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ABSTRACT
Traditionally, feature construction and feature selection are
two important but separate processes in data mining. How-
ever, many real world applications require an integrated
approach for creating, refining and selecting features. To
address this problem, we propose FeaFiner (short for Fea-
ture Refiner), an efficient formulation that simultaneously
generalizes low-level features into higher level concepts and
then selects relevant concepts based on the target variable.
Specifically, we formulate a double sparsity optimization
problem that identifies groups in the low-level features, gen-
eralizes higher level features using the groups and performs
feature selection. Since in many clinical researches non-
overlapping groups are preferred for better interpretability,
we further improve the formulation to generalize features
using mutually exclusive feature groups. The proposed for-
mulation is challenging to solve due to the orthogonality con-
straints, non-convexity objective and non-smoothness penal-
ties. We apply a recently developed augmented Lagrangian
method to solve this formulation in which each subprob-
lem is solved by a non-monotone spectral projected gradi-
ent method. Our numerical experiments show that this ap-
proach is computationally efficient and also capable of pro-
ducing solutions of high quality. We also present a general-
ization bound showing the consistency and the asymptotic
behavior of the learning process of our proposed formulation.
Finally, the proposed FeaFiner method is validated on

Alzheimer’s Disease Neuroimaging Initiative dataset, where
low-level biomarkers are automatically generalized into ro-
bust higher level concepts which are then selected for pre-
dicting the disease status measured by Mini Mental State
Examination and Alzheimer’s Disease Assessment Scale cog-
nitive subscore. Compared to existing predictive modeling
methods, FeaFiner provides intuitive and robust feature con-
cepts and competitive predictive accuracy.
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1. INTRODUCTION
Alzheimer’s Disease (AD) is a severe neurodegenerative

disorder that progresses over time. Electronic Health Records
data such as Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database provide valuable resources for conducting
a longitudinal study of AD research. ADNI data are col-
lected through regular hospital visits of AD patients after
their first screening. In each visit, various measurements
including cognitive scores (tests), lab tests, and brain im-
ages are collected for each patient, which serve as a large
pool of potential biomarkers. Identification of important
biomarkers that track the progression of AD is a central
task towards a better understanding of the disease and the
development of effective drugs. Many existing works build
predictive models [30, 31, 36], perform longitudinal analy-
sis [8, 39] and biomaker identification [42, 37, 11] directly
over the raw features.

One of the fundamental challenges of biomarker identi-
fication is the gap between lower level features and higher
level clinical concepts. Physicians and healthcare providers
think and operate in terms of higher level clinical concepts,
while the EHR data are heterogeneous sequences of features
in a much lower level of granularities. The low level features
are noisy (not all measurements are trustworthy), redun-
dant (many features are highly correlated) and sparse (clin-
ical events are known to be sparsely populated over time).
Because of the above characteristics, the direct use of those
low level features are problematic. One important ramifica-
tion is the instability of feature selection against such noisy,
redundant and sparse feature matrix. With a small pertur-
bation of samples or feature values, the results of feature
selection may vary significantly.

When it comes to the predictive modeling in longitudinal
studies and healthcare analysis, the data sources are typi-
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cally high dimensional. For example in the study of AD,
popular biomarkers include brain images such as magnetic
resonance imaging and positron emission tomography [27,
12], and genome information [14]. To deal with such high-
dimensional data, sparse learning methods [32, 15] provide
an effective tool that performs embedded feature selection
via sparsity-inducing norms such as ℓ1-norm [2]. Structural
sparsity [9, 33, 16, 13] is recently introduced to control the
structural patterns of the sparsity, exploring the inherent
structures of the predictive modeling problems. The sparse
learning has many successful applications in biomedical in-
formatics and has produced new medical insights [7, 11, 33,
37, 39, 40, 42].
The ℓ1-norm regularized methods such as Lasso [33] en-

joy nice properties in terms of feature selection. However,
theories on these methods often heavily lie on assumptions
on the design matrix, i.e., the irrepresentable condition [38].
When using Lasso for feature selection in high dimensional
problems, strongly correlated features usually result in poor
model selection performance [4]. Unfortunately in many
clinical studies and healthcare analysis problems this is usu-
ally the case; and thus the selected features are usually un-
stable under slight perturbations of the data. To deal with
this instability problem, specific sparse learning methods are
proposed to identify stable features via a large amount of
boostrapping [22, 41], which is usually computationally ex-
pensive and cannot completely resolve the problem if the
correlation is high. Recently, Bühlmann et al. proposed
a two-stage approach that firstly learns feature groups by
performing clustering on the design matrix and then per-
forms Lasso on the new features constructed from the feature
groups. Such two-stage approach has been shown to improve
the condition of the design matrix used in the Lasso and
is shown to have nice theoretical properties [3]. However,
a separate feature group construction and feature selection
may lead to suboptimal performance in terms of the stabil-
ity of group selection and predictive performance. A more
detailed discussion is given in Section 4.2.
Inspired by our experience on clinical predictive model-

ing and the aforementioned issues in the approach in [3],
we propose an integrated approach, called FeaFiner, for fea-
ture construction and feature selection. The FeaFiner simul-
taneously generalizes lower level features into higher level
clinical concepts and selects the predictive clinical concepts.
Specifically, we propose a formulation for learning a sparse
group structure matrix and a sparse prediction model via
ℓ1-regularization, and adopt an efficient block coordinate de-
scent algorithm for solving the formulation. In many clinical
research applications, non-overlapping groups are preferred
for better interpretability. To this end, we further propose
an improved formulation that learns non-overlapping fea-
ture groups via introducing additional orthogonality con-
straints to the formulation. However, the proposed formu-
lation is challenging to solve due to the orthogonality con-
straints, non-convexity objective and non-smooth penalties.
We solve our problem formulation using a novel augmented
Lagrangian framework, recently developed in [19]. The key
idea there is to solve this non-convex problem by a non-
monotone spectral projected gradient method. The result-
ing approach is computationally efficient and also capable of
producing solutions of high quality. We also present a gener-
alization bound showing the consistency and the asymptotic
behavior of the learning process of our proposed formulation.

We perform extensive experiments on both synthetic data
and real datasets for the clinical studies of Alzheimer’s dis-
ease. Results show that the proposed approach is capable of
learning more stable feature groups than existing approaches
while achieving superior predictive performance.
Notations: The element-wise ℓ1-norm of a matrix X is
denoted by ∥X∥1 =

∑
i,j |Xi,j |. We use X ≥ 0 to denote

the elementwise non negativity (Xi,j ≥ 0, ∀i, j). 1 denotes
the all-ones vector whose dimension is clear in context.

2. A FORMULATION FOR SIMULTANEOUS
FEATURE GENERALIZATION AND SE-
LECTION

In the healthcare analysis and clinical studies, one impor-
tant task is to identify important risk factors and biomarkers
that relate to a certain disease or health status of inter-
est, and build predictive models from patient data. In the
studies of Alzheimer’s disease, for example, many researches
focus on building predictive models that perform early de-
tection and identify stable biomarkers that are related to
the progression of the disease. Sparse learning is among the
most popular techniques that are capable of simultaneously
building parsimonious predictive models from training data
and perform biomarker identification via embedded feature
selection.

Consider a prediction task from n subjects with p fea-
tures, where each feature is the value of a certain risk factor
or the measurement of a biomarker. We denote the patients
by data matrix X ∈ Rn×p and their corresponding response
by y ∈ Rn, where the response can be a continuous met-
ric that indicates a certain clinical status of the patients.
Given the training data X and y we aim to learn a predic-
tive model. In this paper we consider only a linear model
with a p-dimensional model vector denoted by w ∈ Rp and
the prediction given by ŷ = Xw ∈ Rn. The classical sparse
learning method Lasso [32] learns a sparse model by solving
the following ℓ1 regularized optimization problem:

min
w

∥Xw − y∥22/n+ λ1∥w∥1, (1)

where λ1 is a specified parameter that controls the spar-
sity of the model. By sparse model we mean there are
many zeros in the model vector. If a feature has zero co-
efficient in the model, it is considered to be irrelevant to the
prediction task and thus can be removed from the model.
The ℓ1-norm regularized formulations have been well stud-
ied over the last decade and widely used in many medical
researches and clinical studies. Though the ℓ1-norm based
sparse learning methods yield high predictive power in prac-
tice, the learnt models are usually shown to be unstable if
the training data is slightly perturbed [22, 3]. To tackle this
problem, the authors of [3] proposed to firstly find corre-
lated features via clustering and generate new higher-level
features using the clustered groups. Sparse models are then
built using the generated features. From the perspective of
medical research and clinical studies, this approach is ap-
pealing because higher level features generalized from noisy
and correlated raw features may be more stable and inter-
pretable. It has been shown both theoretically and empiri-
cally that this approach gives more stable models. However,
a separate feature generalization and selection may be sub-
optimal in terms of both predictive performance and quality
of the obtained feature groups.
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In this paper we propose a formulation that simultane-
ously performs feature generalization and selection to im-
prove both the predictive performance and group quality.
Before proceeding, we introduce some notations that will
be used subsequently. For each group, we represent the
group assignment information in a vector, and denote the
ith group by gi ∈ Rp. If the jth feature belongs to this
group, then the jth component of gi is non-zero and the rel-
ative magnitude represents the ‘importance’ of the feature
in this group. The new feature generated from this group
assignment is thus given by Xgi. Suppose we have k groups
of features and we collectively denote the group structure
by G = [g1,g2, . . . ,gk], and the generalized new features
is then given by XG. To make each group meaningful, we
require the elements of G to be non-negative. We denote by
s ∈ Rk the new model vector associated with new feature
groups. The resulting formulation of FeaFiner is given by:

min
s,G

∥XGs− y∥22/n+ λ1∥s∥1

subject to: G ≥ 0, ∥gi∥1 ≤ θ, i = 1, . . . , k,
(2)

where θ is a specified parameter that controls the sparsity
on the columns of G, i.e., the number of features included
in a group. In the solutions obtained by solving Eq. (2), the
ℓ1-norm lengths of most columns of G are exactly θ, pro-
viding a good interpretation for the group membership. The
approach in [3] is a special case of our formulation in Eq. (2).
Note that the elastic net also encourages group effects such
that it tends to assign equal weights to the highly correlated
features [43]. However, it cannot explicitly identify feature
groups as does in (2).
The optimization problem (2) is generally non-convex since

its objective function involves the product of two variables.
A local optimal solution is thus often sought. One natural
approach to solving problem (2) is by using the block coor-
dinate descent algorithm, in which we alternatively solve G
and s by fixing one variable and optimizing with respect to
another. The details are as follows:
1) Given G, we solve s:

s+ = argmin
s

∥XGs− y∥22/n+ λ1∥s∥1. (3)

Solving s is a convex ℓ1-regularized problem, which can
be efficiently solved via the accelerated projected gradient
method (APG) [24, 25].
2) Given s, we solve G:

G+ = argmin
G∈G(θ)

∥XGs− y∥22/n, (4)

where G(θ) = {G : G ≥ 0, ∥gi∥1 ≤ θ, i = 1, . . . , k}. Solv-
ing G is a constrained convex optimization problem, which
again can also be solved via the APG method. The Eu-
clidean projection onto the convex set G(θ) can be efficiently
solved with a linear time complexity [18]. The overall algo-
rithm for solving formulation (2) is presented in Algorithm 1.

3. CONTROL OVERLAPPING IN GROUP
LEARNING

The group structure obtained by solving formulation (2)
may be largely overlapped because the proposed formulation
does not impose any restriction on overlapping among the
learnt groups. Nevertheless, in most clinical analysis appli-
cations practitioners often prefer less overlapped groups or

Algorithm 1 The block coordinate descent method for solv-
ing Eq. (2)

Input: X, y, Starting point G0.
Output: Grouping information G∗, s∗

Initialize G+ = G0

while not converge do
Solve s+ = argmins ∥XG+s − y∥2

2/n + λ1∥s∥1.

Solve G+ = argminG∈G(θ) ∥XGs+ − y∥2
2/n.

end while
Set G∗ = G+, s∗ = s+.

even mutually exclusive groups, i.e., a particular biomarker
should only belong to one feature group. To control the over-
laps among groups, we impose the orthogonal constraints
gT
i gj = 0 for all i, j in addition to the non-negative con-

straint G ≥ 0. An immediate consequence of these con-
straints is that the resulting group assignments are mutu-
ally exclusive. For the simplicity of discussion, we normalize
group assignments and assume that the columns of G are of
length 1 with respect to ℓ2 norm, which together with the
orthogonality of the columns of G implies that GTG = I.
In addition, we use the ℓ1 norm regularization to control the
sparsity onG. Our improved formulation of non-overlapping
FeaFiner is given by:

min
s,G

∥XGs− y∥22/n+ λS∥s∥1 + λG∥G∥1

subject to: GTG = I,G ≥ 0.
(5)

3.1 Augmented Lagrangian Method
We observe that problem (5) is a constrained non-smooth

optimization problem, which involves non-trivial constraint
GTG = I. It is very natural to apply classical augmented
Lagrangian method to solve (5). When applied to (5), aug-
mented Lagrangian method needs to solve a sequence of sub-
problems in the form of

min
s,G≥0

L(s,G,Λ, ρ;λG, λs), (6)

where L is the augmented Lagrangian function defined by

L(G, s,Λ, ρ;λG, λS) = ∥XGs− y∥22/n+ λS∥s∥1
+ λG∥G∥1 − ⟨Λ,GTG− I⟩+ ρ

2
∥GTG− I∥2F ,

Λ ∈ Rk×k is the Lagrange multiplier and ρ ∈ R+ is the
penalty parameter, and ∥ · ∥F is the Frobenius norm. The
augmented Lagrangian algorithm framework of solving Eq. (5)
is given in Algorithm 2 (e.g., see [26]).

At the kth iteration, the main computational effort of Al-
gorithm 2 lies in solving the augmented Lagrangian sub-
problem (6) with Λ = Λ(k) and ρ = ρ(k). This subprob-
lem can be suitably solved by spectral projected gradient
methods that were recently proposed in [35, 19] for solving
a class of non-smooth optimization problems over a simple
set. The discussion on one of these methods is postponed to
Section 3.2.

As observed in our numerical experiment on Algorithm 2
for solving problem (5), the accumulation point of its gen-
erated sequence almost always violates some constraints of
the problem, especially the orthogonal constraint GTG = I.
The similar phenomenon has also been observed in [19] for
solving a class of sparse PCA problems with orthogonality
constraints. To overcome this drawback, the authors of [19]
proposed a novel augmented Lagrangian method. And they
showed that every accumulation point of the novel method
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Algorithm 2 The classical augmented Lagrangian algo-
rithm for solving orthogonal FeaFiner

Input: X, y, G(0), s(0), γ > 1, λG and λS .
Output: G∗, s∗.

Set k = 0, Λ(0) = 11T, ρ(0) = 1, R(0) = (G(0))TG(0) − I.
while not converge do

Compute an approximate minimizer (G(k+1), s(k+1)) for

mins,G≥0 L(s,G,Λ(k), ρ(k);λG, λS).

Compute residual R(k+1) = (G(k+1))TG(k+1) − I.

if ∥R(k+1)∥∞ < η∥R(k)∥∞ then

ρ(k+1) = ρ(k),Λ(k+1) = Λ(k) + ρR(k+1);
else

ρ(k+1) = γρ(k),Λ(k+1) = Λ(k).
end if
Set k := k + 1.

end while
Set G∗ = Gk and s∗ = sk.

Algorithm 3 The novel augmented Lagrangian method for
solving orthogonal FeaFiner
Input: X, y, γ > 1, σ > 0, λG and λS .
Output: G∗, s∗.

Compute an initial feasible solution G0 and s0 of problem (5).
using the starting point strategy in Section 3.3.

Set Λ(0) = 11T, ρ(0) = 1

Compute τ = L(s0,G0,Λ
(0), ρ(0);λG, λS).

while not converge do

Compute an approximate minimizer (G(k+1), s(k+1)) for

mins,G≥0 L(s,G,Λ(k), ρ(k);λG, λS)

such that L(s,G,Λ(k), ρ(k);λG, λS) ≤ τ .

Compute residual R(k+1) = (G(k+1))TG(k+1) − I.

if ∥R(k+1)∥∞ < η∥R(k)∥∞ then

ρ(k+1) = ρ(k),Λ(k+1) = Λ(k) + ρR(k+1);
else

ρ(k+1) = max(γρ(k), ∥Λ(k)∥1+σ
F ),Λ(k+1) = Λ(k).

end if
Set k := k + 1.

end while
Set G∗ = Gk and s∗ = sk.

must satisfy all constraints of the problem, and moreover
under some suitable assumptions, each accumulation point
is a KKT point of the problem (see Theorem 3.3 of [19]).
It is not hard to verify that our problem (5) satisfies all
the conditions required in Theorem 3.3 of [19]. Therefore,
problem (5) can be suitably solved by the novel augmented
Lagrangian method proposed in [19]. We present in Algo-
rithm 3 the framework of this method for solving the orthog-
onal FeaFiner formulation (5). In contrast to Algorithm 2,
Algorithm 3 has two novel features: one is that the La-
grangian function is bounded above by τ along the gener-
ated sequence; and another is that the penalty parameter
ρ(k) grows faster than the magnitude of Lagrange multiplier
Λ(k). In our experiment we observe that this novel method
can perfectly recover the orthogonal group assignments on
G. Similar to Algorithm 2, the major computational part of
Algorithm 3 lies in solving the augmented Lagrangian sub-
problem (6) with Λ = Λ(k) and ρ = ρ(k). We will discuss how
to solve such subproblem efficiently in Section 3.2. Some
other implementation details such as strategies for choosing
good starting points, post-processing techniques, and path-
wise solutions will be discussed in Section 3.3.

3.2 Solve Augmented Lagrangian Subproblem
via Spectral Projected Gradient

As mentioned above, the major computational part of the
novel augmented Lagrangian method for solving problem (5)

Figure 1: Illustration of non-monotone objective
values in the spectral gradient descent. In the line-
search we start from the maximum objective value
of the previous nL steps to find the next step size,
where nL is the window within which the objective
values are not necessarily monotonically decreasing.
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lies in solving the subproblem in the form of (6). We now dis-
cuss how to solve this subproblem efficiently. The two vari-
ables G, s in (6) are coupled and thus bring non-convexity.
Traditionally, block coordinate descent (BCD) method can
be applied to solve this type of optimization problems [34].
Nevertheless, BCD may be easily trapped in a local mini-
mizer in practice due to non-convexity and non-smoothness.
Alternatively, we consider the G and s altogether and simul-
taneously solve these two variables, in the hope of better
exploiting the internal structure of the optimization prob-
lem. Due to these considerations, we apply a non-monotone
spectral projected gradient (SPG) method that was recently
proposed in [19] for solving a class of non-smooth optimiza-
tion problems over a simple set including problem (6) as a
special case.

To apply the non-monotone SPG method to problem (6),
we need the gradient of the smooth term in L which is de-
noted by L̃, that is,

L̃(G, s) =
1

n
∥XGs− y∥22 − ⟨Λ,GTG− I⟩+ ρ

2
∥GTG− I∥2F .

The gradient of L̃ with respect to G is given by:

∇GL̃(G, s) = ∇G∥XGs− y∥22/n− ⟨Λ,GTG⟩+ ρ

2
∥GTG− I∥2F

=
2

n
XTXGssT − 2

n
XTysT −G(Λ+ΛT )

+ 2ρG(GTG− I) (7)

and its gradient with respect to s is:

∇sL̃(G, s) = ∇s∥XGs− y∥22/n =
2

n
GTXTXGT s− 2

n
GTXTy.

(8)

During the line search procedure, we also need to solve the
following proximal type ℓ1-regularized problems:

min
X≥0

1

2
∥X−G∥+ ν∥X∥1, min

x

1

2
∥x− s∥+ ν∥s∥1,

which have closed form solutions given by

P̃ν(G) = max(|G− ν|, 0), (9)

Pν(s) = sign(s) ·max(|s− ν|, 0), (10)

respectively, where · is the element-wise multiplication.
For the SPG method, one important issue is the choice of

trial points and step size. Sicne problem (6) is non-convex,
regular Armijo-type monotonic decreasing line search strat-
egy may be too slow and also easily leads to a local solution.
On the other hand, non-monotone line search strategy is
more efficient and stable. Indeed, this strategy does not re-
quire the monotonic decrease of the objective value between
consecutive steps, but rather requires a decrease within a
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Algorithm 4 Spectral projected gradient method for solv-
ing augmented Lagrangian subproblem (6)

Input: X, y, ρ, Λ, 0 < αmin < αmax, initial feasible point (G0, s0),
initial stepsize α0, and an integer nL > 0.

Output: G∗, s∗.
Set G− = G0, s

− = s0, α = α0.
Compute ∇GL̃(G−, s−), ∇sL̃(G−, s−) using Eq. (7) and (8).
while ε > tolerance do

Compute Lmax which is the maximum objective value over the
latest nL iterations.
Obtain G+, s+, ∇GL̃(G+, s+), ∇sL̃(G+, s+) using the non-
monotone line search in Algorithm 5 with the initial stepsize
α.
Compute ∆G = G+ − G−, ∆s = s+ − s−, ∆G′ =
∇GL̃(G+.s+) − ∇GL̃(G−, s−) and ∆s′ = ∇sL̃(G+, s+) −
∇sL̃(G−, s−).
Update initial stepsize α = max(αmin,min(αmax, α

′)), where

α
′
=

⟨∆G,∆G⟩+⟨∆s,∆s⟩
⟨∆G,∆G′⟩+⟨∆s,∆s′⟩ . (11)

Compute ε = max(∥PλG
(G+ − ∇GL̃(G+,S+)) −

G+∥∞, ∥PλS
(s+ − ∇sL̃(G+, s+)) − s+∥∞).

Set G− = G+, s− = s+.
end while
Set G∗ = G+, s∗ = s+ and return.

Algorithm 5 Non-Monotone Armijo Line Search for Spec-
tral Projected Gradient Method

Input: G−, s−,∇GL̃(G−, s−), ∇sL̃(G−, s−),Lmax, 0 < γ < 1,
0 < c < 1, and initial stepsize α.

Output: G+, s+, ∇GL̃(G+, s+), ∇sL̃(G+, s+).
while true do

Solve G′ = P̃αλg (G
− − α∇GL̃(G−, s−)) via Eq. (9).

Solve s′ = Pαλg (s
− − α∇sL̃(G−, s−)) via Eq. (10).

δ = c(⟨G′ − G−,∇GL̃(G−, s−)⟩ + ⟨s′ − s−,∇sL̃(G−, s−)⟩ +

λG∥G′∥1 + λs∥s′∥1 − λG∥G−∥1 − λs∥s−∥1).
if L(G′, s′,Λ, ρ;λG, λS) ≤ Lmax + δ, break.
Update α = αγ.

end while
return G+ = G′, s+ = s′, ∇GL̃(G+, s+), ∇sL̃(G+, s+).

certain number of steps. The concept of non-monotone tech-
nique is illustrated in Figure 1. It was shown in [19] that un-
der some suitable assumption the non-monotone SPGmethod
has a linear convergence rate. The algorithm for solving
Eq. (6) by non-monotone SPG method is presented in Algo-
rithm 4, and the associated non-monotone line search sub-
routine is given in Algorithm 5.
The major difference between the spectral projected de-

scent and the traditional projected gradient method lies in
that: 1) Algorithm 2 requires the starting point to be fea-
sible in order to converge according to the theoretical anal-
ysis in [19] (We will discuss the starting point strategies
in Section 3.3.); 2) the initial step size is related to the ap-
proximate second-order information and given by the inverse
Rayleigh quotient via Eq. (11).

3.3 Computational Issues
Starting Point. In [4] the clustering assignment is used
to combine features. We expect to obtain a fairly good
staring point of G from the assignment matrix. We nor-
malize the assignment matrix such that the ℓ2 norm length
is 1 and denote it as Gkm. Then the starting value of s
can be obtained by solving the least squares problem s0 =
argmins ∥XGkms − y∥22/n, and from s0 we can obtain G0

by solving Eq. (4) with λG = 0.
Group Number. In many existing methods, the number
of clusters or groups is obtained by either cross validation

or domain knowledge. For FeaFiner, a meaningful starting
point ofG is the k-means clustering assignment matrix, thus
we can select k by using heuristics for choosing the cluster
number for k-means such as the simple rule

√
p/2 [20] or

information criterion approaches such as AIC/BIC [5]. An
alternative way of choosing the group number is by the ex-
pected group size, i.e., the number of features in each group,
ignoring the sparsity. Given k groups, intuitively the ex-
pected group size is p/k. If fine-grained feature groups are
needed, then a large k is needed and vice versa.
Post-Processing. Because of the orthogonality constraint
on G, the ℓ1-norm sparsity on G may not behave as in un-
constrained optimization problems. Normally we can view
the ℓ1-norm regularized problem as an equivalent constrained
problem that requires the ℓ1 length of columns of G to be
less than or equal to a certain value. However, with the or-
thogonal constraint in Eq. (5), the ℓ2-norm of columns of G
is fixed to be 1, which indicates that the ℓ1 length is implic-
itly lower-bounded. This means the solution G∗ obtained by
using Algorithm 2 may have some elements with very small
values (e.g., less than 1e−5) to ensure the unitary. Therefore
we can add a post-processing step to set these small values
to zeros and normalize the matrix after post-processing to
be unitary, and then solve a Lasso problem in Eq. (3) to ob-
tain the corresponding s. Also, the post-processed solutions
can again be used as the starting point in Algorithm 2 in
the hope that a better local solution can be found.
Pathwise Solutions. The FeaFiner formulation in Eq. (5)
has two sparse parameters λG and λS , which are typically
estimated from data. In order to achieve high efficiency, we
can obtain pathwise solutions via a successive warm-start
strategy : for a fixed λS , we order a list of g parameter candi-

dates for λG such that λ
(1)
G < . . . λ

(g)
G (from dense to sparse).

We use {G, s}λS
λG

to denote the solution obtained using λG

and λS , and to compute {G, s}λS
λG(i+1) we use {G, s}λS

λG(i) as

the starting point. We find that not only the pathwise solu-
tion strategy delivers higher computational efficiency, it also
yields solutions that have higher quality than solving Eq. (5)
independently for each parameter candidate. This strategy
effectively prevents the algorithm from converging to infe-
rior local solution. For convex sparse learning formulations
a typical pathwise solution strategy requires a reversed or-
der of parameter candidates (from sparse to dense), so that
the solution space (from the constrained perspective) is very
small at the very beginning to ensure efficiency. However, for
the non-convex formulation of FeaFiner the pathwise strat-
egy is reversed because in the dense case we know that the
k-means solution Gkm serves as a good starting point. In
the experiments we use this pathwise strategy for parameter
selection.

3.4 Theoretical Properties
In this section we provide some theoretical analysis of the

proposed FeaFiner method. First we consider the follow-
ing constrained reformulation of the FeaFiner with general
Lipschiz continuous convex loss function ℓ (with Lipschiz
constant L):

min
s,G

1

n

∑n

i=1
ℓ (⟨xi,Gs⟩,yi)

s.t. τmin ≤ ∥G∥1 ≤ τλG
max, ∥s∥1 ≤ α,GTG = I,G ≥ 0,

(12)
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where τmin = k · argmin∥g∥2=1 ∥g∥1 and τλG
max is related to

the regularization parameter λG.
Due to the constraintGTG = I and the element-wise non-

negativity on G, it immediately follows that Lasso is special
case of FeaFiner when k = n, G = I and s is solution of
Lasso. We note that the original parameter space of the
combined model w = Gs ∈ Rp is now expanded to a much
larger parameter space Rp,k × Rk,1, depending on K. The
large parameter space may be a concern in practice because
it is prone to overfitting. With GTG = I, the ℓ1 constraint
on s provides effective regularization on the resulting model
w = Gs:

∥w∥2F = ∥Gs∥2F = tr
(
sTGTGs

)
= tr

(
sT s

)
= ∥s∥22 ≤ ∥s∥21 ≤ α2.

We next show that the generalization error of the op-
timizer to the problem in Eq. (12) can be bounded and
is related to the condition of the design matrix X. Let
Gk = {G ∈ Rp×k : τmin ≤ ∥G∥1 ≤ τλG

max,G
TG = I,G ≥ 0}

and S = {s ∈ Rk : ∥s∥1 ≤ α}. Given any G and s, we
denote the expected risk as:

E(G, s) = E(x,y)∼µ[ℓ(⟨Gs,x⟩,y)].

Let G∗ and s∗ be the optimal solution that minimizes the
expected risk:

(G∗, s∗) = argmin
G∈GK ,s∈S

E(G, s) = argmin
G∈G,s∈S

E(x,y)∼µt [ℓ(⟨Gs, x⟩, y)],

Also, given data Z = (X,y), the empirical risk is defined as:

Ê(G, s|Z) = 1

n

n∑
i=1

[ℓ(⟨Gs, xi⟩, yi)].

and let G∗
(Z) and s∗(Z) be the optimal solution that minimizes

the empirical risk:
(
G∗

(Z), s
∗
(Z)

)
= argminG∈G,s∈S Ê(G, s|Z).

The asymptotic convergence of the learning process is given
in the following theorem:

Theorem 3.1. Let δ > 0 and let µ be probability measure
on Rd × R. With probability of at least 1− δ in the draw of
Z ∼ µn, we have:

E(G∗
(Z), s

∗
(Z))−E(G∗, s∗) ≤ 2Lα

√
2C1(X)(k+12)

n

+ 2Lα

√
8C∞(X) ln(2k)

n
+

√
8 ln 4/δ

n
,

where C1(X) = ∥Σ̂(X)∥∗ := tr
(
Σ̂(X)

)
=

∑d
i=1 λi(Σ̂(X))

is the trace of the empirical covariance matrix, C∞(X) =

∥Σ̂(X)∥∞ := λmax

(
Σ̂(X)

)
where λmax is the largest eigen-

value, and Σ̂(X) is the empirical covariance matrix, i.e.,

Σ̂(X) = 1
n
XTX ∈ Rd×d.

The proof structure is similar to that of [21] and to make
the paper self-contained we include the detailed proof in the
supplemental materials [1]. This theorem provides impor-
tant insight into the proposed formulation in Eq. (5): 1)
when n → ∞, we have E(G∗

(Z), s
∗
(Z)) − E(G∗, s∗) converges

asymptotically to 0. 2) the convergence is related to the con-
dition of design matrix X via C∞(X), C1(X). If the design
matrix has a low-rank structure, which gives a small C1(X),
then it achieves fast convergence.

4. EMPIRICAL STUDIES

4.1 Synthetic Studies
In the synthetic experiment we study the efficiency of

the proposed non-orthogonal FeaFiner (N-FeaFiner) in Al-
gorithm 1 and orthogonal FeaFiner (O-FeaFiner) in Algo-
rithm 2, and evaluate the quality of the group structures
obtained by the two algorithms.
Data Generation. We generate the data in the following
way. Given the problem size n, p, we firstly generate a block
diagonal covariance matrix Σ ∈ Rk×k, with the block size
⌊p/k⌋. Within each block, we set the diagonal elements to
be 1 and off-diagonal to be 0.9. The design matrix X is then
sampled from N (0,Σ). The matrix G ∈ Rp×k is generated
according to the group structure defined by the covariance
matrix. Suppose the p features are partitioned into k groups
{I1, I2, . . . , Ik}. The ith column of matrix G is sampled as
follows: Gi,j ∼ U(0, 1) if j ∈ Ii and Gi,j = 0 otherwise.
s is sampled from N(0, 1) with half of the entries set to 0.
Finally, we construct the response vector y = XGs + ϵ,
where ϵ ∼ N (0, 10−3).
Computational Efficiency. We first compare the com-
putational cost of N-FeaFiner and O-FeaFiner. We set the
precision of the outer-iteration of both algorithms to be 10−3

and the precision of the inner-iteration to be 10−6. For N-
FeaFiner, the inner-iteration is the ℓ1-regularized/constrained
solvers of s and G, and for O-FeaFiner, the inner-iteration
solves the SPG. We control the sparsity parameters so that
the solutions of the two algorithms have approximately the
same density (density is given by the number of non-zero
elements divided by the number of total elements, and the
density for G and s are 0.1 and 0.5 respectively). We per-
form experiments in three settings: 1) fix n = 100, p = 500
and vary k = 10 : 10 : 100; 2)fix n = 100, k = 20 and
d = 100 : 100 : 1000; 3) fix d = 300, k = 10, and n =
100 : 100 : 1000. We repeat these experiments for 100 times
and report the average time in Figure 2. We observe that
1) in general O-FeaFiner has advantage over N-FeaFiner in
terms of computational cost; 2) the costs of both methods
are linear w.r.t. the sample size n; 3) when increasing the
dimensionality of the original feature space p, the costs of
both methods increase sublinearly; 4) when increasing the
group size k, the time cost of N-FeaFiner increases linearly
while for O-FeaFiner the cost increases sublinearly w.r.t. the
group number.
Group Overlap. The major difference between N-FeaFiner
and O-FeaFiner is the non-overlapping constraint on the
group structure G in O-FeaFiner. We perform experiments
to study the group structures obtained by the two methods.
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Figure 2: Comparison of computational complexity
between the non-orthogonal FeaFiner (N-FeaFiner)
and the improved orthogonal FeaFiner (O-FeaFiner)
with varying sample size (left) n, dimensionality p
(middle) and group number k (right).
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Table 1: The demographic information of the ADNI
dataset used in this study.

MMSE Samples(Train/Test) Validation Set
M06 434 (290/44) 214
M12 430 (387/43) 212
M24 381 (343/38) 188
M36 261 (235/26) 128

ADAS-Cog Samples(Train/Test) Validation Set
M06 434 (391/43) 214
M12 427 (385/42) 211
M24 378 (341/37) 186
M36 253 (228/25) 124

Similar to the previous experiment, we construct a toy data
of size n = 50, p = 12, k = 3. We train predictive mod-
els using the two methods and present the learned group
structures G in Figure 3. We observe that the O-FeaFiner
algorithm can perfectly recover the location of the non-zero
elements, while the group structure obtained by N-FeaFiner
introduces irrelevant assignments and the groups overlap.
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Figure 3: Comparison of group structures obtained
by N-FeaFiner (middle) and O-FeaFiner (right) on
the toy data. The O-FeaFiner can perfectly recover
the ground truth (left).

4.2 Identifying Biomarkers for AD
In this experiment we apply O-FeaFiner to analyze the

feature groups and build effective predictive models on the
ADNI dataset1. In the ADNI project, images such as mag-
netic resonance imaging (MRI) scans and important cognition-
related clinical measurements such as Mini Mental State Ex-
amination (MMSE) scores and Alzheimer’s Disease Assess-
ment Scale-cognitive subscores (ADAS-Cog) are obtained
from selected patients repeatedly over a 6-month or 1-year
interval. The MMSE scores and ADAS-Cog scores are shown
to be correlated with the underlying AD pathology and pro-
gressive deterioration of functional ability [28].
Experimental Settings. In this study we perform ex-
periments to build predictive models from the 306 low-level
features to predict the MMSE and ADAS-Cog scores at fu-
ture time points (M06, M12, M24, M36). The prediction of
one type of cognitive score at one time point is a regression
task, and therefore there are in total 8 regression tasks. The
low-level features are extracted from the baseline MRI brain
scans of the patients, and a detailed list of the features is
given in the supplemental materials [1]. The prediction at a
particular time point makes use of all the samples that have
the MMSE score at the particular time point as well as the
baseline MRI scans. We split the samples into two parts: one
third of the samples are served as an independent validation
dataset used to estimate the tunable parameters and 90%
of the remaining samples are used to build the model and
10% of the remaining samples are used to test the predictive
models. The detailed demographic information of the data
is given in Table 1. In the experiment we normalize the two

1Available at http://adni.loni.ucla.edu/

Table 2: Comparison of predictive performance of
the proposed approach (O-FeaFiner) and existing
approaches (Lasso and CRL) on MMSE and ADAS-
Cog prediction in terms of coefficient of determi-
nation (R2). Higher R2 indicates better predictive
performance.

MMSE M06 M12 M24 M36
Lasso 0.5479 0.4773 0.5892 0.4106

CRL (12) 0.2155 0.2395 0.2743 0.1332
CRL (30) 0.2819 0.2816 0.3216 0.2081
CRL (50) 0.2856 0.2559 0.3879 0.3223

FeaFiner (12) 0.4619 0.4798 0.5998 0.3724
FeaFiner (30) 0.5562 0.4818 0.5896 0.3731
FeaFiner (50) 0.5628 0.4579 0.5561 0.4203

ADAS-Cog M06 M12 M24 M36
Lasso 0.4969 0.5581 0.5170 0.4438

CRL (12) 0.2695 0.2950 0.3232 0.2167
CRL (30) 0.2860 0.3183 0.4488 0.3204
CRL (50) 0.3612 0.4374 0.4533 0.1563

FeaFiner (12) 0.5282 0.5385 0.5484 0.3275
FeaFiner (30) 0.5036 0.5303 0.5342 0.4355
FeaFiner (50) 0.5106 0.5447 0.5321 0.3391

scores for all the samples such that after the normalization
their values are in the range of [0, 1]. We randomly split the
training and testing data, and repeat the experiment for 10
times. We compare the proposed orthogonal FeaFiner with
two baseline methods:

• Lasso (SLEP implementation [17]). Lasso in nature is
a much easier problem than FeaFiner in the sense that
it only pursuits high predictive performance, and does
not identify feature groups. We show that FeaFiner
achieves equal or even higher performance than Lasso.

• Cluster Representative Lasso (CRL) [3] performs clus-
tering first then uses lasso to select from the result-
ing clusters. We show that the performance of the
FeaFiner is significantly better than CRL, because Fea-
Finer can jointly perform feature grouping and selec-
tion instead of using a two-stage approach like CRL.

To study the effects of varying group number k, we manually
choose three values (12 which is the simple rule of thumb
number [20], 30 and 50) of k in CRL and FeaFiner methods
and report results independently. We evaluate the three
methods in terms of their predictive performance, model
stability (for CRL and FeaFiner the models are built using
grouped features) and the stability of the learned groups (for
CRL and FeaFiner only).
Predictive Performance. We evaluate the performance of
the algorithms by the coefficient of determination (R2) [29],
which is widely used in the regression analysis of medical
studies. Given the ground truth target vector y and its
corresponding prediction ŷ, the R2 metric is defined by:
R2 = 1−

(
∥y − ŷ∥22/∥y − ȳ∥22

)
, where ȳ is a vector whose el-

ements are the mean of y. In Table 2 we report the average
experimental results on MMSE and ADAS-Cog prediction
in terms of predictive performance. We find that Lasso and
the proposed FeaFiner method achieve high predictive per-
formance, while the CRL method does not perform well in
most cases.
Model Stability. To evaluate the stability of models, we
define the following metric: for each feature fi we use the in-
clusion function I(fi) to indicate if this feature is included in
the model (I(fi) = 1 if the feature is included and I(fi) = 0
otherwise) and var(I(fi)) to denote the variance of the in-
clusion w.r.t. models obtained from random splittings, and
the feature variance is defined by

∑p
i=1 var(I(fi))/p. If a
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Table 3: Comparison of model stability of the
proposed approach (O-FeaFiner) and existing ap-
proaches (Lasso and CRL) on MMSE and ADAS-
Cog prediction in terms of feature variance. A lower
feature variance indicates that the models are more
stable.

MMSE M06 M12 M24 M36
Lasso 0.1021 0.1464 0.2565 0.1963

CRL (12) 0.1303 0.1733 0.1652 0.2852
CRL (30) 0.1700 0.1631 0.1570 0.1615
CRL (50) 0.1597 0.1234 0.1361 0.1080

FeaFiner (12) 0.1975 0.1451 0.0864 0.1670
FeaFiner (30) 0.1469 0.0604 0.0532 0.0742
FeaFiner (50) 0.0378 0.0330 0.0553 0.0616

ADAS-Cog M06 M12 M24 M36
Lasso 0.1832 0.1313 0.2066 0.2722

CRL (12) 0.2155 0.2071 0.2836 0.2481
CRL (30) 0.1362 0.1565 0.1377 0.1426
CRL (50) 0.1038 0.1026 0.1214 0.1209

FeaFiner (12) 0.1329 0.0822 0.0762 0.1565
FeaFiner (30) 0.0335 0.0401 0.0767 0.0363
FeaFiner (50) 0.0544 0.0575 0.0567 0.0459

Table 4: Comparison of group stability of the pro-
posed approach (O-FeaFiner) and the existing ap-
proach (CRL) on MMSE and ADAS-Cog prediction
in terms of group variance). A lower group variance
indicates that the groups used to generalize features
are more stable.

MMSE M06 M12 M24 M36
CRL (12) 0.1369 0.1308 0.1245 0.1376
CRL (30) 0.0525 0.0494 0.0532 0.0596
CRL (50) 0.0333 0.0331 0.0322 0.0352

FeaFiner (12) 0.1506 0.0077 0.0077 0.0178
FeaFiner (30) 0.0166 0.0069 0.0540 0.0213
FeaFiner (50) 0.0109 0.0070 0.0338 0.0092

ADAS-Cog M06 M12 M24 M36
CRL (12) 0.1448 0.1342 0.1303 0.1267
CRL (30) 0.0548 0.0550 0.0571 0.0534
CRL (50) 0.0326 0.0331 0.0320 0.0340

FeaFiner (12) 0.0078 0.0225 0.1424 0.0437
FeaFiner (30) 0.0619 0.0600 0.0584 0.0157
FeaFiner (50) 0.0061 0.0355 0.0342 0.0198

feature is included or excluded by all models of random split-
tings, the feature variance is 0. For CRL and FeaFiner we
report the variance of the features generated after grouping.
The group assignments and models across different random
splittings are aligned using the best correlation. In Table 3
we report the model stability of all competing methods on
MMSE and ADAS-Cog predictions. We find that the mod-
els built by Lasso are not stable while CRL and FeaFiner
produce much more stable models when k = 30 and k = 50
(especially at time points M24 and M36). However, using
an improper k may yield unstable models for both methods.
Group Stability. To evaluate the stability of the learned
groups, we define the following metric: denote the group
assignment vector for group i obtained from the qth ran-

dom splitting experiment by g
(q)
i , and the group variance is

defined by:∑k
i=1

(∑
q ̸=r I(I(g

(q)
i ) ̸= I(g(r)

i ))/
∑

q ̸=r 1
)
/k,

where I is the standard indicator function. The group vari-
ance measures how likely the group assignment of one vari-
able changes over different random splittings. We report the
average group stability on MMSE and ADAS-Cog prediction
in Table 4. We see that the groups learned by FeaFiner are
in general more stable than CRL.

Table 5: Examples of high-level feature groups ob-
tained by the proposed FeaFiner algorithm (k = 50)

Feature Group Raw Feature Name Group Weight

MMSE Group 1

Vol.(CO) L.TemporalPole 0.1847
Vol.(CO) R.TemporalPole 0.1679
Suf. Area L.TemporalPole 0.1595
Suf. Area R.TemporalPole 0.1624
Suf. Area L.Entorhinal 0.1682
Suf. Area R.Entorhinal 0.1573

MMSE Group 2

Vol.(WM) L.Hippocampus 0.2513
Vol.(WM) R.Hippocampus 0.2545
Vol.(WM) L.Amygdala 0.2451
Vol.(WM) R.Amygdala 0.2491

MMSE Group 3
CT Avg. L.Sup.Frontal 0.4912
CT Avg. R.Pos.Cingulate 0.2857
CT Avg. R.IsthmusCingulate 0.2231

ADAS Group 1

Baseline MMSE 0.7820
Suf. Area R.Fusiform 0.0830
Vol.(CO) L.Ros.Mid.Frontal 0.0307
Vol.(CO) R.Ros.Mid.Frontal 0.1043

ADAS Group 2

CT Avg. L.Cuneus 0.3490
CT Std. L.Cuneus 0.3217
Vol.(CO) L.Cuneus 0.3294

ADAS Group 3

CT Avg. L.Tra.Temporal 0.2490
CT Avg. R.Tra.Temporal 0.2505
CT Std. L.Tra.Temporal 0.2506
CT Std. R.Tra.Temporal 0.2499

Feature Group Analysis. We list some examples of high-
level feature groups learned by FeaFiner (k = 50) in Ta-
ble 5. A detailed list of feature groups from different tasks
are available in the supplemental materials [1]. We observe
several interesting patterns in the learned groups. First of
all we find that many feature groups exhibit bilaterally sym-
metric patterns. For a certain brain area there are two low-
level features, i.e., one for the left hemisphere and one for
the right. If the feature from one hemisphere is included in
a group, then the corresponding counterpart on the other
hemisphere is also likely to be included in the same fea-
ture group. This agrees with the observations from many
medical researches, in which reductions on many bilaterally
symmetric brain regions were found in the AD patients [10,
23]. Note that in some groups we also find interesting asym-
metric groups such as MMSE group 3 and ADAS group 2
in Table 5. The asymmetric feature such as Cingulate has
been identified in some recent studies on asymmetry dis-
ease biomarkers [6]. We have several low level features for
a particular brain area (e.g., volumes, surface area and cor-
tical thickness average/standard deviation). We find from
our experiments that features from the same brain area are
likely to belong to the same group (e.g., ADAS Group 3).
We also notice that in many feature groups the weights of
the low-level features are not equally distributed; for ex-
ample in MMSE Groups 1, 3 and ADAS Group 1. This
indicates that in the same feature group some features may
contribute more to the prediction than the others, and ex-
isting clustering-based methods such as CRL are not able to
obtain groups of such kind.

5. CONCLUSION
In this paper we propose an integrated approach called

FeaFiner for feature construction by simultaneously identi-
fying a feature grouping structure which projects data from
a high dimensional feature space to a low-dimensional and
interpretable feature space, and learning a sparse model on
the low-dimensional space. We propose two formulations:
N-FeaFiner for learning overlapped groups and O-FeaFiner
for learning mutually exclusive groups. We propose novel al-
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gorithms for solving the two problems. We have performed
extensive experiments on both synthetic and real datasets
to evaluate the proposed algorithms, and results show that
the proposed method learns clinically meaningful feature
groups, and demonstrates promising predictive performance
on real medical data sets. One of our future works is to apply
the proposed algorithm to other biomedical applications.

Acknowledgement
This work was supported in part by NIH R01 LM010730,
NSF IIS-0953662, MCB-1026710, and CCF-1025177.

6. REFERENCES
[1] www.public.asu.edu/~jye02/FeaFiner.
[2] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex

optimization with sparsity-inducing norms. Opt. for Mach.
Learn., pages 19–53, 2011.
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