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ABSTRACT

Finding dense subgraphs is an important graph-mining task
with many applications. Given that the direct optimiza-
tion of edge density is not meaningful, as even a single edge
achieves maximum density, research has focused on opti-
mizing alternative density functions. A very popular among
such functions is the average degree, whose maximization
leads to the well-known densest-subgraph notion. Surpris-
ingly enough, however, densest subgraphs are typically large
graphs, with small edge density and large diameter.
In this paper, we define a novel density function, which

gives subgraphs of much higher quality than densest sub-
graphs: the graphs found by our method are compact, dense,
and with smaller diameter. We show that the proposed
function can be derived from a general framework, which
includes other important density functions as subcases and
for which we show interesting general theoretical properties.
To optimize the proposed function we provide an additive
approximation algorithm and a local-search heuristic. Both
algorithms are very efficient and scale well to large graphs.
We evaluate our algorithms on real and synthetic datasets,

and we also devise several application studies as variants
of our original problem. When compared with the method
that finds the subgraph of the largest average degree, our
algorithms return denser subgraphs with smaller diameter.
Finally, we discuss new interesting research directions that
our problem leaves open.

Categories and Subject Descriptors

H.2.8 [Database Management]: [Database Applications-
Data Mining]
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1. INTRODUCTION
Extracting dense subgraphs from large graphs is a key

primitive in a variety of application domains [26]. In the
Web graph, dense subgraphs may correspond to thematic
groups or even spam link farms, as observed by Gibson et
al. [18]. In biology, finding dense subgraphs can be used
for discovering regulatory motifs in genomic DNA [16], and
finding correlated genes [25]. In the financial domain, ex-
tracting dense subgraphs has been applied to, among others,
finding price value motifs [12]. Other applications include
graph compression [9], reachability and distance query in-
dexing [21], and finding stories and events in micro-blogging
streams [3].

Given a graph G = (V,E) and a subset of vertices S ⊆ V ,
let G[S] = (S,E[S]) be the subgraph induced by S, and let
e[S] be the size of E[S]. The edge density of the set S is

defined as δ(S) = e[S]/
(

|S|
2

)

. Finding a dense subgraph of
G would in principle require to find a set of vertices S ⊆ V
that maximizes δ(S). However, the direct maximization of δ
is not a meaningful problem, as even a single edge achieves
maximum density. Therefore, effort has been devoted to de-
fine alternative density functions whose maximization allows
for extracting subgraphs having large δ and, at the same
time, non-trivial size. Different choices of the density func-
tion lead to different variants of the dense-subgraph prob-
lem. Some variants can be solved in polynomial time, while
others are NP-hard, or even inapproximable.

1.1 Background and related work

Cliques. A clique is a subset of vertices all connected to
each other. The problem of finding whether there exists a
clique of a given size in a graph is NP-complete. A max-

imum clique of a graph is a clique having maximum size
and its size is called the graph’s clique number. H̊astad [20]
shows that, unless P = NP, there cannot be any polyno-
mial time algorithm that approximates the maximum clique
within a factor better thanO(n1−ǫ), for any ǫ > 0. Feige [13]
proposes a polynomial-time algorithm that finds a clique of
size O(( logn

log logn
)2
)

whenever the graph has a clique of size

O( n

lognb
) for any constant b. Based on this, an algorithm

that approximates the maximum clique problem within a

factor of O(n (log logn)2

logn3

)

is also defined. A maximal clique

is a clique that is not a subset of any other clique. The
Bron-Kerbosch algorithm [7] finds all maximal cliques in a
graph.

Densest Subgraph. Let G(V,E) be a graph, |V | = n,
|E| = m. The average degree of a vertex set S ⊆ V is de-
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fined as 2e[S]
|S| The densest-subgraph problem is to find a set

S that maximizes the average degree. The densest subgraph
can be identified in polynomial time by solving a parametric
maximum-flow problem [17, 19]. Charikar [10] shows that
the greedy algorithm proposed by Asashiro et al. [6] pro-
duces a 1

2
-approximation of the densest subgraph in linear

time.
In the classic definition of densest subgraph there is no

size restriction of the output. When restrictions on the size
|S| are imposed, the problem becomes NP-hard. Specifi-
cally, the DkS problem of finding the densest subgraph of k
vertices is known to be NP-hard [5]. For general k, Feige
et al. [14] provide an approximation guarantee of O(nα),
where α < 1

3
. The greedy algorithm by Asahiro et al. [6]

gives instead an approximation factor of O(n
k
). Better ap-

proximation factors for specific values of k are provided by
algorithms based on semidefinite programming [15]. From
the perspective of (in)approximability, Khot [22] shows that
there cannot exist any PTAS for the DkS problem under a
reasonable complexity assumption. Arora et al. [4] propose
a PTAS for the special case k = Ω(n) and m = Ω(n2). Fi-
nally, two variants of the DkS problem are introduced by
Andersen and Chellapilla [2]. The two problems ask for the
set S that maximizes the average degree subject to |S| ≤ k
(DamkS) and |S| ≥ k (DalkS), respectively. They provide
constant factor approximation algorithms for DalkS and ev-
idence that DamkS is hard. The latter was verified by [23].

Quasi-cliques. A set of vertices S is an α-quasi-clique if
e[S] ≥ α

(

|S|
2

)

, i.e., if the edge density of the induced sub-
graph G[S] exceeds a threshold parameter α ∈ (0, 1). Simi-
larly to cliques, maximum quasi-cliques and maximal quasi-
cliques [8] are quasi-cliques of maximum size and quasi-
cliques not contained into any other quasi-clique, respec-
tively. Abello et al. [1] propose an algorithm for finding a
single maximal α-quasi-clique, while Uno [31] introduces an
algorithm to enumerate all α-quasi-cliques.

1.2 Contributions
Extracting the densest subgraph (i.e., finding the sub-

graph that maximizes the average degree) is particularly
attractive as it can be solved exactly in polynomial time
or approximated within a factor of 2 in linear time. Indeed
it is a popular choice in many applications. However, as we
will see in detail next, maximizing the average degree tends
to favor large subgraphs with not very large edge density
δ. The prototypical dense graph is the clique, but, as dis-
cussed above, finding the largest clique is inapproximable.
Also, the clique definition is too strict in practice, as not
even a single edge can be missed from an otherwise dense
subgraph. This observation leads to the definition of quasi-
clique, whose underlying intuition is the following: assuming
that each edge in a subgraph G[S] exists with probability α,

then the expected number of edges in G[S] is α
(

|S|
2

)

. Thus,
the condition of the α-quasi-clique expresses the fact that
the subgraph G[S] has more edges than those expected by
this binomial model.
Motivated by this definition, we turn the quasi-clique con-

dition into an objective function. In particular, we define the
density function fα(S) = e[S]− α

(

|S|
2

)

, which expresses the
edge surplus of a set S over the expected number of edges
under the random-graph model. We consider the problem of
finding the best α-quasi-clique, i.e., a set of vertices S that
maximizes the function fα(S). We refer to the subgraphs

Table 1: Difference between densest subgraph and
optimal quasi-clique on some popular graphs. δ =
e[S]/

(

|S|
2

)

is the edge density of the extracted sub-

graph, D is the diameter, and τ = t[S]/
(

|S|
3

)

is the
triangle density.

densest subgraph optimal quasi-clique
|S|
|V |

δ D τ
|S|
|V |

δ D τ

Dolphins 0.32 0.33 3 0.04 0.12 0.68 2 0.32
Football 1 0.09 4 0.03 0.10 0.73 2 0.34

Jazz 0.50 0.34 3 0.08 0.15 1 1 1
Celeg. N. 0.46 0.13 3 0.05 0.07 0.61 2 0.26

that maximize fα(S) as optimal quasi-cliques. To the best
of our knowledge, the problem of extracting optimal quasi-
cliques from a graph has never been studied before. We
show that optimal quasi-cliques are subgraphs of high qual-
ity, with edge density δ much larger than densest subgraphs
and with smaller diameter. We also show that our novel den-
sity function comes indeed from a more general framework
which subsumes other well-known density functions and has
appreciable theoretical properties.

Our contributions are summarized as follows.

• We introduce a general framework for finding dense sub-
graphs, which subsumes popular density functions. We
provide theoretical insights into our framework: show-
ing that a large family of objectives are efficiently solv-
able while other subcases are NP-hard.

• As a special instance of our framework, we introduce
the novel problem of extracting optimal quasi-cliques.

• We design two efficient algorithms for extracting opti-
mal quasi-cliques. The first one is a greedy algorithm
where the smallest-degree vertex is repeatedly removed
from the graph, and achieves an additive approximation
guarantee. The second algorithm is a heuristic based on
the local-search paradigm.

• Motivated by real-world scenarios, we define interesting
variants of our original problem definition: (i) finding
the top-k optimal quasi-cliques, and (ii) finding optimal
quasi-cliques that contain a given set of vertices.

• We extensively evaluate our algorithms and problem
variants on numerous datasets, both synthetic and
real, showing that they produce high-quality dense sub-
graphs, which clearly outperform densest subgraphs. We
also present applications of our problem in data-mining
and bioinformatics tasks, such as forming a successful
team of domain experts and finding highly-correlated
genes from a microarray dataset.

1.3 A preview of the results
Table 1 compares our optimal quasi-cliques with densest

subgraphs on some popular graphs.1 The results in the table
clearly show that optimal quasi-cliques have much larger edge
density than densest subgraphs, smaller diameters and larger
triangle densities. Moreover, densest subgraphs are usually
quite large-sized: in the graphs we report in Table 1, the
densest subgraphs contain always more than the 30% of the
vertices in the input graph. For instance, in the Football

1
Densest subgraphs are extracted here with the exact Goldberg’s algo-

rithm [19]. As far as optimal quasi-cliques, we optimize fα with α = 1

3

and use our local-search algorithm.
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graph, the densest subgraph corresponds to the whole graph,
with edge density < 0.1 and diameter 4, while the extracted
optimal quasi-clique is a 12-vertex subgraph with edge den-
sity 0.73 and diameter 2. The Jazz graph contains a perfect
clique of 30 vertices: our method finds this clique achieving
perfect edge density, diameter, and triangle density scores.
By contrast, the densest subgraph contains 100 vertices, and
has edge density 0.34 and triangle density 0.08.

2. A GENERAL FRAMEWORK
LetG = (V,E) be a graph, with |V | = n and |E| = m. For

a set of vertices S ⊆ V , let e[S] be the number of edges in the
subgraph induced by S. We define the following function.

Definition 1 (Edge-surplus). Let S ⊆ V be a subset

of the vertices of G, and let α > 0 be a constant. Given any

two strictly-increasing functions g and h, we define edge-
surplus fα as:

fα(S) =

{

0, S = ∅,

g(e[S])− αh(|S|), otherwise.

The rationale behind the above definition is due to a coun-
terbalancing of two contrasting terms: the first term g(e[S])
favors subgraphs abundant in edges, whereas the second
term −αh(|S|) penalizes large subgraphs. Our framework
for finding dense subgraphs is based on the following opti-
mization problem.

Problem 1 (optimal (g, h, α)-edge-surplus). Given a

graph G = (V,E), a constant α, and a pair of strictly-

increasing functions g, h, find a subset of vertices S∗ ⊆ V
such that fα(S

∗) ≥ fα(S), for all sets S ⊆ V . We refer to

the set S∗ as the optimal (g, h, α)-edge-surplus of the graph

G.

The edge-surplus definition subsumes numerous popular
existing density measures.

• By setting g(x) = h(x) = log x, α = 1, the opti-
mal (g, h, α)-edge-surplus problem becomes equivalent

to maximizing log e[S]− log |S| = log e[S]
|S| , which corre-

sponds to the popular densest-subgraph problem.

• By setting g(x) = log x, h(x) = log
(

x(x−1)
2

)

, α = 1, the

optimal (g, h, α)-edge-surplus problem becomes equiva-

lent to maximizing the edge density δ(S) = e[S]/
(

|S|
2

)

.

No general statements on the complexity characterization
of the optimal (g, h, α)-edge-surplus problem can be made,
since certain cases are polynomial-time solvable whereas oth-
ers are NP-hard. However, the following theorem provides
a family of optimal (g, h, α)-edge-surplus problems that are
efficiently solvable.

Theorem 1. If g(x) = x and h(x) is a concave function,

then the optimal (g, h, α)-edge-surplus problem is in P.

Proof. The optimal (g, h, α)-edge-surplus problem be-
comes max∅6=S⊆V e[S] − αh(|S|) where h(x) is a concave
function. The claim follows directly from the following suc-
cession of facts.
Fact 1: The function defined by the map S 7→ e[S] is a su-
permodular function.
Fact 2: The function h(|S|) is submodular given that h is

concave. Since α > 0, the function −αh(|S|) is supermodu-
lar.
Fact 3: Combining the above facts with the fact that the
sum of two supermodular functions is supermodular, we ob-
tain that fα(S) is a supermodular function.
Fact 4: Maximizing supermodular functions is strongly
polynomial-time solvable [28].

Finally, an important property of the edge-surplus ab-
straction is that it allows us to model scenarios in numerous
practical situations where one wants to find a dense sub-
graph with bounds on its size. For instance, by relaxing the
monotonicity property of h, the k-densest subgraph problem
can be modeled as an optimal (g, h, α)-edge-surplus problem
by setting g(x) = x and

h(x) =

{

0, x = k

+∞, otherwise.

By choosing h(x) appropriately, one can design algorithms
that avoid outputting subgraphs of undesired size.

3. OPTIMAL QUASI-CLIQUES
By setting g(x) = x, h(x) = x(x−1)

2
, and restricting α ∈

(0, 1) in Problem 1, we obtain the problem we address in
this paper, which we call OQC-Problem.

Problem 2 (OQC-Problem). Given a graph G =
(V,E), find a subset of vertices S∗ ⊆ V such that

fα(S
∗) = e[S]− α

(

|S|

2

)

≥ fα(S), for all S ⊆ V.

We refer to the set S∗ as the optimal quasi-clique of G.

3.1 Problem characterization

Hardness. Theorem 1 shows a class of problems which are
solvable in polynomial time, while leaving open the hard-
ness characterization of the problems that do not fall into
that class. Our OQC-Problem belongs to the latter class
of problems: it is not among the polynomial-time solvable
optimal (g, h, α)-edge-surplus problems stated in Theorem 1,
thus any result about its hardness is not immediate. How-
ever, in this regard, we note the following.

For any single edge (u, v), fα({u, v}) > 0; but, for any set

S, where |S| is large enough and e[S] = α
(

|S|
2

)

, fα(S) = 0.
Therefore, the OQC-Problem assigns a positive score to
sets S which have density strictly greater than α. Specifi-
cally, let F = {S1, . . . , Sk} be the family of sets such that
fα(Si) > 0, for all Si ∈ F . Notice that if the input graph
G is connected, then k ≥ 1, as fα({u, v}) > 0, for any edge

(u, v). This suggests that e[Si] = (α+ ǫi)
(

|Si|
2

)

, ǫi > 0 for all
i = 1, . . . , k. The objective of the OQC-Problem is equiva-
lent to maximizing over all sets in F the product ǫi

(

|Si|
2

)

. In
conclusion, therefore, the OQC-Problem is closely related
to the problem of finding a maximum clique in a graph, thus
being suspected to be NP-hard. However, a formal proof of
hardness is nontrivial and it constitutes an interesting open
problem for future research.

Parameter selection. A natural question that arises
whenever a parameter exists is how to choose an appropri-
ate value. We provide here a simple empirical criterion to
properly pick the α parameter in our fα function.
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Algorithm 1 GreedyOQC

Input: Graph G(V,E)
Output: Subset of vertices S̄ ⊆ V

Sn ← V
for i← n downto 1 do

Let v be the vertex with the smallest degree in G[Si]
Si−1 ← Si \ {v}

end for
S̄ ← argmaxi=1,...,n fα(Si)

Let us consider two disjoint sets of vertices S1, S2 in the
graph G. Assume that G[S1∪S2] is disconnected, i.e., G[S1]
and G[S2] form two separate connected components. Also,
without any loss of generality, assume that fα(S1) ≤ fα(S2).
As our goal is to favor small dense subgraphs, a natural
condition to satisfy is fα(S1 ∪ S2) ≤ fα(S1) ≤ fα(S2), i.e.,
we require for our objective to prefer the set S1 (or S2) rather
than the larger set S1 ∪ S2. Therefore, we obtain:

e[S1] + e[S2]− α

(

|S1|+|S2|

2

)

≤e[S1]− α

(

|S1|

2

)

,

which, considering that e[S2] ≤
(

|S2|
2

)

, leads to:

α ≥

(

|S2|
2

)

(

|S1|+|S2|
2

)

−
(

|S1|
2

) =
|S2| − 1

2|S1|+ |S2| − 1
.

Let us now assume for simplicity that |S1| = |S2| = k; then
the above condition becomes: α ≥ k−1

3k−1
. As k−1

3k−1
< 1

3
, it

suffices choosing α ≥ 1
3
to have the condition satisfied.

Thus, we choose a value for α around 1
3
, which is actually

the value we adopt in our experiments. Alternatively, one
could choose α = e[V ]/

(

|V |
2

)

to obtain a normalized version
of our objective. However, we do not advocate this choice
since typically e[V ] = o(|V |2).

3.2 Algorithms

A greedy approximation algorithm. The first efficient
algorithm we propose is an adaptation of the greedy algo-
rithm by Asashiro et al. [6], which has been shown to provide
a 1

2
-approximation for the densest subgraph problem [10].

The outline of our algorithm, called GreedyOQC, is shown
as Algorithm 1. The algorithm iteratively removes the ver-
tex with the smallest degree. The output is the subgraph
produced over all iterations that maximizes the objective
function fα. The algorithm can be implemented in O(n+m)
time: the trick consists in keeping a list of vertices for each
possible degree and updating the degree of any vertex v dur-
ing the various iterations of the algorithm simply by moving
v to the appropriate degree list.
TheGreedyOQC algorithm provides an additive approx-

imation guarantee for the OQC-Problem, as shown next.

Theorem 2. Let S̄ be the set of vertices outputted by the

GreedyOQC algorithm and let S∗ be the optimal vertex set.

Consider also the specific iteration of the algorithm where

a vertex within S∗ is removed for the first time and let SI

denote the vertex set currently kept in that iteration. It holds

that:

fα(S̄) ≥ fα(S
∗)−

α

2
|SI |(|SI | − |S

∗|).

Proof. Given a subset of vertices S ⊆ V and a vertex
u ∈ S, let dS(u) denote the degree of u in G[S].

We start the analysis by considering the first vertex be-
longing to S∗ removed by the algorithm from the current
vertex set. Let v denote such a vertex, and let also SI de-
note the set of vertices still present just before the removal
of v. By the optimality of S∗, we obtain:

fα(S
∗) ≥ fα(S

∗ \ {u}), ∀u ∈ S∗

⇔ e[S∗]−α

(

|S∗|

2

)

≥(e[S]−dS∗(u))−α

(

|S∗|−1

2

)

, ∀u∈S∗

⇔ dS∗(u) ≥ α(|S∗| − 1), ∀u ∈ S∗.

As the algorithm greedily removes vertices with the small-
est degree in each iteration, it is easy to see that dV (u) ≥
dSI

(u) ≥ dS∗(u) ≥ α(|S∗| − 1), ∀u. Therefore, noticing also
that S∗ ⊆ SI , it holds that:

fα(SI) = e[SI ]− α

(

|SI |

2

)

=
1

2

(

∑

u∈S∗

dS∗(u) +
∑

u∈S∗

(dSI
(u)− dS∗(u))+

+
∑

u∈SI\S
∗

dSI
(u)



− α

(

|SI |

2

)

≥
1

2





∑

u∈S∗

dS∗(u) +
∑

u∈SI\S
∗

dSI
(u)



− α

(

|SI |

2

)

= e[S∗] +
1

2

∑

u∈SI\S
∗

dSI
(u)− α

(

|SI |

2

)

≥ e[S∗] +
1

2
(|SI | − |S

∗|)α(|S∗| − 1)− α

(

|SI |

2

)

= fα(S
∗)−

α

2
|SI |(|SI | − |S

∗|).

As the final output of the algorithm is the best over all
iterations, we finally obtain:

fα(S̄) ≥ fα(SI) ≥ fα(S
∗)−

α

2
|SI |(|SI | − |S

∗|).

The above result can be interpreted as follows. Assuming
that |SI | is O(|S̄|), the additive approximation factor proved
in Theorem 2 becomes fα(S̄) ≥ fα(S

∗) − α
2
|S̄|(|S̄| − |S∗|).

Thus, the error achieved by the GreedyOQC algorithm is
guaranteed to be bounded by an additive factor proportional
to the size of the optimal quasi-clique outputted. As optimal
quasi-cliques are typically small graphs, this results in an
approximation guarantee that is very tight in practice.

A local-search heuristic. Even though the above
GreedyOQC algorithm achieves provable approximation
guarantee, it is not guaranteed for that algorithm to be
related to any (local) optimal solution, which is a desir-
able property that in many practical cases can lead to very
good results. To this purpose, we present next a local-search
heuristic, called LocalSearchOQC, which performs local
operations and outputs a vertex set S that is guaranteed to
be locally optimal, i.e., if any single vertex is added to or
removed from S, then the objective function decreases.
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Algorithm 2 LocalSearchOQC

Input: Graph G = (V,E); maximum number of iterations
TMAX

Output: Subset of vertices S̄ ⊆ V
S ← {v}, where v is chosen uniformly at random
b1 ← TRUE, t← 1.
while b1 and t ≤ TMAX do

b2 ← TRUE
while b2 do

If there exists u ∈ V \S such that fα(S∪{u}) ≥ fα(S)
then let S ← S ∪ {u}
otherwise set b2 ← FALSE

end while
If there exists u ∈ S such that fα(S\{u}) ≥ fα(S)
then let S ← S\{u}
otherwise, set b1 ← FALSE
t← t+ 1

end while
S̄ ← argmaxŜ∈{S,V \S} fα(Ŝ)

The outline of LocalSearchOQC is shown as Algorithm
2. The algorithm initially selects a random vertex and then
it keeps adding vertices to the current set S while the ob-
jective improves. When no vertices can be added, the al-
gorithm tries to find a vertex in S whose removal may im-
prove the objective. As soon as such a vertex is encountered,
it is removed from S and the algorithm re-starts from the
adding phase. The process continues until a local optimum
is reached or the number of iterations exceeds Tmax. The
time complexity of LocalSearchOQC is O(Tmax m).
The effectiveness of the LocalSearchOQC algorithm

partly depends on the initial seeding set S. To this end, we
devise a heuristic to choose an initial seeding set more appro-
priately than setting it equal to a randomly selected vertex.

Let v∗ be the vertex that maximizes the ratio t(v∗)
d(v∗)

, where

t(v∗) is the number of triangles of v∗ and d(v∗) its degree (we
approximate the number of triangles in which each vertex
participates with the technique described in [24]). Given
vertex v∗, we use as a seed the set {v∗ ∪ N(v∗)}, where
N(v∗) = {u : (u, v∗) ∈ E} is the neighborhood of v∗.

4. PROBLEM VARIANTS
We present here two variants of our basic problem, that

have many practical applications: finding top-k optimal
quasi-cliques (Section 4.1) and finding an optimal quasi-clique
that contains a given set of query vertices (Section 4.2).

4.1 Top-k optimal quasi-cliques
The top-k version of our problem is as follows: given a

graph G = (V,E) and a constant k, find top-k disjoint opti-
mal quasi-cliques. This variant is particularly useful in sce-
narios where finding a single dense subgraph is not sufficient,
rather a set of k > 1 dense components is required.
From a formal viewpoint, the problem would require to

find k subgraphs for which the sum of the various objective
function values computed on each subgraph is maximized.
Due to its intrinsic hardness, however, here we heuristically
tackle the problem in a greedy fashion: we find one dense
subgraph at a time, we remove all the vertices of the sub-
graph from the graph, and we continue until we find k sub-
graphs or until we are left with an empty graph. Note that
this iterative approach allows us to automatically fulfill a

Table 2: Graphs used in our experiments.
Vertices Edges Description

Dolphins 62 159 Biological Network
Polbooks 105 441 Books Network
Adjnoun 112 425 Adj. and Nouns in

‘David Copperfield’
Football 115 613 Games Network

Jazz 198 2 742 Musicians Network
Celegans N. 297 2 148 Biological Network
Celegans M. 453 2 025 Biological Network

Email 1 133 5 451 Email Network
AS-22july06 22 963 48 436 Auton. Systems
Web-Google 875 713 3 852 985 Web Graph

Youtube 1 157 822 2 990 442 Social Network
AS-Skitter 1 696 415 11 095 298 Auton. Systems

Wikipedia 2005 1 634 989 18 540 589 Web Graph
Wikipedia 2006/9 2 983 494 35 048 115 Web Graph

Wikipedia 2006/11 3 148 440 37 043 456 Web Graph

very common requirement of finding top-k subgraphs that
are pairwise disjoint.

4.2 Constrained optimal quasi-cliques
The constrained optimal quasi-cliques variant consists in

finding an optimal quasi-clique that contains a set of pre-
specified query vertices. This variant is inspired by the com-

munity-search problem [30], which has many applications,
such as finding thematic groups, organizing social events,
tag suggestion. Next, we formalize the problem, prove that
it is NP-hard, and adapt our algorithms for this variant.

Let G = (V,E) be a graph, and Q ⊆ V be a set of query
vertices. We want to find a set of vertices S ⊆ V , so that S
contains the query vertices Q and maximizes our objective
function fα. Formally, we define the following problem.

Problem 3 (Constrained-OQC-Problem). Given

a graph G = (V,E) and set Q ⊆ V , find S∗ ⊆ V such that

fα(S
∗) = maxQ⊆S⊆V fα(S).

It is easy to see that, when Q = ∅, the Constrained-
OQC-Problem reduces to the OQC-Problem. However,
contrarily to the basic OQC-Problem, the Constrained-
OQC-Problem can very easily be shown to be NP-hard.
The hardness is quite immediate from Theorem 1 in [31] and
we omit details due to space constraints.

Theorem 3. The Constrained-OQC-Problem is

NP-hard.

The GreedyOQC algorithm can be adapted to solve
the Constrained-OQC-Problem simply by ignoring the
nodes u ∈ Q during the execution of the algorithm, so as to
never remove vertices of Q.

Similarly, our LocalSearchOQC algorithm can solve
the Constrained-OQC-Problem with a couple of simple
modifications: the set S is initialized to the set of query ver-
tices Q, while, during the iterative phase of the algorithm,
we never allow a vertex u ∈ Q to leave S.

5. EXPERIMENTAL EVALUATION
In this section we present our empirical evaluation, first

on publicly-available real-world graphs (Section 5.1), whose
main characteristics are shown in Table 2, and then on syn-
thetic graphs where the ground truth is known (Section 5.2).
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Table 3: Densest subgraphs extracted with Charikar’s method vs. optimal quasi-cliques extracted with the pro-
posed GreedyOQC algorithm (greedy) and LocalSearchOQC algorithm (ls). δ = e[S]/

(

|S|
2

)

is the edge density

of the extracted subgraph S, D is the diameter, and τ = t[S]/
(

|S|
3

)

is the triangle density.
|S| δ D τ

densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique
subgraph greedy ls subgraph greedy ls subgraph greedy ls subgraph greedy ls

Dolphins 19 13 8 0.27 0.47 0.68 3 3 2 0.05 0.12 0.32
Polbooks 53 13 16 0.18 0.67 0.61 6 2 2 0.02 0.28 0.24
Adjnoun 45 16 15 0.20 0.48 0.60 3 3 2 0.01 0.10 0.12
Football 115 10 12 0.09 0.89 0.73 4 2 2 0.03 0.67 0.34

Jazz 99 59 30 0.35 0.54 1 3 2 1 0.08 0.23 1
Celeg. N. 126 27 21 0.14 0.55 0.61 3 2 2 0.07 0.20 0.26
Celeg. M. 44 22 17 0.35 0.61 0.67 3 2 2 0.07 0.26 0.33

Email 289 12 8 0.05 1 0.71 4 1 2 0.01 1 0.30
AS-22july06 204 73 12 0.40 0.53 0.58 3 2 2 0.09 0.19 0.20
Web-Google 230 46 20 0.22 1 0.98 3 2 2 0.03 0.99 0.95

Youtube 1874 124 119 0.05 0.46 0.49 4 2 2 0.02 0.12 0.14
AS-Skitter 433 319 96 0.41 0.53 0.49 2 2 2 0.10 0.19 0.13
Wiki ’05 24555 451 321 0.26 0.43 0.48 3 3 2 0.02 0.06 0.10

Wiki ’06/9 1594 526 376 0.17 0.43 0.49 3 3 2 0.10 0.06 0.11
Wiki ’06/11 1638 527 46 0.17 0.43 0.56 3 3 2 0.31 0.06 0.35

Our main goal is to compare our optimal quasi-cliques with
densest subgraphs. For extracting optimal quasi-cliques, we
involve both our proposed algorithms, i.e., GreedyOQC
and LocalSearchOQC, which, following the discussion in
Section 3.1, we run with α = 1

3
(for LocalSearchOQC, we

also set Tmax = 50). For finding densest subgraphs, we use
the Goldberg’s exact algorithm [19] for small graphs, while
for graphs whose size does not allow the Goldberg’s algo-
rithm to terminate in reasonable time we use the Charikar’s
1
2
-approximation algorithm [10].
All algorithms are implemented in java, and all experi-

ments are performed on a single machine with Intel Xeon
cpu at 2.83GHz and 50GB ram.

5.1 Real-world graphs
Results on real graphs are shown in Table 3. We compare

optimal quasi-cliques outputted by the proposed Greedy-
OQC and LocalSearchOQC algorithms with densest sub-
graphs extracted with the Charikar’s algorithm. Particu-
larly, we use the Charikar’s method to be able to handle
the largest graphs. For consistency, Table 3 reports on re-
sults achieved by Charikar’s method also for the smallest
graphs. We recall that the results in Table 1 in the Intro-
duction refer instead to the exact Goldberg’s method. How-
ever, a comparison of the two tables on their common rows
shows that the Charikar’s algorithm, even though it is ap-
proximate, produces almost identical results with the results
produced by the Goldberg’s algorithm.
Table 3 clearly confirms the preliminary results reported

in the Introduction: optimal quasi-cliques have larger edge
and triangle densities, and smaller diameter than densest
subgraphs. Particularly, the edge density of optimal quasi-
cliques is evidently larger on all graphs. For instance, on
Football and Youtube, the edge density of optimal quasi-
cliques (for both the GreedyOQC and LocalSearchOQC
algorithms) is about 9 times larger than the edge den-
sity of densest subgraphs, while on Email the difference in-
creases up to 20 times (GreedyOQC) and 14 times (Local-
SearchOQC). Still, the triangle density of the optimal
quasi-cliques outputted by both GreedyOQC and Local-
SearchOQC is one order of magnitude larger than the tri-
angle density of densest subgraphs on 11 out of 15 graphs.

Figure 1: Edge density and diameter of the top-
10 subgraphs found by our GreedyOQC and Local-
SearchOQC methods, and Charikar’s algorithm, on
the AS-skitter graph (top) and the Wikipedia 2006/11
graph (bottom).

Comparing our two algorithms to each other, we can
see that LocalSearchOQC performs generally better than
GreedyOQC. Indeed, the edge density achieved by Local-
SearchOQC is higher than that of GreedyOQC on 10 out
of 15 graphs, while the diameter of the LocalSearchOQC
optimal quasi-cliques is never larger than the diameter of the
GreedyOQC optimal quasi-cliques.

Concerning efficiency, all algorithms are linear in the num-
ber of edges of the graph. Charikar’s and GreedyOQC
algorithm are somewhat slower than LocalSearchOQC,
but mainly due to bookkeeping. LocalSearchOQC algo-
rithm’s running times vary from milliseconds for the small
graphs (e.g., 0.004s for Dolphins, 0.002s for Celegans N.), few
seconds for the larger graphs (e.g., 7.94s for Web-Google and
3.52s for Youtube) and less than one minute for the largest
graphs (e.g., 59.27s for Wikipedia 2006/11).

109



Top-k optimal quasi-cliques. Figure 1 evaluates top-k op-
timal quasi-cliques and top-k densest subgraphs on the AS-
Skitter and Wikipedia 2006/11 graphs using the iterative
method described in Section 4.1. Similar results hold for
the other graphs but are omitted due to space constraints.
For each graph we show two scatterplots. The x axis in

logarithmic scale reports the size of each of the top-k dense
components, while the y axes show the edge density and the
diameter, respectively. In all figures, optimal quasi-cliques
correspond to blue filled circles (LocalSearchOQC) or
red diamonds (GreedyOQC), while densest subgraphs cor-
respond to green circles. It is evident that optimal quasi-
cliques are significantly better in terms of both edge density
and diameter also in this top-k variant. The edge density
is in the range 0.4 − 0.7 and the diameter is always 2 or 3,
except for a 56-vertex clique in Wikipedia 2006/11 with di-
ameter 1. On the contrary, the densest subgraphs are large
graphs, with diameter ranging typically from 3 to 5, with
significantly smaller edge densities: besides few exceptions,
the edge density of densest subgraphs is always around 0.1
or even less.

5.2 Synthetic graphs
Experiments on synthetic graphs deal with the following

task: a (small) clique is planted in two different types of ran-
dom graphs, and the goal is to check if the dense subgraph
algorithms are able to recover those cliques. Two different
random-graph models are used as host graphs for the cliques:
(i) Erdős-Rényi and (ii) random power-law graphs. In the
former model, each edge exists with probability p indepen-
dently of the other edges. To generate a random power-law
graph, we follow the Chung-Lu model [11]: we first generate
a degree sequence (d1, . . . , dn) that follows a power law with
a pre-specified slope and we connect each pair of vertices i, j
with probability proportional to didj .
We evaluate our algorithms by measuring how “close” are

the returned subgraphs to the planted clique. In particular,
we use the measures of precision P and recall R, defined as

P =
#{returned vertices from hidden clique}

size{subgraph returned}
, and

R =
#{returned vertices from hidden clique}

size{hidden clique}
.

Next we discuss the results obtained. For the Erdős-Rényi
model we also provide a theoretical justification of the out-
come of the two tested algorithms.

Erdős-Rényi graphs. We plant a clique of 30 vertices on
Erdős-Rényi graphs with n = 3000 and edge probabilities
p ∈ {0.5, 0.1, 0.008}. Those values of p are selected to rep-
resent very dense, medium-dense, and sparse graphs.
We report in Table 4 the results of running our Local-

SearchOQC and GreedyOQC algorithms for extracting
optimal quasi-cliques, as well as the Goldberg’s algorithm for
extracting densest subgraphs. We observe that our two al-
gorithms, LocalSearchOQC and GreedyOQC, produce
identical results, thus we refer to both of them as optimal
quasi-cliques algorithms. We see that the algorithms produce
two kinds of results: they either find the hidden clique, or
they miss it and return the whole graph. In the very dense
setting (p = 0.5) all algorithms miss the clique, while in the
sparse setting (p = 0.008) all algorithms recover it. How-
ever, at the middle-density setting (p = 0.1) only the optimal

Table 4: Subgraphs returned by the Goldberg’s
max-flow algorithm and by our two algorithms
(GreedyOQC, LocalSearchOQC) on Erdős-Rényi
graphs with 3 000 vertices and three values of p, and
with a planted clique of 30 vertices.

Erdős-Rényi
parameters densest subgraph optimal quasi-clique
n p |S| P R |S| P R

3 000 0.5 3 000 0.01 1.00 3 000 0.01 1.00
3 000 0.1 3 000 0.01 1.00 30 1.00 1.00
3 000 0.008 30 1.00 1.00 30 1.00 1.00

quasi-cliques algorithms find the clique, while the Goldberg’s
algorithm misses it.

To better understand the results shown on Table 4, we
provide a theoretical explanation of the behavior of the al-
gorithms depending on their objective. Assume that h is
the size of the hidden clique, p > log n/n. If np ≥ h− 1 the
densest subgraph criterion always returns the whole graph
with high probability. In our experiments, this happens with
p = 0.5 and p = 0.1. On the other hand, if np < h − 1,
the densest subgraph corresponds to the hidden clique, and
therefore the Goldberg’s algorithm cannot miss it.

Now consider our objective function , i.e., the edge-surplus
function fα. The expected score for the hidden clique is
E [fα(H)] = fα(H) = (1 − α)

(

h

2

)

. The expected score for

the whole network is E [fα(V )] =
(

p
(

n

2

)

+(1−p)
(

h

2

))

−α
(

n

2

)

.
We obtain the following two cases: (A) when p > α, we
have E [fα(V )] ≥ fα(H). (B) when p < α, we have fα(H) ≥
E [fα(V )]. This rough analysis explains our findings.

Power-law graphs. We plant a clique of 15 vertices in ran-
dom power-law graphs of again 3 000 vertices, with power-
law exponent varying from 2.2 to 3.1. We select these values
since most real-world networks have power-law exponent in
this range [27]. For each exponent tested, we generate five
random graphs, and all the figures we report are averages
over these five trials.

Again, we compare our GreedyOQC and Local-
SearchOQC algorithms with the Goldberg’s algorithm.
The LocalSearchOQC algorithm is run seeded with one
of the vertices of the clique. The justification of this choice
is that one can always re-run the algorithm until it finds
such a vertex with high probability.2

The precision and recall scores of the three competing al-
gorithms as a function of the power-law exponent are shown
in Figure 2. As the exponent increases the host graph be-
comes sparser and both algorithms have no difficulties in
finding the hidden clique. However, for exponent values
ranging between 2.2 and 2.6 the optimal quasi-cliques are
significantly better than the densest subgraphs. Indeed, in
terms of precision, the Goldberg’s algorithm is outperformed
by both our algorithms. In terms of recall, our Local-
SearchOQC is better than Goldberg’s, while our Greedy-
OQC performs slightly worse. An explanation for this is
that the GreedyOQC algorithm detects other high-density
subgraphs, but not exactly the planted clique. As an ex-

2
If the hidden clique is of size O(nǫ), for some 0 ≤ ǫ < 1, it suffices to

run the algorithm a sub-linear number of times (i.e., O((1− γ)n1−ǫ)
times) in order to obtain one of the vertices of the clique as a seed
with probability at least 1 − γ.
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Figure 2: Precision and recall for our method and
Goldberg’s algorithm vs. the power-law exponent of
the host graph.

ample, with power-law exponent 2.3, GreedyOQC finds a
subgraph with 23 vertices and edge density 0.87.

Stability with respect to α. We also test the sensitivity
of our density measure with respect to the parameter α. We
use again the planted-clique setting, and we test the ability
of our algorithms to recover the clique as we vary the param-
eter α. We omit detailed plots, due to space constraints, but
we report that the behavior of both algorithms is extremely
stable with respect to α. Essentially, the algorithms again
either find the clique or miss it, depending on the graph-
generation parameters, as we saw in the previous section,
namely, the probability p of the Erdős-Rényi graphs, or the
exponent of the power-law graphs. Moreover, in all cases,
the performance of our algorithms, measured by precision
and recall as in the last experiment, does not depend on α.

6. APPLICATIONS
In this section we show experiments concerning our con-

strained optimal quasi-cliques variant introduced in Section
4.2. To this end, we focus on two applications that can
be commonly encountered in real-world scenarios: finding
thematic groups and finding highly-correlated genes from a
microarray dataset. For the sake of brevity of presentation,
we show next results for only one of our algorithms, partic-
ularly the LocalSearchOQC algorithm.

6.1 Thematic groups

Motivation. Suppose that a set of scientists Q wants to
organize a workshop. How do they invite other scientists
to participate in the workshop so that the set of all the
participants, including Q, have similar interests?

Setup. We use a co-authorship graph extracted from the
dblp dataset. The dataset contains publications in all ma-
jor computer-science journals. There is an undirected edge
between two authors if they have coauthored a journal arti-
cle. Taking the largest connected component gives a graph
of 226K vertices and 1.4M edges.
We evaluate the results of our algorithm qualitatively, in a

sanity check form rather than a strict and quantitative way,
which is not even well-defined. We perform the following
two queries: Q1 = {Papadimitriou,Abiteboul} and Q2 =
{Papadimitriou,Blum}.

Results. Papadimitriou is one of the most prolific computer
scientists and has worked on a wide range of areas. With
query Q1 we invoke his interests in database theory given
that Abiteboul is an expert in this field. As we can observe
from Figure 3, the optimal quasi-clique outputted contains

Abiteboul, Bernstein, Brodie, Carey, Ceri, Crof,
DeWitt, Ehrenfeucht, Franklin, Gawlick, Gray, Haas,
Halevy, Hellerstein, Ioannidis, Jagadish, Kanellakis,

Kersten, Lesk, Maier, Molina, Naughton, Papadimitriou,
Pazzani, Pirahesh, Schek, Sellis, Silberschatz, Snodgrass,

Stonebraker, Ullman, Weikum, Widom, Zdonik

Figure 3: Authors returned by our Local-
SearchOQC algorithm when queried with Papadim-
itriou and Abiteboul. The set includes well-known
database scientists. The induced subgraph has 34
vertices and 457 edges. The edge density is 0.81,
the diameter is 3, the triangle density is 0.66.

Alt, Blum, Garey, Guibas, Johnson,
Karp, Mehlhorn, Papadimitriou, Preparata,

Tarjan, Welzl, Widgerson, Yannakakis,

Figure 4: Authors returned by our Local-
SearchOQC algorithm when queried with Papadim-
itriou and Blum. The set includes well-known theo-
retical computer scientists. The induced subgraph
has 13 vertices and 38 edges. The edge density is
0.49, the diameter is 3, the triangle density is 0.14.

database scientists. On the other hand, with query Q2 we
invoke Papadimitriou’s interests in theory, given that Blum
is a Turing-award theoretical computer scientist. As we can
see in Figure 4, the returned optimal quasi-clique contains
well-known theoretical computer scientists.

6.2 Correlated genes

Motivation. Detecting correlated genes has several appli-
cations. For instance, clusters of genes with similar expres-
sion levels are typically under similar transcriptional con-
trol. Furthermore, genes with similar expression patterns
may imply co-regulation or relationship in functional path-
ways. Detecting gene correlations has played a key role in
discovering unknown types of breast cancer [29]. Here, we
wish to illustrate that optimal quasi-cliques provide a useful
graph-theoretic framework for gene co-expression network
analysis [25], without delving deeply into biological aspects
of the results.

Setup. We use the publicly-available breast-cancer dataset
of van de Vijner et al. [32], which consists of measurements
across 295 patients of 24 479 probes. Upon running a stan-
dard probe-selection algorithm based on Singular Value De-
composition (SVD), we obtain a 295×1000 matrix. The
graph G in input to our LocalSearchOQC algorithm is
derived using the well-established approach defined in [25]:
each gene corresponds to a vertex in G, while an edge be-
tween any pair of genes i, j is drawn if and only if the modu-
lus of the Pearson’s correlation coefficient |ρ(i, j)| exceeds a
given threshold θ (θ = 0.99 in our setting). We perform the
following query, along the lines of the previous section: “find
highly-correlated genes with the tumor protein 53 (p53)”.
We select p53 as it is known to be central in tumorigenesis.

Results. The output of our algorithm is a clique consisting
of 14 genes shown in Figure 5. A potential explanation of our
finding is the pathway depicted in Figure 6, which shows that
the activation of the p53 signaling can be initiated by signals
coming from the PI3K/AKT pathway. Both PI3KCA and
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p53, BRCA1, ARID1A, ARID1B, ZNF217, FGFR1, KRAS,
NCOR1, PIK3CA, APC, MAP3K13, STK11, AKT1, RB1

Figure 5: Genes returned by our LocalSearchOQC
algorithm when queried with p53. The induced sub-
graph is a clique with 14 vertices.

Figure 6: A tumorigenesis pathway consistent with
our findings.

AKT1 that are detected by our method are key players of
this pathway. Furthermore, signals from the JUN kinase
pathway can also trigger the p53-cascade; MAP3K13 is a
member of this pathway.
One of the results of p53 signaling is apoptosis, a process

promoted by RB. The latter can also regulate the stability
and the apoptotic function of p53. Finally, our output in-
cludes BRCA1, which is known to physically associate with
p53 and affect its actions [33].

7. CONCLUSIONS
In this work we introduce a novel density measure to ex-

tract high-quality subgraphs. We show that the proposed
density function is included into a more general framework
for dense-subgraph extraction, which also subsumes other
various popular density functions and provides a principled
way to derive application-specific algorithms and heuristics.
We provide theoretical insights both into the general frame-
work and in the proposed function. We design two efficient
algorithms to optimize our function: an additive approxima-
tion algorithm, as well as a local-search heuristic. We test
our algorithms on real graphs, showing that the subgraphs
outputted by our methods have larger edge and triangle den-
sities, and smaller diameter than the subgraphs extracted
by the method that optimizes the popular average-degree
measure. We also evaluate our methods in tackling a cou-
ple of variants of our original problem, i.e., finding top-k
dense subgraphs and finding subgraphs containing a set of
pre-specified vertices, as well as on real-world data-mining
and bioinformatics applications, such as forming thematic
groups and finding highly-correlated genes from a microar-
ray dataset.
Our work leaves several open problems, such as the formal

hardness characterization of our OQC-Problem, the for-
mal analysis of LocalSearchOQC, the design of efficient
randomized algorithms, and the derivation of more densi-
ties from the general framework with desirable properties
for existing applications.
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