the artist choices to compute an average exit
and entry hazard rate for the entire dataset. We normalize
the time of entry and exit variables to mitigate the effects
of differences in a user’s preferences for different artists and
differences across users. The time of event variable is log
transformed as well as it becomes harder to exactly predict
the time of an event as time for which the event has not
happened increases. In other words, this means that if a
user has not returned to an artist in a month, its more dif-
ficult to predict the exact day of his return, than, when he
has has not returned to the artist for a day. The log trans-
form accommodates this non-linearity in the predictability
of return time.

TN
i =

log2(Tuai )

log2( 1
Pu(a))

(3)

for a user u and artist a and i ∈ {‘entry′, ‘exit′}. Pu(a) is
the prior probability of user u being in state a.

Pu(a) =
Nu(a)

Lu
(4)

where, Nu(a) is the number of times user u was in state a
and Lu is the length of user u’s history. The average hazard
rates for the normalized time of event variable can then be
computed across users and artists:

λi(t) = P (TN
i = t/TN

i ≥ t) (5)

We discretize t into intervals (0, 0.1], (0.1, 0.2] and so on.
The hypothesis presented by us in section 4 can now be
represented using the hazard rates.

1. Hypothesis 1 The exit hazard rate for an artist should
be an increasing function of time. This indicates that a
user’s preferences for an artist decrease with increased
exposure to the artist.

2. Hypothesis 2 The entry hazard rate for an artist
should be an increasing function of time. This indi-
cates that user preferences for the artist are reinstated
after sufficient time gap.

The sticky or inertial view of user choices, on the other hand,
suggest that a user’s probability of visiting a state would in-
crease on having visited it. Contrary to the devaluation hy-
pothesis, the conditional probability of visiting a state again
would increase as time spent in the state increases. This im-
plies that the exit hazard rate for an artist is a decreasing
function of time for sticky users. The entry hazard rate,
would also be a decreasing function of time as a user would
be less likely to visit a state which they has not visited for
long periods of time.

A common analysis methodology is to compare the hazard
rate of interest in an analysis with that generated from a
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(a) Expected hazard rate for a sticky and boredom-prone user (b) Expected hazard rates for the baseline models

(c) Expected ∆ Hazard Rates for sticky users (d) Expected ∆ Hazard Rates for boredom-prone users

Figure 1: Figure (a) and (b) depicts the expected hazard rates for sticky and boredom-prone users and the
baseline models. Both the entry and exit hazard rates should decrease with time for sticky users and increase
with time for uses susceptible to boredom. Figure (c) and (d) shows the expected ∆ hazard rates computed
against each baseline model for sticky and boredom-prone users.

control experiment. This is done to remove the effects of
covariates not being considered in the analysis. We define
four baseline models to serve as controls. We constructed
listening sequences by simulating user histories using each
of the baseline models for every user. The user histories
were simulated by sampling randomly from the temporal
preference vector (Pref) generated by each of the model. In
order to make the baseline models as close to the real data
as possible, the parameters of the models were fitted to the
actual user histories.

1. Random (R) The user is assumed to sample states
randomly from his average preference vector (Pu).
Prefu(t) = Pu

2. 1st order Markov (M1) A user’s switching proba-
bility from one state to the other is assumed to be con-

trolled by a 1st order Markov model. The dynamics of
the Markov model are controlled by a static transition
matrix (Tu) which is learnt for each user u’s history
using maximum likelihood estimation. Prefu(t) =
Prefu(t− 1) ∗ Tu

3. Time weighted (TW) We use a recency based model
for generating user histories. Prefu(t) = αu∗Prefu(t−
1) + cu(t− 1), where, cu(t− 1) is 1 ∗ |A| choice vector,
which is set to 1 at index i if Hu(t− 1) = si, and is 0
otherwise. The parameter αu is a |A|*1 vector which
was fit to the user u’s history using stochastic gradient
descent. We introduced a small exploratory compo-
nent to this model to prevent extremely long lengths of
continuous listening of the same artist. Therefore, our
modified preference vector is computed as Pref ′u(t) =
0.95 ∗ Prefu(t) + 0.05 ∗ Pu
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4. Linearly increasing or decreasing (L) We used the
temporal model of user preference used by Koren [14].

Prefu(t) = Pu + sign(t − Lu/2) ∗ (t − L/2)β
u

. The
parameter βu is a |A|*1 vector and was fitted to the
user u’s history using stochastic gradient descent.

The Log-Rank test can be used to test whether the survival
distributions generated by the simulated models are suffi-
ciently different from that of the real data. The hypothesis
test is defined as:

Ho: The real data and the simulated data have different
survivor function

Ha: The real data and the simulated data have the same
survivor function

The Log-Rank test on the real and the simulated survival
functions rejects the null hypothesis with a p-value < 10−6.
The discrepancy between the real data and the baseline
model predictions can be quantified using a ∆ hazard rate
obtained by subtracting the simulated hazard rates from the
hazard rates computed on real data.

λ∆(t) = − S′real(t)

Sreal(t)
− − S′(simulated)(t)

S(simulated)(t)
(6)

We generate four ∆ hazard rates for both the entry and
exit time events for our analysis, namely real vs. random
(λA−Ri ) , real vs. Markov (λA−M1

i ), real vs. time weighted
(λA−TWi ) and real vs. linear (λA−Li ), where i ∈ {‘entry′, ‘exit′}.

We display the entry and exit hazard rates expected for
the event times obtained from the ‘sticky’ and ‘boredom-
prone’ models and those expected from the baseline models
in Figure 1. The entry and the exit hazard rates for a ran-
dom, markovian and linear model should be independent of
time spent in the state. A TW model on the other hand, is
essentially a sticky model. Hence, the exit and entry hazard
rates for TW model would decrease with time. The objec-
tive of this study is to understand the form of the exit and
entry hazard rates for the real data. Figure 1 displays the
expected ∆ hazard rates if the real data follows the sticky
and the boredom-prone model, respectively.

6. RESULTS
In this section we examine the obtained ∆ exit and ∆

entry hazard rates in close detail.

6.1 ∆ Exit Hazard Rates
Figure 2 displays the survivor functions for the exit time

for the real data and data generated by each simulated
model. It also depicts the obtained ∆ exit hazard rates.
The changes in λA−Rexit , λA−M1

exit and λA−Lexit , directly represent

changes in the λexit for the real data. Changes in λA−TWexit

would depict changes in the exit hazard rate for real data
against a decreasing baseline.

1. Real Vs.Random, Markov and Linear models: The
λA−Rexit and λA−M1

exit are negative throughout suggesting
that the exit rate for the real data is lower than that
expected for the baseline models. This supports the
sticky view of user preferences suggesting that a user
has a lower rate of exiting a state after having vis-
ited it. However, contrary to what is expected for the
sticky model, the ∆ exit hazard rate increases with

time after a point. We expect the ∆ hazard rate to
eventually flatten out, becoming uninformative. The
survival function for R, M1 and L models drops sharply
indicating a lower probability for large sequences than
those observed in the real data. The L model has the
sharpest drop in survival probability, such that we did
not enough samples of exit times greater than 0.1.

2. Real vs. Time-Weighted model: λA−TWexit is negative
for low values of t, suggesting larger stickiness in users
than generated by the TW model. However, the ∆ exit
rate increases thereafter, becoming positive after some
time. Since, the exit hazard rate for the TW model is
expected to decrease with time, this suggests that the
exit hazard rate for real data increases more than the
decrease observed in the TW model.

From these observations we can conclude that users have
high stickiness towards the state on entering the state. How-
ever, the stickiness for a state reduces with time and the dy-
namics driven by boredom start dominating as time spent
in the state increases. A user is thus likely to stick to his
previous state at a higher rate initially and a decreased rate
as time in the state increases.

6.2 ∆ Entry Hazard Rates
Figure 3 displays the survivor functions computed for the

entry time variable for real and simulated data and the ob-
tained ∆ entry hazard rates. Similar to the ∆ exit hazard
rates, the changes in λA−Rentry , λA−M1

entry and λA−Lentry functions
would depict changes in the entry hazard rate for the actual
data. The TW model is expected to have a declining entry
hazard rate, being a sticky model. The changes in λA−TWentry

should reflect changes in the entry hazard rate for the real
data against a decreasing baseline.

1. Real Vs.Random, Markov and Linear models: The
λA−Rentry , λA−M1

entry and λA−Lentry functions are positive ini-
tially suggesting that the users have a higher rate of
entry than that expected from the baseline models.
This again can be attributed to the sticky nature of
user choices, such that users have a high rate of return-
ing to the artists they had listened to recently. The ∆
hazard rates decrease for intermediate values of t sug-
gesting a prominent devaluation in preferences. The
∆ hazard rates eventually increase for larger values of
t. However, they do not cross the 0-line again suggest-
ing that a user always has a lower rate of return than
that generated by the baseline models. This can be
attributed to phasing out of an artist who is not being
actively sampled.

2. Real vs. Time-Weighted model: The λA−TWentry function
is slightly negative at the beginning suggesting that the
actual entry hazard rate is lower than that of a TW
model. Our TW model is seen to pull back users which
have just left an artist at a higher rate than observed
in real data. The hazard rate increases thereafter in-
dicating the actual data seems to have a larger rate of
return than that of the TW model.

The analysis on the ∆ entry hazard rates reveals aspects
of sticky behavior in users which produces quick switches
in and out of the artist. Also, we find indicators of deval-
ued preference for intermediate values of time spent out of
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(a) Kaplan-Meier survival functions and 95% confidence interval (b) Nelson-Aalen ∆ exit hazard functions

Figure 2: The figure illustrates the survival and the hazard functions computed for the exit time variable. The

negative ∆ exit rates for low values of t are indicative of sticky behavior, while the increase in ∆ exit hazard rate

indicate a devaluation in preference.

(a) Kaplan-Meier survival functions and 95% confidence interval b) Nelson-Aalen ∆ exit hazard functions

Figure 3: This figure illustrates the survival and the hazard functions computed for the entry time variable. The ∆

hazard rates are positive for all the model for low values of t which is indicative of sticky behavior. A decline in the ∆

entry hazard rates corresponding to the R, M1 and L models for intermediate values of t indicate that the preferences

were temporally devalued. The increase in the ∆ entry hazard rates corresponding to all the models for larger values

of t suggest that preferences were reinstated

the state. Preferences are reinstated after longer periods of
time spent away from the artist, however, the rate of return
eventually flattens out becoming uninformative.

6.3 Previous Return Time
In our previous analyses, we found evidence suggesting

that users quickly switch in and out of an artist in a short
span of time. Such a characteristic of user temporal choices
suggest that a user’s level of exposure to an artist is not com-
pletely defined by the ‘in time’. A user who has just switched
out of the artist and has switched back in almost immedi-
ately after, somewhat continues to be in state a. Therefore,
we suspect that the previous return time (PRT) TN,Pentry also
indicates how much a user has been exposed to the artist
recently. A low PRT indicates higher exposure to the artist
than a larger PRT. A corollary to hypothesis 1 in terms of
the TN,Pentry for the artist follows:

Corollary 1’ The probability that a user listens to an
artist again will depend on his PRT to the artist. We suspect
that of if the user has returned to the artist quite quickly

previously, he will have a lower rate of returning quickly to
the artist in the future.

In order to test this hypothesis we generate two condi-
tional entry hazard rates.

1. λLPentry Entry Hazard Rate given a low PRT, TN,Pentry < 1

2. λHPentry Entry Hazard Rate given a high PRT, 1 < TN,Pentry <
1.5

We compute the ∆ hazard rate for the two conditional entry
hazard rates.

λLP-HP
entry = λLPentry − λHPentry (7)

λLP-HP
entry function is computed for the real data and data sim-

ulated using a Markov model. The simulated data serves
as a comparison. Figure 4 displays the obtained λLP-HP

entry

functions and the survival functions for λLP
entry and λLP

entry for
the real data and simulated data. The log rank test is re-
jected with a p-value of less than 10−4 on the conditional
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(a) Kaplan-Meier survival functions (real data) (b) Kaplan-Meier survival functions (M1-Model)

(c) Nelson-Aalen ∆ exit hazard functions (real data) (d) Nelson-Aalen ∆ exit hazard functions (M1-Model)

Figure 4: This figure illustrates the survival and the hazard functions computed for the entry time variable conditioned

on the PRT. The conditioned survival function for the simulated data are coincident but vary significantly for the real

data. The positive values of the ∆ hazard function λLP−HPentry for low values of t indicate an increased stickiness when

conditioned on lower values of PRT. The negative values of the ∆ hazard function for larger values of t are indicative

of increased boredom effects when conditioned on lower values of PRT.

survival functions of the simulated and the real data. How-
ever λLP-HP

entry varies by very small amounts. On the contrary,

λLP-HP
entry on the real data varies in an interesting way. We

see that λLP-HP
entry is highly positive initially, which indicates

increased stickiness when PRT is low. However, λLP-HP
entry de-

creases and becomes negative eventually which indicates a
lower rate of return for larger values of t when PRT is low
than when PRT is high. Hence, once a user is out of the
state he has a lower rate of returning back to the state when
previous return time is low than rate of return for a user-
artist pair for whom previous return time was high.

7. DISCUSSION
In this work we have outlined a methodology for analyz-

ing music listening histories of Last.fm users for studying the
phenomenon of spontaneous devaluation in user preferences
or boredom. We constructed hypothesis about boredom-
prone behavior in Last.fm users and tested them through
experiments on real and simulated data. Exploratory anal-
ysis of dynamic hazard rates computed on both the real and
simulated data suggest that real data has strong evidence
of spontaneous devaluation of preferences, as hypothesized.
We also found strong evidence suggesting stickiness or rein-
forcement nature of past choices in users. Crucially, sticki-
ness and boredom effects on user choices were found to be

spaced out in time suggesting that methods can be designed
to systematically appease the two driving forces effecting
user temporal needs. The results obtained from this analy-
sis motivate the design of sophisticated dynamic models of
user choices impacting recommendation methods, product
design and advertising.

Our findings suggest that methods which only focus on
maximizing similarity, or focus on maximizing both simi-
larity and diversity at all times, accommodate only some
aspects of user behavior, leaving useful temporal informa-
tion on the table. Sophisticated temporal models of individ-
ual preferences, well grounded in cognitive and psychological
analysis of the dynamics of their choices, are required for the
design of automated methods that can predict user temporal
needs well.

Being able to say when a user is likely to be bored should
yield considerably more responsive and accurate product
recommendations. However, the gap between this exploratory
analysis and usable applications, while bridgeable, is non-
trivial. We suspect heterogeneities to exist among users and
their behavior towards different items, which this analysis
has not considered. This is principally because extricating
good estimates of dynamic hazard rates for different user-
item pairs requires large amounts of historical data, while we
were limited in our analysis to the Last.fm publicly release
dataset. Unavailability of datasets providing complete tem-
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poral histories of users makes procurement of data a chal-
lenge. While gaining access to more data would be the best
solution, clustering methods can reduce the data scarcity
problem in the interim. Additionally, for simplicity, we have
assumed the user behavior for an item is independent of the
other items experienced by him. However, one can expect
similar/dissimilar items to increase/decrease one’s level of
satiation with an item. Extending our approach into a full-
fledged recommendation system would require us to address
user and item level heterogeneities and similarities between
items in a single framework. Potential solutions can benefit
from hierarchical approaches to cluster items using multiple
features allowing estimation of the impact of history on the
hazard rates for similar items.

Our work constitutes the first study on dynamics of prefer-
ences of online music listeners, and demonstrates that there
is significant value in trying to study the temporal browsing
history of users along the lines we have suggested. We hope
our work will motivate further studies on this topic in the
future. Also, larger datasets would be made accessible for
studying aspects of user choices, allowing advancement in
the design of predictive agents of temporal user choices.
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